
Software Quality Assurance Analytics: Enabling
Software Engineers to Reflect on QA Practices

Ali Khatami
Delft University of Technology

Delft, The Netherlands
s.khatami@tudelft.nl

Carolin Brandt
Delft University of Technology

Delft, The Netherlands
c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
a.e.zaidman@tudelft.nl

Abstract—Software engineers employ a variety of approaches
to ensure the quality of software systems, including software
testing, modern code review, automated static analysis, build
automation, and continuous integration. Previous research has
shown that software engineers lack situational awareness about
the quality assurance (QA) practices in their projects. We propose
software quality assurance analytics to help software engineers
become aware of their QA usage, and reflect upon it. We have
developed a prototype quality assurance analytics dashboard
coined RepoInsights that provides both a global overview and
a comparative aspect of the different QA practices. Through a
qualitative study involving 14 participants who have completed
an assignment using our RepoInsights dashboard, we elicit
their perspective on quality assurance analytics. We observe that
the dashboard has enabled the software engineers to reflect on
the QA practices of software projects. Additionally, we distill a
set of recommendations for future quality assurance analytics.

Index Terms—Software Quality Assurance, Software Analytics,
Empirical Software Engineering, Software Testing, Code Review,
Automation Workflows

I. INTRODUCTION

Because of the growing importance of software in our
society, the quality assurance (QA) of that software is indis-
pensable [1]. This view is supported by countless reports of
software failures that have caused severe harm to businesses,
people, or society as a whole [2], [3]. Software engineers can
use a range of QA mechanisms to ensure the quality of the
software systems they produce, including software testing [2],
[4]–[8], modern code review [5], [9], [10] automated static
analysis [11]–[15], and build automation [16]–[19]. However,
a recent study has indicated that software engineers lack
situational awareness [20] when it comes to the QA efforts
of the projects they are maintaining or contributing to [21].

An established approach to raise awareness is software ana-
lytics (SA), which makes software data available to engineers
and managers, empowering them to gain and share insights
leading to better decisions [22]. The combination of insights
that 1) quality assurance is generally considered important,
2) the existence (and use) of a plethora of QA mechanisms,
and 3) the lack of situational awareness of whether, how, and
to what degree these QA mechanisms are used, leads to our
idea to explore software analytics focused on QA data. We
conjecture that providing so-called quality assurance analytics
(QAA) to software engineers will increase their awareness
about the quality assurance situation in their projects. This in

turn can be useful to maximize the use of (a combination of)
QA mechanisms, and hopefully lead to less quality incidents.

In this paper we investigate how to design a quality as-
surance analytics dashboard in order to empower software
engineers to reflect on the QA practices of their projects.
To this end, we design a QAA dashboard that provides a
global overview of quality assurance-related activities in open-
source software repositories and allows for comparisons with
other projects. We develop a prototype of a QAA dashboard,
RepoInsights, and evaluate it through a pretest-posttest
study including semi-structured interviews with 14 software
engineers from open-source, industry and academia. Our study
is guided by the following research questions:

RQ1: How do software engineers apply QA practices and
how do they reflect on them?

RQ2: What are software engineers’ perspectives on
a quality assurance analytics dashboard like
RepoInsights?

RQ2.1: In what ways did the QAA dashboard help soft-
ware engineers reflect on QA practices?

RQ2.2: In what ways could the QAA dashboard be
improved to help software engineers reflect on
QA practices?

During our study, we first explore how the particiants of
our study currently follow and reflect on QA practices (RQ1).
We let them judge the QA of two software projects with
RepoInsights to observe their use of a QAA dashboard.
Based on their satisfaction with the dashboard, their verbalized
thoughts and the plethora of feedback they provided, we elicit
software engineers’ perspective on our QAA dashboard (RQ2)
and characterize the ways in which RepoInsights succeeds
in letting engineers reflect on QA (RQ2.1), and the ways in
which the QAA dashboard can be improved (RQ2.2).

In summary, this study contributes:
• A novel, conceptual design of a quality assurance analyt-

ics dashboard, and our prototype RepoInsights
• Insights from software engineers on how they currently

adopt and manage QA practices in their projects.
• Insights on the successful aspects of our design and

recommendations on how to improve the dashboard,
based on the feedback from software engineers.

1

II. REPOINSIGHTS: A QUALITY ASSURANCE ANALYTICS
(QAA) DASHBOARD

In this paper, we introduce the concept of a software quality
analytics dashboard, designed to enhance software engineers’
situational awareness surrounding QA practices [23]. It gives
a global overview of quality assurance practices by collecting
information and giving metrics and details related to the
state of testing, automated workflows [24], code reviews,
and guidelines, in one place. It also provides detailed views
showing specific information on, e.g., pull requests. Addition-
ally, it incorporates a comparative aspect, enabling users to
view similar information and statistics across a larger set of
repositories. The dashboard is intended for software engineers
that contribute to or maintain a software project. It serves as
a vehicle to reflect on how adequate their project currently
applies QA practices.

A. The Global Overview & Comparative Aspect

The global overview is designed around two main concepts:
(1) situational awareness and (2) the complementarity of qual-
ity assurance practices. Situational awareness theory, rooted in
psychology, refers to “the continuous extraction and integra-
tion of information to form a coherent mental picture, and
then use this information to direct future actions” [25] and is
important for effective decision-making in many environments
(e.g., health care, air traffic control, etc.) [26]. A prior study
explored open-source developers’ situational awareness [20]
of quality assurance aspects within their projects. The study
identified areas of deficiency and compared awareness across
various quality assurance practices [21]. The complementarity
of quality assurance practices highlights the fact that using
them in conjunction can enhance the overall quality perspec-
tive while at the same time might also reduce quality assurance
efforts [27], [28].

The comparative aspect of the dashboard lets software
engineers evaluate the information provided for their project
in comparison to other projects. It thus enables them to
independently judge their project’s QA by comparing metrics
to the average of other popular and active software projects.

B. Repository Dashboard Page

The repository dashboard page on RepoInsights has
four primary sections: Testing, Automated Workflows (AWs),
Pull Requests (PRs), and Guidelines (see Figure 1). These
four sections comprise the global overview of the project’s
quality assurance. Beneath each section, there is a collapsible
segment that presents similar information averaged across a
set of projects, providing the comparative aspect (4⃝ and 6⃝
in Figure 1).

