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Abstract—GitHub Actions (GHA) are a way to automate
CI/CD workflows within the GitHub platform. The deep inte-
gration of GHA into GitHub enables to automate a wide range
of social and technical activities. In this study, we investigate
workflow smells, i.e., characteristics in the workflow that possibly
indicate a deeper problem. Through a mining study, we first
expose a list of frequent change patterns in the workflows of
83 GitHub projects. We then manually analyze these frequent
change patterns to understand the negative effects that the
frequent changes try to remove. To validate the list of 22 potential
workflow smells that we thus obtain, we carry out a contribution
study with 32 projects on GitHub through pull requests that
contain a fix to the candidate smell. By qualitatively analyzing
the maintainers’ comments in 32 pull requests, we settle on 7
confirmed GHA workflow smells.

Index Terms—GitHub Actions, Open Source Software (OSS),
GitHub, Continuous Integration (CI), Continuous Deployment
(CD), GitHub Actions Optimization, GitHub Actions Security,
Software Evolution

I. INTRODUCTION

Continuous Integration (CI) is the software engineering
practice in which developers not only integrate their work into
a shared mainline frequently, but also verify the quality of their
contributions continuously [1]. Continuous Deployment (CD)
adds frequent delivery through automated deployments [2].
Both practices have become integral to collaborate software
development to streamline the software delivery process and
increase the quality of the delivered software [3]–[9].

To support CI/CD developers rely on dedicated platforms
that provide the necessary infrastructure and tooling. Among
the available platforms are Travis CI [10], Circle CI, Cirrus CI,
Azure Pipelines, GitLab CI, and GitHub Actions (GHA). GHA
enables software engineers to automate workflows directly
from within GitHub repositories, attaching triggers to various
events like code pushes, pull requests [11], and releases.
Since its introduction in November 2019, GHA emerged as
the predominant workflow automation tool on GitHub [12].
GHA’s integration with the GitHub ecosystem and open-
source library of reusable workflow actions have been key
contributing factors to its rapid adoption [6].

The growing adoption of GHA has attracted considerable
research interest, with numerous studies empirically investi-
gating its adoption [12]–[17]. These studies have highlighted
concerns related to security [16], [18]–[21], dependency man-
agement [6], [22], and resource usage [23] in GHA workflows.

Zampetti et al. identified bad smells for continuous inte-
gration [24], i.e., factors in continuous integration that create
barriers or challenges when it comes to setting up, maintaining,
or ensuring the high-quality outcome of a CI workflow.
Additionally, we know that GHA workflow configurations may
degrade in quality and accrue technical debt [25]. As such,
given that five years have passed since the introduction of
GHA, and a substantial commit history for GHA workflow
configurations has accumulated, this study sets out to investi-
gate whether GHA workflows suffer from workflow smells.

While earlier research has identified CI/CD workflow
smells [24], [26], the unique proposition of GitHub Ac-
tions workflows warrants a deeper investigation into GitHub
Actions-specific workflow smells. More specifically, the fact
that GitHub Actions are more fine-grained in nature than typ-
ical CI/CD workflows, their wider range of use case scenarios
(e.g., GHA are also applicable to issue management, or code
reviewing), and the reusability and composability of GHA
workflows may lead to different smells than those previously
identified. Additionally, earlier studies have identified issues
related to security [18], [21], and opportunities for optimiza-
tion [23] in GHA workflows, but our investigation is set up to
be holistic, also targeting maintainability and efficiency smells.

Our investigation is steered by four research questions.

RQ1 Are there common patterns of frequent changes in GHA
workflow configurations?

To answer our first research question, we analyze the evo-
lution of GHA workflow configurations over 10,012 commits
in 83 projects, thus aiming to understand whether there are
common patterns of frequent changes in GHA workflow
configurations.

Next, we inspect the common change patterns in GHA
workflow configurations, to determine whether some of these
common change patterns could indicate a fix to a problematic
workflow configuration. This leads to our second research
question:

RQ2 Are frequent change patterns in workflow configurations
indicators of workflow smells?

Once we have analytically established a set of smells, we
turn our attention to their automatic detection in RQ3:
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RQ3 Can we automatically detect GHA configuration smells?

Finally, to validate our list of candidate GHA smells,
we conduct a contribution study in 32 open source GitHub
projects by opening 40 pull requests that contain a fix to the
candidate smell. Based on the developer’s decision to accept or
reject our contribution, and the feedback that the developer’s
provide, we aim to answer our fourth research question:

RQ4 To what extent do developers find the proposed fixes for
identified GHA configuration smells relevant?

In summary, this paper makes the following contributions:
• A set of 7 frequently found and validated GitHub Actions

workflow smells. One of these smells is completely
unique to our study.

• A set of scripts designed to automatically detect these
workflow smells.