The provided information, including metrics, statistics, and
graphs for each section of the dashboard are as follows: Test-
ing: displays available test coverage information 1⃝ (Codecov1

and Coveralls2) and provides a link to a detailed page with

1https://about.codecov.io/, last visit: April 11, 2024
2https://coveralls.io/, last visit: April 11, 2024

anonymized

21

3

4

5

6

global overview

detailed pages

comparative aspect

an
on

ym
oz
ed

Fig. 1: An illustration showcasing various parts of the
RepoInsights dashboard.

trend of test coverage over time 2⃝. Automated Workflows:
presents details regarding checks on commits of the latest 100
PRs 3⃝, including: top failed checks (number of failures and
their associated GitHub App handle), top-used GitHub Apps,
success rate of checks, average checks runtime, and average
number of checks per commit. Pull Requests: displays infor-
mation on the last 100 PRs, including the average number of
line additions and deletions, average number of files changed,
average number of participants in PRs, and average review
time. Additionally, it provides a link to a details page 5⃝ with
the following: top active authors, distribution of pull requests’
authors and mergers, pull requests with the highest number of
comments, and trend graphs for review time, line/file changes,
and comments per pull request, along with a detailed table with
pull request information. Guidelines: indicates the presence
of contributing guidelines, code of conduct, and templates for
issues and pull requests. If any of these guidelines exist, the
dashboard page provides a link to them.

2

Participant Info
(Section III.C)

Answering RQ1
(Section IV)

Answering RQ2, RQ2.1, RQ2.2
(Section V)

Questionnaire

Demographics

Questionnaire
+ Think Aloud

Expectation
Assignment
Perception

Conversation +
Questionnaire

Satisfaction with
RepoInsights
+ Feedback

Questionnaire +
Conversation

Attitudes QA + SA
Current QA
+ Reflection

21 3 4

Fig. 2: Structure of our interview sessions.

C. Prototype Architecture Design

We adopt an engineering research approach, in which we
develop a tangible prototype of a QAA dashboard. This
prototype facilitates our study, enabling us to gather feedback
on the concept of RepoInsights from software engineers.

The RepoInsights prototype follows a hybrid software
architecture including a MERN3 stack [29] for the app itself
and a set of Python scripts that work as crawlers to collect
the data through APIs of GitHub4 (PR details, repository in-
formation, automated workflows, and guidelines), Coveralls5,
and Codecov6 (test coverage information). The collected data
is saved to MongoDB, retrieved by the MERN app to calculate
statistics, and then display on the dashboard.

III. STUDY SETUP

To evaluate our concept of a QAA dashboard, we follow
a one-group pretest-posttest design with semi-structured in-
terviews involving software engineers. We discuss how they
currently reflect on quality assurance in their projects to get
more insights on how a QAA dashboard can facilitate this
current state (RQ1). To elicit concrete feedback on and sug-
gestions for improvement for our design of a QAA dashboard,
we developed the prototype RepoInsights. During the
interviews, we ask the participants to judge two projects with
RepoInsights, while thinking aloud. Then we ask them to
evaluate different aspects of the tool, provide feedback, and
sketch their potential usage. Through analyzing the partici-
pants’ ratings and comments, we elicit software engineers’
perspectives on a QAA dashboard like RepoInsights
(RQ2). We are interested in the ways RepoInsights and
our general concept of a QAA dashboard help participants in
reflecting on QA practices (RQ2.1), as well as identifying the
ways it can be improved (RQ2.2).

A. Study Design

We developed a questionnaire to guide our interview ses-
sions. The steps of the interview align with the sections of the
questionnaire and are shown in Figure 2. The questionnaire
starts with informed consent and the participants’ demograph-
ics, including questions about their experience in software
development and whether they primarily work in open source,
industry or academia (Step 1, Figure 2).

3MongoDB, Express.js, React.js, and Node.js.
4https://docs.github.com/en/graphql, last visit: April 11, 2024.
5https://docs.coveralls.io/api-introduction, last visit: April 11, 2024.
6https://docs.codecov.com/reference/overview, last visit: April 11, 2024.

In the next step, we ask our participants to rate statements
regarding their attitudes towards quality assurance and soft-
ware analytics. To ensure clarity, we also provide a definition
along with examples for each concept. Understanding our
participants’ attitudes is important, as these could influence
their evaluation of the tool they are about to interact with.
Then, the interviewer asks about the concrete quality assurance
practices they use in terms of testing, code reviews, automated
workflows, and other guidelines. Additionally, the interviewer
asks how they judge whether quality assurance practices are
sufficiently used (Step 2, Figure 2).

The following step consists of a one-group pretest-posttest
study design [30] with the participant interacting with the
dashboard in between. This type of study is called quasi-
experimental to indicate that it does not meet the scientific
standards of experimental design [31], yet it allows reporting
on facts of real user-behavior, even those observed in under-
controlled, limited-sample experiences. First, we provide an
explanation of our design of a QAA dashboard and ask the
participants to rate statements regarding their expectations
of such a tool (Step 3, Figure 2). After they complete the
assignment with RepoInsights, we present the same set
of statements and ask the participants to rate them based on
their concrete experience with the dashboard. With this we
gauge the participants’ perception of the dashboard.

To encourage participants to engage with the dashboard,
we devised a concrete task to solve during the assignment:
“assess two real-world open-source projects from GitHub
across four quality assurance aspects: testing, automated
workflows, pull requests, and guidelines.” Additionally, the
participants were asked to judge the projects overall. The two
projects, fluentlenium/fluentlenium and pmd/pmd,
were carefully selected from our initial dataset of selected OSS
projects on GitHub. This dataset included active and popular
projects with ample data on pull requests (sampled using
GitHub Search [32]), automated workflows, and available test
coverage information. The two projects were chosen to have
varied code review activity and contributor counts, enabling
comparisons and observations of participants’ reactions to
different quality assurance levels. During the assessment,
participants were encouraged to narrate their thoughts and
provide reasons behind their judgments, with the interviewer
actively prompting them for further explanations.

In the last section of the interview, we ask the participants
to rate their satisfaction with the dashboard, provide feedback
on how it can be improved and whether they would use such
a QAA dashboard in their work (Step 4, Figure 2).

We obtained approval from our local ethics board and asked
for informed consent to use and share the collected data for
research purposes from the participants. For access to our full
questionnaire, please refer to our provided artifact [33].

We conducted a pilot round of two interviews to estimate
the interview duration and to identify any unclear questions.
As a result, we increased the Likert scale range with 2
points for two questions and resolved an issue regarding the
questionnaire’s user interface. Subsequently, we requested the

3

Pa
rt

ic
ip

an
t

So
ft

w
ar

e
D

ev
.

E
xp

er
ie

nc
e

Fi
rs

t
G

itH
ub

C
on

tr
ib

ut
io

n

A
ca

de
m

ia

In
du

st
ry

O
pe

n
So

ur
ce

Pr
im

ar
y

R
ol

e
Pr

oj
ec

ts

U
ni

ve
rs

ity
E

du
-

ca
tio

n

A
ge

ra
ng

e

P1 7 to 10 y. 3 to 7 y. ago x - x Maint. PhD 25-34
P2 3 to 7 y. 1 to 3 y. ago x - - Maint. PhD 25-34
P3 3 to 7 y. 3 to 7 y. ago - x x Maint. BSc 18-24
P4 3 to 7 y. 3 to 7 y. ago x - x Maint. BSc 18-24
P5 3 to 7 y. 3 to 7 y. ago - x x Maint. MSc 25-34
P6 10+ y. 7 to 10 y. ago - - x Contrib. - 35-44
P7 10+ y. 7 to 10 y. ago x - - Maint. PhD 55-64
P8 10+ y. 7 to 10 y. ago - x x Maint. - 45-54
P9 10+ y. 10+ y. - x - Maint. BSc 35-44
P10 10+ y. 3 to 7 y. ago x - - Contrib. PhD 55-64
P11 10+ y. 3 to 7 y. ago - x x Maint. BSc 35-44
P12 10+ y. 3 to 7 y. ago x - x Maint. PhD 35-44
P13 10+ y. 10+ y. ago x - x Maint. PhD 25-34
P14 3 to 7 y. 7 to 10 y. ago - x - Maint. PhD 25-34

TABLE I: Participants demographics.

pilot participants to review and update their responses to the
modified questions, allowing us to incorporate their revised
answers into the final data set.

B. Study Execution

We recruited 12 study participants through e-mails to soft-
ware engineers who expressed interest in follow-up research
after participating in a previous study. In addition, we recruited
two more participants through convenience sampling in our
professional networks to ensure a balanced representation
of expertise in open-source software (OSS), industry, and
academia.

We conducted the interviews via Zoom sessions, granting
participants remote access to the interviewer’s computer to
interact with both the questionnaire and the dashboard. We
recorded the interviews to be able to transcribe them for the
qualitative analysis. The first author, who conducted all 14 in-
terviews, took notes during the interview, especially during the
open conversation regarding the participants’ current quality
assurance practices (Step 3, Figure 2). We also surveyed partic-
ipants to assess their satisfaction with the interview, including
questions, assignments, and the overall experience. Responses
indicated either a high or medium level of satisfaction.

C. Participants

A summary of the participant demographics is in Table I.
The majority of participants (85%) considered themselves to
be in a maintainer role in the software projects they are
involved in. Our participants represented a wide age range
(∼20 to ∼60 years old) and mostly had education in computer
science or related fields. They are often actively involved
in OSS projects (64%), alongside working in academia or
industry. One participant is exclusively working in OSS.

D. Data Analysis

The data analysis from the interviews was two-fold. We
collected data from the questionnaire that the participants
filled out during the interview, and applied open and axial
coding [34] to analyze the recordings and transcriptions of
the interviews. The first two authors started by analyzing one
interview separately, and then discussed their experiences to

1

2

3

2

1

4

212

8

2

3

4

3

5

9

8

3

11

10 0 10

Investing more in QA equals
lower maintenance cost in future.

I strongly believe that neglecting
QA results in more defects.

Automated workflows are an essential
part of software development to ensure

the quality of software.

Code review is not always necessary
in software development.

Testing is a crucial part
of software development.

Before this interview,
I had never heard of QA practices.

Strongly agree
Somewhat agree
Neither agree nor disagree
Somewhat disagree
Strongly disagree

(a) Attitudes towards quality assurance practices.

6

3

6

10

1

4

2

3

6

9

4

1

4

3

2

3

2

1

10 0 10

SA tools are essential for
 ensuring data-driven insights and

improving software quality.

I do not see any added
value in using SA.

SA can save a lot of time
in software development.

Using analytics is a crucial for informed
decision-making in software development.

Before this interview,
I had never heard of SA.

(b) Attitudes towards software analytics.

Fig. 3: Attitudes regarding quality assurance practices and
software analytics.

set guidelines for how to assign open codes to any interesting
observations from the interview transcripts. Then each of the
two analyzed half of the interviews separately before merging
the codes together and grouping them into higher level codes.
The authors discussed the emergent groups, employing con-
stant comparison [35] with the original transcripts, until they
reached a negotiated agreement [36]. These higher level codes,
together with the data collected through the questionnaire,
are the basis for our answers to the research questions. In
the following section, each statement based on our codes is
followed by parentheses clarifying which participants made
statements that led to this observation. We publish the full
codebook as part of our replication package [33].

IV. RQ1: HOW DO SOFTWARE ENGINEERS APPLY QA
PRACTICES AND HOW DO THEY REFLECT ON THEM?

In this section, we summarize our insights from the first part
of the interviews, executed as part of the pre-test. We asked
about the participants’ attitudes on QA practices, software
analytics, and their current approaches for QA. We delved into
how they assess the adequacy of their approaches and explored
their motivations for extending QA efforts. Based on the high-
level codes that arose during the open and axial coding of the
interviews, we answer our first research question (RQ1).

A. Attitude Towards Quality Assurance and Software Analytics
Overall, our participants are aware of and positive towards

the value of quality assurance. They are aware of software
analytics but the majority does not make use of it in their
projects, and they are neutral to positive about whether it is
necessary for a successful project.

The answers to the questionnaire on QA are shown in
Figure 3a. All participants were familiar with the term “qual-
ity assurance” prior to the interview. There was unanimous

4

agreement on the importance of testing. However, opinions
differed regarding the necessity of code reviews, with half
of the participants expressing either a moderate or high level
of agreement that code reviews may not always be required.
Concerning the impact of quality assurance, most participants
held positive views about its ability to reduce defects and
maintenance costs.

The participants had a mostly positive view of software
analytics. They were neutral and leaning towards positive
regarding its importance and necessity (Figure 3b). When
asked if they used software analytics in their projects, five
participants (36%) said yes. These participants gave examples
of using custom scripts and internal tools for software analyt-
ics. Four participants reported checking these analytics daily,
while one participant reported checking them every two weeks.

B. Well Justified Variety in Applied QA Practices

The most prominent insight from our interviews is the
variety in adopted QA practices. This variety is so large that
reporting the single practices goes beyond the scope of this
paper. Nevertheless, we want to give a few examples.

With regards to adding tests, P2 explained that in their
projects the responsibilities for testing lies with the individual
developers and there is no particular enforcement of adding
tests. In P11’s project only the single maintainer adds tests to
the project, while in P4’s project the pull request reviewers
are responsible to add tests. P13 shared that the level of
testing in their projects strongly depends on how easy it is
to test the application they are developing. While a library has
defined inputs and outputs and can easily be unit tested, for
applications that depend on a lot of other interfaces not under
P13’s control they often opt for “production debugging”, i.e.,
seeing in production if something goes wrong and fixing it.

With regards to automated workflows, several participants
mentioned using GitHub Actions (P3, P8, P9, P11, P12, P13,
P14). Some combine this with other continuous integration
services (P3, P11) or set up their own build infrastructure
(P14). P3 mentioned that they have a custom solution for
continuous integration, as “It’s nothing we can find on the
market. So the framework is customized to our own need.”

When talking about code reviews, four participants (P1,
P3, P5, P12) stressed the importance of following strict code
review guidelines, insisting on never skipping them, even in
urgent situations. On the other hand, P2 mentioned that they
sometimes skip code reviews “for very small PRs or for very
small changes or fixes.”