• A contribution study that provides insight into the rele-
vance and importance of the workflow smells.

II. BACKGROUND

In their seminal blog post of 2000, Fowler and Foemmel
advocate for Continuous Integration (CI) as a mechanism
to ensure that integrating new code contributions does not
break the build, and an integrated automated test suite to
detects errors [27]. In a series of papers, Elazhary et al. have
established that many companies follow CI practices, but with
quite some variations in how they use CI [28], [29]. Both
Vasilescu et al. [5] and Hilton et al. [7] highlight that CI
improves productivity, leading to more PRs being processed,
accepted and merged, PRs being accepted faster, and projects
releasing a new version more often.

GitHub Actions. (GHA) is a continuous integration and
continuous delivery (CI/CD) service that is tightly integrated
into the GitHub platform [16] and has rapidly gained in
popularity [12]. While GitHub Actions provides CI/CD func-
tionality similar to other CI/CD tools, it is unique in that
it enables to run workflows for several events that happen
in a repository, e.g., code reviewing, communication with
developers, verifying licence agreements, and monitoring and
fixing dependencies and security vulnerabilities [30].

GHA Workflows. A GHA workflow contains one or more
jobs and can be triggered based on different events in the
repository. A job contains a list of steps which specify a
command, for example a bash script or a action, reusable code
that implements common CI/CD tasks. For jobs, the operating
system on which they run can be defined as well as a strategy
which allows the same job to be run with different inputs [23].

Security. Security is one of the five major challenges when
automating workflows [20]. Poorly secured CI platforms can
lead to code being stolen or injected, as well as bypassing code
reviews resulting in potentially malicious code being added
to the code base [16]. In order to eliminate security risks,
four security properties have been identified for CI including:
admittance control, execution control, code control, and access

to secrets [21]. Koishybayev et al. investigated these security
properties for GHA and found that none of them always
hold, noting that these properties can be fixed through proper
workflow configuration [21]. Benedetti et al. created a tool to
automatically identify security issues in GHA workflows [19].
CI/CD Smells. Previous research has investigated CI smells
which affect the performance of the development cycle and
CI pipelines. Duvall et al. identified 16 general patterns and
anti-patterns for CI/CD [31], [32] Zampetti et al. expanded
this catalogue by interviewing experts and analysing Stack
Overflow1 discussions [24]. A total of 79 (of which 44 new)
smells were identified in 7 categories and evaluated in terms
of relevance by professional developers [24].

Gallaba et al. was the first to define, detect, and remove con-
figuration smells in CI. Firstly, a catalogue of four smells was
defined for which they created a tool, hansel to detect these
instances of smells for Travis CI. Through 49 pull requests
with removed smells, they got 36 improved CI configurations
accepted by the project maintainers [25].

Vassallo et al. investigated automatically detecting CI anti-
patterns [33]. Their tool detects the existence of four relevant
anti-patterns, and they found 3,823 instances of these smells
accross a set of projects [33]. Vassallo et al. created a similar
tool – CD-Linter – for GitLab [26]; it focuses on smells that
are detectable through configuration files. This resulted in four
candidate smells: fake success; retry failure; manual execution;
and fuzzy version. Using their tool, 145 issues were opened
that addressed these smells. They received a response rate of
74% with 53% of maintainers reacting positively to the smells.

III. STUDY SET-UP

Our study follows a bottom-up approach towards the iden-
tification of GHA workflow smells. In Section IV, we start by
identifying common change patterns in workflow configuration
files using a mining study (RQ1). Subsequently, in Section V
two authors analyze these common change patterns to under-
stand whether there are issues underlying the change patterns
that ultimately led to the change. This analysis leads to a set of
candidate workflow smells (RQ2). In Section VI we investigate
the feasibility and effectiveness of a set of custom-developed
workflow detection scripts for these candidate smells (RQ3).
Finally, in Section VII we carry out a contribution study in
which we file pull requests with fixes to the candidate work-
flow smells in GitHub projects. In observing the acceptance,
rejection, and pull request comments, we aim to validate
the candidate smells as recognized and relevant workflow
smells (RQ4). Within Section IV to VII, we first describe the
methodology that we followed to answer each RQ, after which
we describe the results.

IV. RQ1: WHAT ARE THE COMMON PATTERNS OF
FREQUENT CHANGES IN GHA WORKFLOW

CONFIGURATIONS?
RQ1 methodology: To discover potential smells in GitHub
Actions (GHA) workflow configurations, we employed an

1https://stackoverflow.com
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TABLE I: Number of changes in GHA workflow configuration
files across projects, categorized by programming language.