Discussing contribution guidelines, we learned that while
some projects have guidelines in the “contributing.md” file
in the repository (P2, P3, P7, P9), others have them on the
website of the project (P4), or keep the detailed guidelines only
with their internal QA team (P3). There are also ways of com-
municating guidelines beyond documents, e.g., in meetings
(P1, P2, P10), through encouraged discussions on GitHub pull
requests or issues (P4, P6, P9), in emails (P2), or in the online
chat groups of the development team (P6). Several partici-
pants reported to not have publicly documented contribution

guidelines (P1, P8, P10, P11, P13), e.g., because a project is
closed source (P10), or has only very few contributions (P8).
P9 explains that they intentionally avoid being overly strict
during code review to maintain a more welcoming experience
for first-time contributors [37].

C. Reflection on Applied QA Practices

When we asked the participants how they evaluated their
state of quality assurance practices in their projects, we only
got concrete answers to the testing aspect. Only for testing
they provided concrete answers. Six participant use coverage
metrics to judge the adequacy of their test suites (P1, P2, P5,
P8, P10, P13). Other ways to judge tests were intuition and
exploratory manual testing (P13), the reviewer’s opinion (P4,
P5, P10), or whether users report bugs (P9).

For automated workflows, code reviews, and contribution
guidelines we could not draw out any comments from our
participants judging the adequacy of these practices. Possibly,
this is connected to the lack of available developer resources.

D. Motives to Extend QA Practices

While it was difficult to elicit how the engineers reflect
on the adequacy of their quality assurance approaches, they
more easily shared their motives to extend these practices.
This could be seen as an early, pragmatic way of reflection,
focused directly on concrete improvements.

The software engineers shared various motives to add new
or more tests namely: based on new issues, failures, bugs,
or user/customer reports (P3, P4, P5, P6, P7, P8, P11, P13,
P14); new features, functionalities, or changes (P2, P3, P4,
P7, P10); criticality or complexity of a component (P1, P2,
P5, P12); missing coverage (P5, P10); and when higher-level
failed to identify the root cause of a failure (P3, P5).

Three participants mentioned rarely updating or adding new
automatic continuous integration workflows in their projects
(P4, P5, P9). Instead, they extend the components executed by
the workflows, e.g., by adding new tests to the test suite. When
updates to automated workflows occur, they typically stem
from new needs, driven by changes in the project’s technology
(P3, P4, P6, P9, P13). Having new issues or failures may
prompt changes in workflows to help in pinpointing the root
cause of problems (P3, P6).

Updates to the automated workflows are motivated by a
need for specific information (P3) or personal inspiration from
other open source projects (P1).

Three participants gave motives for updating their contri-
bution guidelines such as user reports about problems (P6) or
outdated information (P1), or when the project changes (P3).

5

3

1

3

1

2

2

1

1

2

1

1

1

4

4

4

3

2

4

3

6

9

1

3

4

3

1

0 10

User interface

Actionable insights

The comparative aspect

The global overview

Provided information
and statistics

Extremely satisfied
Moderately satisfied
Slightly satisfied

Neither satisfied
nor dissatisfied

Slightly dissatisfied
Moderately dissatisfied
Extremely dissatisfied

Fig. 4: Participants’ satisfaction levels with RepoInsights.

7

2

4

1

1

1

3

6

1

6

4

8

5

8

11

2

7

5

2

10 0 10

I expect to be making use of
such a tool quite extensively.

I don’t see the added
value of such a tool.

Such a tool will help me
improve QAs in a project.

Such a tool will improve my
awareness about QA in a project.

Such a tool will help me judge the level
of QA taking place in the project.

Such a tool will help me decide
which QA activity to focus on.

Strongly agree
Somewhat agree
Neither agree nor disagree
Somewhat disagree
Strongly disagree

(a) Expectation of a quality analytics dashboard.

6

1

4

1

2

4

5

2

3

2

2

7

4

1

8

5

7

7

5

5

3

10 0 10

I expect to be making use of
this tool quite extensively.

I don’t see the added
value of this tool.

This tool helps me improve
QAs in a project.

This tool helps me improve my
awareness about QA in a project.

This tool helps me judge the level of
QA taking place in the project.

This tool helps me decide
which QA activity to focus on.

(b) Perception of RepoInsights.

Fig. 5: Participants’ expectation versus perception.

RQ1. Summary In general participants are positive about
QA and know about SA but only a few actively use SA.
There is a well-justified variety in the concrete QA practices
that projects follow. The concrete usage of QA practices
is motivated by the project’s goal, context and available
resources. A reflected judgment on the adequacy of current
QA practices is not common, except testing. Extending QA
practices is mainly based on concrete needs.

V. RQ2: WHAT ARE SOFTWARE ENGINEERS’
PERSPECTIVES ON A QUALITY ASSURANCE ANALYTICS

DASHBOARD LIKE REPOINSIGHTS?

To gauge our participants’ perspectives on a quality ana-
lytics dashboard, we report their expectations and actual per-
ceptions of RepoInsights recorded in the pretest-posttest
design. We also characterize the situations in which partici-
pants said they would use a QAA dashboard. In Sections V-B
and V-C we delve into the qualitative analysis of the interviews
to provide a deeper understanding into how RepoInsights
enabled software engineers reflect on QA and how it could be
improved.

Looking at Figure 4, we see that the participants were gen-
erally satisfied with the different aspects of RepoInsights.
The comparative aspect, received the worst ratings, which
aligns with our observation that it was also used the least
during the assignment.

Regarding the participants’ expectations of a QAA dash-
board based on our provided description, we see in Figure 5a
that they are quite positive about the core intentions of the
tool. These encompass helping to decide which QA activities
need more focus, judging the level of QA, and improving
(the awareness about) QA in a project. The participants see
added value in the tool, but are divided on whether they would
extensively use it. When we compare this to the perception
of the tool after the assignment, we see in Figure 5b that the
participants’ summarized attitudes did not change much. They
lean slightly more critical than before the assignment. This
matches with our observations that the participants started to
reflect very concretely on the dashboard and its value, opening
up many concrete wishes for extensions of the originally
described idea of a QAA dashboard.

A. Usage

Overall, all participants were positive about using a dash-
board like RepoInsights in the future. In terms of fre-
quency of using a QAA dashboard, three participants indicated
that they would use it periodically when they are already
reflecting on the health of their project (P4, P9, P11). Others
mentioned one-off use cases, such as checking the QA status of
their project once (P13, P1). As P2 indicates: “[the tool] helps
as a starting point to look into [QA practices].” P13 points
out that the frequency in which new information is available
on the dashboard influences how often they would use it.

The role of the software engineer and their habits also
play a role here. P14 indicates they are not a person who
“usually looks at dashboards” but would use it if they were
a QA engineer. P6 indicates that it would need to become
a habit first, and P14 expect that the main maintainer of a
project would use RepoInsights more. Two participants
feel already quite aware of the state of QA in their projects
(P7, P9), which limits additional value.

The participants mentioned further purposes they would use
the dashboard for, beyond assessing the QA of their project.
P13 suggests to use the QAA dashboard to judge the processes
of open source projects they consider as dependencies, P4
proposes troubleshooting release issues such as adapting to a
major platform change. P2 mentions inspecting other projects
to evaluate their responsiveness to contributions, or to get
inspired by their QA tools and workflows to use in their own
projects.

B. RQ2.1.) In What Ways Did the QAA Dashboard Help
Software Engineers Reflect on QA Practices?

We address this research question by observing how par-
ticipants interact with the dashboard while completing the
assignment. We identify the specific aspects of the dashboard
that supported them in reflecting on QA practices.

6

1) Displayed metrics: the participants mainly used the
dashboard’s global overview provided metrics to reflect on
QA practices and make judgments about them.

For rating the level of code reviews, seven participants
pointed to the average number of discussion comments in
pull requests (PRs) (P1, P2, P4, P5, P9, P10, P12). Getting
more comments was referred to as positive sign for code
reviews. On the other hand, not receiving comments or having
few comments was a sign of not having reviews or just a
quick code review “P02: ...no comments in the PR that I
would assume the code review was not done or it was not
it was just a quick code review...”. Also, seven participants
used the provided review time of PRs, which is the average
time it takes to review and merge PRs after their creation
(P2, P5, P6, P10, P11, P12, P14). Similarly, six participants
referred to the reported average number of participants in
PRs (P2, P3, P9, P10, P12, P13), for instance: “P13: my
reasoning is that there are a lot of contributors per single
pull request. There’s the quality of reviews.”. Six participants
took the displayed average change size of PRs into account
while making their judgments (P1, P3, P5, P7, P10, P13).
This change size includes number of added and deleted lines
per PR, and number of changed files. Participants expressed
judgments such as the difficulty of reviewing PRs with big
changes and how the size of changes provides insight into the
stage of development in a project, “P03: we are seeing a lot
of additions and deletions at the same time. That means the
project is very much in an exploratory stage or it is in active
development”. Moreover, having a high number of additions
and deletions was suspected to be fake and misleading, based
on previous experience with GitHub’s diff, or also suspected
to be from automatic changes, e.g., auto-fixing the code style.

Regarding reflection on the automated workflows (AWs),
five participants referred to the number of checks (P1, P2,
P3, P4, P11). When the average number of checks is high,
participants anticipated thorough testing (P11), overloading
and confusing contributors (P3), and increasing difficulty in
identifying failing checks (P3). Moreover, P3 viewed an excess
of checks as a sign of an exploratory project and pointed out
that projects should not have multiple checks for the same
purpose. Other metrics used in reflecting on AWs were the
reported AWs success rate and the number of failures (P8,
P9, P12). The software engineers were generally optimistic
regarding an average failure rate of 30% in both projects of
the assignment.

When reflecting on testing, five participants based their
evaluation merely on the provided code coverage percentage
(P2, P3, P7, P10, P13). They considered 85% to be a high
percentage for the test suites.

2) Meaningful details: additional details shown in the
dashboard allowed participants to gain a deeper understanding
of the context of the projects, enabling them to make more
informed judgments.

Regarding judging code reviews, four participants referred
to the detailed information on the PR details page (P7, P9,
P10, P13). P13 specifically noted the presence of Dependabot-

created PRs in one project, which could skew the data. P7
found the outlier PRs appearing on the PR trend graphs to
be another point of interest, which have touched thousands of
lines while other PRs have mostly changed a few lines.

When judging automated workflows, five participants noted
the names of the top failed checks in AWs overview of the
dashboard (P4, P7, P8, P9, P13). This detail helped them
in gaining a better understanding of the purpose of AWs in
projects, which they could then relate to other information such
as average number of checks and their runtime. “P09: [while
judging AWs, based on check names] ... they’re clearly testing
on three platforms.”. Another example of judging details of
AW failures was when P1 compared test failures and build
failures, expressing skepticism regarding build failures, while
test failures were deemed more acceptable, as contributors
might not run all tests locally.

Regarding assessing tests, three participants made specific
judgments using the code coverage trend graph (P9, P10, P13).
They noted that a decreasing trend in code coverage in an
active project could indicate concerns about code quality.

3) Providing the global overview: when reflecting on
various QA practices, participants primarily took into account
multiple metrics and details related to the projects’ QAs. While
this might seem straightforward when focusing on individual
practices and metrics, our emphasis lies in considering in-
formation about multiple QA practices’ metrics. The global
overview highlights the complementary nature of various QA
practices: “P05: ... So I think a tool that integrated so many
statistics and it really helps.”; “P02: Having everything in
one page, like the code review guidelines, I think that’s nice”;
“P01: I really like the fact that you have an overview of
possibly all the different things, I like that it’s combined.”

4) Providing visible links: when reflecting on the guide-
lines of projects, five participants relied solely on the indica-
tion of their existence (P2, P3, P7, P8, P12). However, P7 and
P8 expressed interest in seeing the content of the guidelines
to make more accurate assessments.

We had included links to projects’ available issue and PR
templates, as well as their code of conduct and contribution
guidelines. Initially, at the start of the assignment, we encour-
aged participants to base their judgments about projects’ QA
solely on the information provided on the dashboard. However,
despite this guidance, P7, P10, and P13 clicked on the links
to inspect the content of these files and evaluate their quality.

For a global overview of the project, consolidating all
information in one place, particularly raw, unprocessed data,
may not be necessary. Instead, incorporating visible links
allows access to relevant information, facilitating a thorough
understanding of project details and context without over-
whelming users with excessive data (e.g., content of guide-
lines, configurations details, build logs, etc.).

7

RQ2.1. Summary Participants reflected on projects’ QA
practices using: the displayed metrics regarding projects’
QA practices, the provided meaningful details to get
a deeper understanding of projects’ context, the global
overview aspect, and the visible links to plain data.

C. RQ2.2.) In What Ways Could the QAA Dashboard Be
Improved to Help Engineers Reflect on QA Practices?

We collected and qualitatively analyzed comments, sug-
gestions, and feedback about RepoInsights provided by
participants during the interviews. In this section we present
the result of this analysis as a set of improvement points.

1) Providing high granularity of information: eight par-
ticipants suggested increasing the granularity of information
for various QA metrics and statistics (P1, P3, P4, P7, P10,
P12, P13, P14). Specifically, they highlighted the necessity of
higher granularity to identify areas for improvement and make
informed decisions about where to focus efforts. “P01: ... you
need this granularity to really see where you’re lacking.”;
“P03: information is very aggregated. I would expect it to
be somewhat detailed,”.

Regarding tests, five participants highlighted the need for
detailed information to properly reflect on testing (P1, P7, P10,
P12, P13). They expressed that the provided code coverage
and its trend alone were insufficient. They recommended
incorporating higher granularity for the provided information,
including detailed granular coverage of different submodules
or subsystems, highlighting parts with missing coverage, and
the tests contributing to the coverage of each module.