Language Number of projects Number of commits Number of changes

JavaScript 18 1,825 2,933
Java 15 519 856
C# 15 825 1,399
Python 15 3,105 7,665
Typescript 20 3,738 7,184

Total 83 10,012 20,037

exploratory approach by analyzing the evolution of the GHA
configuration files in open-source software repositories.

We initially selected the 100 most popular repositories on
GitHub, based on the number of stars received, using the
SEART GitHub search service [34]. We selected the 20 most
popular projects for five different programming languages:
JavaScript, Java, C#, Python, and TypeScript. This approach
ensured a diverse dataset of changes to workflows that are
not specific to any particular programming language. For each
selected repository, we collected all commits that modified at
least one “.yml” or “.yaml” file in the “.github/workflows”
directory, if such a directory existed. Repositories without
this directory were excluded, resulting in a final dataset of
83 projects. We treated each modified workflow file within
a commit as a single change, enabling a granular analysis of
workflow evolution and identification of common modification
patterns. In total, we collected 10,012 commits for 83 projects.
Each commit could contain multiple changes, resulting in a
total of 20,037 changes across all projects (Table I).

To analyze and categorize the changes in GHA workflows,
we employed an open card sorting approach [35], allows
categories to emerge naturally from the data without imposing
pre-defined groups [36]. We treated each change as a single
code. The second author performed the initial coding and
categorization, which was then reviewed and finalized through
a discussion between the first two authors, until reaching
a negotiated agreement [37]. To accelerate the process, we
developed automated scripts based on the observed patterns
of changes, which automatically labeled and grouped changes
according to the established categories. An additional round
of manual verification was conducted to ensure the accuracy
and reliability of the categorization. This approach allowed
for efficient and accurate categorization while maintaining the
integrity of the open card sorting methodology.
RQ1 answer: In our analysis we have identified 64 distinct
types of frequent changes made to the GHA configuration
files. We categorized these 64 types of changes into 8 higher-
level categories, based on their purpose, displayed in Table II.
The most prominent high-level pattern run step configuration
appears in 36.5% of changes, and can be found in 89.2% of
the projects. We now discuss the categories of changes.
Run step configuration is the most prevalent pattern, en-
compassing changes such as run command updates, action
configuration, adding or removing run steps, and updating run
steps. We observed that developers frequently adjust their run
steps to optimize execution, leverage GHA capabilities, and
improve the efficiency of their CI/CD processes.

TABLE II: Categories of common changes in the evolution
of the GHA YAML configuration files. The complete table
with more fine-grained categories of changes is available in
the provided dataset [38]. Please note that the percentages
of sub-categories in the “Occurrences” column are calculated
relative to their parent category. However, the percentages of
sub-categories in the “Projects” column are calculated based
on the total number of projects.

Category Occurrences Projects
Sub-category # % # %

Workflow Organization 2,177 9.2% 83 100%
Add/Remove workflow 1,907 86.5% 83 100%
Move/Refactor workflow 137 6.2% 33 39.8%
Add/Update workflow name, etc. 161 7.3% 33 39.8%

Run Step Configuration 8,709 36.5% 74 89.2%
Run command updates 3,395 39% 59 71.1%
Action configuration 2,741 31.5% 63 76%
Add/Remove run step 2,301 26.4% 60 72.3%
Update run step, etc. 272 3.1% 50 60.2%

Dependency Versioning 4,508 18.9% 70 84.3%
Bump version 2,160 47.9% 64 77.1%
Bump hash version 2,151 47.7% 19 22.9%
Use hash instead of version, etc. 197 4.4% 34 41%

Job Configuration 1,159 4.9% 63 75.9%
Add/Remove job 659 56.9% 45 54.2%
Matrix configuration 290 25% 44 53%
Update/Add job name, etc. 210 18.1% 37 44.6%

Environment Setup 1,589 6.6% 45 54.2%
Update env/env variable 1455 91.6% 43 51.8%
Update runs-on, etc. 134 8.4% 16 19.2%

Trigger Conditions 1,973 8.3% 66 79.5%
Update “on” 1,553 78.7% 65 78.3%
Prevent running on forks, etc. 420 21.3% 34 41%

Scheduling 2,408 10.1% 28 33.7%
Add timeout 2,254 93.6% 13 15.6%
Add/Update concurrency, etc. 154 6.4% 26 31.1%

Miscellaneous 1,308 5.5% 70 84.3%
Add/Update/Remove “if” 362 27.7% 34 41%
Add/Update/Remove comment, etc. 97 7.4% 27 32.5%
Access control configuration 373 28.5% 50 60%
Formatting and Styling 476 36.6% 57 69%