When reflecting on code reviews, five participants suggested
more details, including: acceptance rate of PRs, fine-tuned
change information rather than merely additions and deletions
per PR, distinguishing different types of comments in PRs and
providing a distribution of where PRs touch the code (P3, P4,
P7, P13, P14).

In discussions about automated workflows, P1 suggested
providing insights into the use of automated workflows to
indicate if checks are mandated during the development pro-
cess. Moreover, P14 suggested adding the date of the last
update of automated checks and providing recommendations
for updating them in response to major changes in a project.
Additionally, P13 and P14 recommended higher granularity in
AWs by providing detailed breakdowns of their purpose.

Regarding guidelines, two participants suggested providing
more details: P7 suggested analyzing the quality of guidelines
through keyword matching or using AI-based analysis to
assess their completeness. Additionally, P13 proposed analyz-
ing the differences between issue or PR templates and what
users submit, particularly for open-source projects that receive
numerous issues and PRs.

2) Providing additional data insights: to have a deeper
understanding of what is happening in the projects, partici-
pants suggested incorporating new data insights and statistics.
While these suggestions may not directly relate to project
QA, they are vital for contextualizing projects and facilitating
more insightful reflection: Additional data regarding tests:

providing more data insights such as adding new metrics
for test coverage such as mutation score, number of tests,
proportion of commits changing project’s tests, lines of added
code versus tests, and number of executed/failed tests (P4,
P8, P10, P13). Trends analysis: incorporating trend analysis
to visually depict the evolution of metrics over time. While
this feature was provided for certain metrics, such as PR
activities and code coverage, participants suggested extending
it to include other relevant metrics (P7, P10, P13, P14).
Projects’ age and goals: are related to the availability of
guidelines (P1, P3, P7, P9, P11). More charts and metrics:
offering statistical charts and median values for presented
metrics to mitigate the skewness caused by outliers (P1, P3,
P13). Number of contributors: the intensity of QA practices
in projects can depend on the number of contributors (P3,
P4, P13). Development processes: a long review time can
be acceptable if multiple sets of time-consuming checks need
to be completed, and that having multiple workflows does
not necessarily mean that they are used and enforced in the
PRs; so depending on the development process reflection on
the QA can vary (P1, P3). Metrics definition: adding extra
information about the definition of all provided metrics to
avoid confusion and enable a more accurate reflection (P4,
P9). Project Releases: incorporating information about project
releases, including the usage of automatic releases, to assess
project activity levels and indicate robust QA practices (P13).
Project Activity Overview: offering an overview of recent
project activities to show its current level of engagement (P13).
Issues Statistics: introducing statistics for issues similar to
PRs, such as their waiting duration and topic, to provide a
comprehensive view of project maintenance (P4).

3) Providing meaningful comparison: participants rec-
ommended enhancing the comparative aspect by: Custom
comparison: three participants suggested adding the feature
to select specific projects or groups of projects for comparison
(P1, P5, P10). Comparison against similar projects: two par-
ticipants (P1, P9) suggested having clusters of similar projects
based on their attributes, such as programming language.
Another participant suggested the ability to compare against
projects within the same GitHub organization.

4) Providing the context of projects: six participants
expressed concern about their lack of familiarity with the
context of projects while working on the assignment (P1,
P3, P9, P11, P13, P14). “P13: But probably the developers
of those projects will have a different perspective because
they know what’s happening in their projects.” This context
encompasses various factors such as the type of software
project, its requirements and goals. Additionally, it involves
considerations like available developer resources. Furthermore,
more details about the configuration of automated workflows,
and the acceptance of outside contributions are (e.g., OSS) or
are not (e.g., companies) important. Understanding the context
is also crucial when making comparisons with other projects.
It is more logical to compare similar projects to gather insights
about improving QA practices.

One explanation for this emphasis of our participants on

8

providing the project context is that they were not familiar
with the projects we asked them to judge. Even if users
are working on projects they know well, providing sufficient
context can enhance their understanding. Beyond that, users
may have varying levels of familiarity with different aspects
of their projects—precisely what RepoInsights tries to
address regarding QA—and providing contextual information
can help bridge gaps in their knowledge.

Regarding reflection on guidelines, four participants pro-
vided specific judgements when no guidelines were available
(P3, P4, P5, P15). For instance, they deemed it acceptable if
it was a single-developer project, interpreting the absence of
guidelines as an indication of only one developer. They also
inferred that potential contributors would not know how to
contribute to the project without guidelines.

5) Providing actionable insights: nine participants gave
feedback regarding the need to make insights of the dashboard
more actionable (P1, P2, P4, P5, P9, P10, P12, P14). More
specifically, four participants (P1, P3, P5, P12) pointed to
the need of more detailed concrete suggestions to improve
actionability of dashboards insights: “P12: That’s what I’m
doing is like, you know, looking at these statistics, it might tell
you that you need to take some action, but it’s not clear what
action is required.”. Moreover, they mentioned that insights
regarding some QA practices are more actionable, “P12: I can
see the code coverage and that’s something that I may need
to implement some action on. I can see whether or not there
are actual contributor guidelines. That’s something that can
be actioned on.”, there are other areas that need to be more
actionable by suggesting how to improve QAs, for example
P12 who mentions that a low number of reviewers during code
review is useful to know, but does not provide a solution.

6) Providing the ability to filter (out) information:
four participants recommended adding filtering capabilities
to include relevant information and exclude irrelevant data.
(P7, P8, P9, P14). The dashboard includes various QA-related
data to provide a global overview, however, depending on
the project’s context, and on the user’s preferences, it would
be useful to filter out unwanted information. Examples are:
Dependabot or any other bot-created PRs that might skew the
data, or unimportant build failures that makes it difficult to see
what really matters.

Not all projects are interested in all information equally.
While the default dashboard view intentionally shows a variety
of QA practices to inspire adopting them, users should be able
to hide information they do not find necessary for the future
times they consult the dashboard. There exists a wide range of
approaches to QA practices across projects. Certain projects
prioritize extensive testing of complex software components
during development (P1), while others solely rely on end-
user tests and reported issues for post-production testing (P14).
Additionally, code coverage metrics hold high importance for
some projects (P1, P3, P8), while in others, developers lack
awareness of this concept (P6). These differences underscore
the need for a customizable QAA dashboard to accommodate
diverse project goals and perspectives.

RQ2.2. Summary Based on participants suggestions and
feedback, providing the followings can help them in better
reflection: high granularity of information, meaningful com-
parison, context of projects, actionable insights, and ability
to filter (out) information.

Concrete feedback and suggestions: We also received a
plethora of feedback and suggestions related to concrete
enhancements of the dashboard’s user interface and user
experience, such as explanatory texts on how the metrics are
calculated and what data they precisely include. We docu-
mented these points to refine our prototype in future iterations.
As this information is mainly specific to the implementation
of our prototype, it falls outside the scope of this paper.
However, toolmakers and researchers keen on developing
similar software analytics tools can access this information
through our provided replication package [33].

D. RQ2. Summary Summarizing Software Engineers’ Per-
spectives on RepoInsights

The participants were generally satisfied with
RepoInsights, particularly its global overview,
provided information, and statistics. Their perception
of RepoInsights closely alined with their positive
expectations of a QAA dashboard. Most participants
expressed interest in future use. From their comments, we
formulated four insights on what was successful in the design
of RepoInsights as well as six suggestions to improve it.

VI. RELATED WORK

Quality assurance practices in software engineering have
been studied both individually and in combination [27]. Stud-
ies on complementarity of quality assurance practices, such
as software testing [2], [4]–[6], modern code reviews [9],
automated workflows [24], build automation [16]–[18], and
automated static analysis [11], have shown that QA techniques
are mostly not used in conjunction [27] and software engi-
neers’ situational awareness regarding them is lacking [21].
In this study, we aimed to overcome this awareness gap [23]
with a tailored software analytics dashboard [22].

For more than a decade [38], software analytics has played
a significant role in enabling software engineering individ-
uals to make informed, data-driven decisions across various
facets of software development. Applications include quality
assessment tools such as SonarCube7, Kiuwan8, and Bitergia9,
as well as those tailored for DevOps environments like New
Relic10, and Datadog11. Moreover, research endeavors have
contributed to this domain, yielding open-source tools such
as GrimoireLab [39], a comprehensive toolset for software
development analytics, SQuAVisiT [40], which offers flexible

7https://www.sonarqube.com/, last visit: April 11, 2024
8https://www.kiuwan.com/, last visit: April 11, 2024
9https://bitergia.com/, last visit: April 11, 2024
10https://newrelic.com/, last visit: April 11, 2024
11https://www.datadoghq.com/, last visit: April 11, 2024

9

visual software analytics capabilities, Q-Rapids [41], facili-
tating continuous quality assessment throughout the software
development lifecycle, QaSD [42], a quality-aware dashboard
designed to enhance software quality and development pro-
cesses, and QConnect [43], a quality-aware dashboard focused
on developers’ activity and productivity.

The highlighted tools above, underscore the multifaceted
impact of software analytics on software engineering. How-
ever, none of them target QA practices. Our goal is to fill
this gap to potentially enhance the situational awareness [20]
surrounding QA practices and empower software engineers to
make informed decisions regarding QA of their projects.

VII. THREATS TO VALIDITY

Reliability: to ensure consistency in our qualitative analysis,
two authors coded half of the interviews independently and
met repeatedly to discuss emerging codes until reaching a
negotiated agreement [36]. However, other researchers’ inter-
pretations of the data may differ. We publish our full codebook
to enable validation of our findings [33].
Respondent Bias: participants may have provided socially de-
sirable answers when evaluating a tool developed by the inter-
viewer. To mitigate this, we encouraged constructive criticism
and maintained a welcoming attitude toward critical feedback.
The wide range of improvement suggestions received suggests
this threat was reasonably addressed.
Internal Validity: the open-ended interview format threatens
reproducibility. Many key insights emerged from only a few
interviews, so repeating the study may miss some perspectives.
External Validity: findings may not generalize beyond the
specific QA practices, project context and participants we
studied. We selected active and popular projects with ample
data on PRs and AWs for the dashboard. We only included
projects with available test coverage information. Additionally,
we varied code review activity and contributor counts to enable
comparisons and observe participants’ reactions to different
quality assurance levels. We openly recruited participants from
industry, academia, and OSS, then, directly recruited two more
from industry and academia to ensure diversity.

VIII. IMPLICATIONS AND FUTURE WORK

Implications. While software engineers are generally positive
about quality assurance (QA) and software analytics, our study
revealed that reflection on the adequacy of QA practices is
not common, except for testing activities (RQ1). From our
sample of participants, and from prior work of Khatami and
Zaidman, we know that there is currently no widespread
adoption of analytics tools to specifically support reflection
on QA practices across projects [21]. This represents an
opportunity for toolmakers to increase software engineers’
situational awareness surrounding QA practices and allow
them to reflect holistically on their projects’ QA activities.

Our evaluation of this idea, through a prototype of a quality
assurance analytics (QAA) tool RepoInsights and the
subsequent analysis of developers’ perspectives, highlighted
several key implications: (1) there is interest and perceived

value in centralized quality analytics that provide a global
overview of QA metrics and practices across projects (RQ2.1).
Participants were generally satisfied with RepoInsights’s
ability to surface this higher-level perspective. However, (2)
QAA tools must go beyond simply displaying metrics. Soft-
ware engineers prefer high granularity, contextualized in-
formation tailored to each project’s specific practices and
needs (RQ2.2). Furthermore, actionable insights derived from
data and presented to the user are essential. (3) Successful
QAA designs should provide meaningful comparisons between
projects, the ability to customize viewed information, and rich
context about each project’s QA activities (RQ2.2).

Overall, we hypothesize based on the insights of our study,
that QAA tools presenting contextualized, actionable insights
can empower data-driven evolution of QA strategies as project
situations change. Seamless integration into developer work-
flows is key for increasing adoption and reflection.
Future work. Key areas for future research to maximize the
adoption and impact of QAA tools include: adopting and
evaluating intuitive visualization techniques to derive tailored,
actionable insights from quality data beyond just presenting
raw metrics. Investigating integration pathways to embed
QAA into developer workflows and toolchains. Evaluating
effectiveness and validating QAA tools’ by measuring impact
on quality and productivity.

IX. CONCLUSION

In this study, we set out to raise the situational awareness
of software engineers surrounding quality assurance (QA)
in their projects. Through a pretest-posttest study combined
with interviews, we evaluated our conceptual design of a
software quality assurance analytics (QAA) dashboard. We
elicited the current approaches in adoption and reflection of
QA practices from our 14 participants. We observed how
our RepoInsights dashboard supported them, and we
identified a set of recommendations for a dashboard like
RepoInsights to empower software engineers to better
reflect on QA. Our key insights are: reflection is uncommon,
except for testing, and extending QA practices is based on
concrete needs (RQ1). Participants valued the global overview
of metrics/practices and the meaningful details that the QAA
dashboard provided (RQ2.1). Desired features included high
granularity information, meaningful comparisons, tailored in-
sights, filtering capabilities, and more details to have a deeper
understanding of projects’ context (RQ2.2).

Overall, our results demonstrate interest in QAA tools that
go beyond raw data & metrics to deliver highly granular, con-
textualized, and actionable insights. We hypothesize that such
a QAA tool that takes our recommendations into account, can
potentially raise situational awareness and facilitate reflection
and improvement of QA practices.

ACKNOWLEDGMENT

This research was partially funded by the Dutch science
foundation NWO’s Vici grant “TestShift” (VI.C.182.032). We
thank all interviewees for their time and valuable insights.

10

REFERENCES

[1] M. Jazayeri, “The education of a software engineer,” in Proc. Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2004.

[2] M. Aniche, Effective Software Testing: A Developer’s Guide. Manning
Publications, 2022.

[3] A. J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software problems
in the news,” in Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE).
ACM, 2014, pp. 32–39.

[4] M. Aniche, C. Treude, and A. Zaidman, “How developers engineer test
cases: An observational study,” IEEE Trans. Software Eng., vol. 48,
no. 12, pp. 4925–4946, 2022.

[5] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Trans. Software Eng., vol. 39, no. 6, pp. 757–773,
2013.

[6] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[7] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their IDEs,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 2015, pp. 179–190.

[8] M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in 37th IEEE/ACM International Conference on Software Engi-
neering (ICSE) — Volume 2. IEEE, 2015, pp. 559–562.

[9] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 35th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2013, pp. 712–721.

[10] M. Beller, A. Bacchelli, A. Zaidman, and E. Jürgens, “Modern code
reviews in open-source projects: which problems do they fix?” in 11th
Working Conference on Mining Software Repositories (MSR). ACM,
2014, pp. 202–211.

[11] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 2016, pp. 470–481.

[12] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empir. Softw. Eng., vol. 25, no. 2, pp. 1419–1457,
2020.

[13] D. Han, C. Ragkhitwetsagul, J. Krinke, M. Paixao, and G. Rosa, “Does
code review really remove coding convention violations?” in 2020 IEEE
20th International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2020, pp. 43–53.

[14] T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang, M. Beller, and
A. Zaidman, “UAV: warnings from multiple automated static analysis
tools at a glance,” in IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 472–
476.

[15] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall, “Context is king: The developer perspective on the usage
of static analysis tools,” in 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 38–
49.

[16] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
an explorative analysis of Travis CI with GitHub,” in Proceedings of
the International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 356–367.

[17] A. Rahman, A. Partho, D. Meder, and L. Williams, “Which factors in-
fluence practitioners’ usage of build automation tools?” in International
Workshop on Rapid Continuous Software Engineering (RCoSE), 2017,
pp. 20–26.

[18] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM, 2016, pp. 426–437.

[19] A. Khatami, C. Willekens, and A. Zaidman, “Catching smells in the
act: A github actions workflow investigation,” in 24th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2024.

[20] O. Baysal, R. Holmes, and M. W. Godfrey, “Situational awareness:
personalizing issue tracking systems,” in 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-
26, 2013. IEEE Computer Society, 2013, pp. 1185–1188.

[21] A. Khatami and A. Zaidman, “Quality assurance awareness in open
source software projects on github,” in 23rd IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
2023, pp. 174–185.

[22] T. Menzies and T. Zimmermann, “Software analytics: So what?” IEEE
Software, vol. 30, pp. 31—37, 2013.

[23] O. Baysal, R. Holmes, and M. W. Godfrey, “Developer dashboards: The
need for qualitative analytics,” IEEE Softw., vol. 30, no. 4, pp. 46–52,
2013.

[24] M. Wessel, T. Mens, A. Decan, and P. R. Mazrae, “The github devel-
opment workflow automation ecosystems,” CoRR, vol. abs/2305.04772,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.04772

[25] C. D. Wickens, “The trade-off of design for routine and unexpected
performance: Implications of situation awareness,” Situation awareness
analysis and measurement, pp. 211–225, 2000.

[26] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human Factors, vol. 37, no. 1, pp. 32–64, 1995.

[27] A. Khatami and A. Zaidman, “State-of-the-practice in quality assurance
in Java-based open source software development,” Software: Practice
and Experience, vol. 54, no. 8, pp. 1408–1446, 2024.

[28] S. Panichella, V. Arnaoudova, M. D. Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015, pp. 161–170.

[29] Mern stack explained. [Online]. Available: https://www.mongodb.com/
mern-stack

[30] D. Campbell, J. Stanley, and N. Gage, Experimental and quasi-
experimental designs for research. Chicago: Rand McNally, 1963.

[31] E. Babbie, The practice of social research, 11th ed. Belmont:
Wadsworth, 2007.

[32] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 2021, pp. 560–564.

[33] A. Khatami, C. Brandt, and A. Zaidman, “Replication Package for
”Software Quality Assurance Analytics: Enabling Software Engineers
to Reflect on QA Practices” Paper (SCAM 2024),” Apr. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.10961021

[34] A. L. Strauss and J. M. Corbin, “Basics of qualitative research:
Techniques and procedures for developing grounded theory,” SAGE
Publications, 1998.

[35] B. G. Glaser and A. L. Strauss, Discovery of Grounded Theory:
Strategies for Qualitative Research. Routledge, 2017.

[36] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability,” The internet and higher education, vol. 9, no. 1,
pp. 1–8, 2006.

[37] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in 37th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2015, pp. 358–368.

[38] T. M. Abdellatif, L. F. Capretz, and D. Ho, “Software analytics to
software practice: A systematic literature review,” in 1st IEEE/ACM
International Workshop on Big Data Software Engineering (BIGDSE).
IEEE Computer Society, 2015, pp. 30–36.

[39] S. Dueñas, V. Cosentino, J. M. González-Barahona, A. del Castillo
San Felix, D. Izquierdo-Cortazar, L. Cañas-Dı́az, and A. P. Garcı́a-
Plaza, “Grimoirelab: A toolset for software development analytics,”
PeerJ Comput. Sci., vol. 7, p. e601, 2021. [Online]. Available:
https://doi.org/10.7717/peerj-cs.601

[40] M. van den Brand, S. A. Roubtsov, and A. Serebrenik, “Squavisit: A
flexible tool for visual software analytics,” in 13th European Conference
on Software Maintenance and Reengineering (CSMR). IEEE Computer
Society, 2009, pp. 331–332.

[41] S. Martı́nez-Fernández, A. M. Vollmer, A. Jedlitschka, X. Franch,
L. López, P. Ram, P. Rodrı́guez, S. Aaramaa, A. Bagnato, M. Choras,
and J. Partanen, “Continuously assessing and improving software quality
with software analytics tools: A case study,” IEEE Access, vol. 7, pp.
68 219–68 239, 2019.

[42] L. López, M. Manzano, C. Gómez, M. Oriol, C. Farré, X. Franch,
S. Martı́nez-Fernández, and A. M. Vollmer, “Qasd: A quality-aware

11

strategic dashboard for supporting decision makers in agile software
development,” Sci. Comput. Program., vol. 202, p. 102568, 2021.

[43] H. M. Shah, Q. Z. Syed, B. Shankaranarayanan, I. Palit, A. Singh,
K. Raval, K. Savaliya, and T. Sharma, “Mining and fusing productivity
metrics with code quality information at scale,” in IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2023, pp. 563–567.

12