Total 23,862 83

Dependency versioning primarily involves bumping versions
and hash versions, as well as using hashes instead of versions.
These changes highlight the importance of keeping dependen-
cies and runtime environments up to date and ensuring the
reproducibility of builds.
Workflow organization includes adding, removing, moving,
or refactoring workflows, and updating workflow names. De-
velopers frequently adjust their workflow structure to possibly
better suit their project’s needs and improve maintainability.
Trigger conditions, job configuration, environment setup,
and scheduling play important roles in the evolution of GHA
workflows, with developers adjusting triggers, job require-
ments, environment variables, and scheduling configurations
to ensure proper execution and optimize resource usage.
Job configuration and environment setup involves adjusting
job requirements and environment variables to ensure proper
execution and optimize resource usage. The most common
changes in job configuration include adding or removing jobs,
matrix configuration, and updating job names. Environment
setup primarily involves updating environment variables and
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runs-on configurations. These changes indicate that developers
frequently adapt their workflows to different environments and
job requirements.

RQ1 summary. Our analysis reveals 64 common patterns of
frequent changes in GHA workflow configurations, grouped
into 8 categories based on their purposes. These common
change patterns suggest that developers frequently adjust
their GHA configurations to optimize execution, improve
maintainability, update dependencies, and ensure proper
workflow execution.

V. RQ2: WHAT TYPES OF SMELLS EXIST IN GHA
WORKFLOW CONFIGURATIONS?

RQ2 methodology: We hypothesize that some of the frequent
change patterns identified in RQ1 encompass bad practices
that software engineers address in their GHA configurations.
The updating of versions, refactoring of workflows, and opti-
mization of run steps, for example, can be seen as efforts to
improve the quality and maintainability of GHA configurations
by eliminating potential smells. In our context, we consider a
smell to be a suboptimal pattern or practice that can negatively
affect the maintainability, performance, security, or reliability
of the workflow. The frequent change patterns motivated us to
delve deeper in changes to identify these potential smells.

We started this by critically examining each labeled change
from RQ1 and performed the following steps: (1) We excluded
changes that directly and immediately modify the workflow’s
behavior, such as adding or removing jobs, as these changes
are not indicative of configuration smells. (2) We retained
changes that do not immediately alter workflow behavior but
enhance maintainability and reliability, such as using hashes
instead of versions to ensure consistent action versions and
mitigate the risk of unexpected behavior changes due to
action updates. (3) We grouped related changes together based
on their context and purpose, such as adding and updating
permissions, which both pertain to access control management
in GHA workflows. We further categorized changes based on
their specific purposes, like adding conditional statements to
prevent execution on forks or for other particular reasons.

For the labeled changes from steps 2 and 3, the second
author critically grouped them into named smells based on
their purpose and previous research on GHA security, GHA
performance/optimization, and Other CI/CD smells. To ensure
validity, the first and second authors discussed the grouping
and naming of these potential smells, reaching agreement on
35 candidate smells. We then removed smells with only one
occurrence and those requiring project contextual knowledge
beyond the configuration file (e.g., repository state or available
actions). This resulted in 22 potential smells, defined in
Table II. The complete list of 35 candidate smells, including
removed ones is available in the replication package [38].
RQ2 answer. Our analysis of smells in common patterns of
changes in GHA workflows revealed 22 distinct smells, which
we categorized into three main groups: security (3 smells),
performance/optimization (10 smells), and other CI/CD smells

(9 smells). Table III provides an overview of these smells,
including the number of fixes for each smell among the 83
analyzed projects, the number of projects in which the smell
was fixed by at least one commit, and the supporting evidence
from previous research. To trace the fixes to these smells back
to the specific changes in GHA configuration commits of these
projects, see our study’s replication package [38].
Security smells were identified based on changes addressing
potential vulnerabilities. Table III lists 3 smells in this cate-
gory, their description, and their frequency of occurrence in
projects. These smells can lead to unauthorized access, code
injection, and other security breaches. Fixing these smells can
reduce the attack surface and ensures more secure workflows.
The identified security smells are backed by evidence from
previous studies [16], [20], [21].
Performance/optimization smells were identified based on
changes addressing resource usage and limitations. In Ta-
ble III we observe 10 smells with this type, including their
descriptions. These smells can lead to inefficient resource
usage, longer build times, and increased costs; addressing
them may result in optimizations. A recent study on resource
usage and limitations in GHA supports most of the identified
performance/optimization smells [23]. While Smell 10 and
11 were not mentioned in that study, GitHub documentation
provides rationale for addressing them to optimize storage
usage [39].
Other CI/CD smells were identified based on changes ad-
dressing bad practices, configuration smells, and the need
for pipeline restructuring. Table III provides more details
on the 9 instances of this type of smell. These smells can
lead to maintainability issues, inconsistent build results, and
difficulty in understanding and debugging workflows. Fixing
these smells can improve readability, maintainability, and reli-
ability, making it easier for team members to understand and
modify workflows. The identified CI/CD smells are backed by
research on bad practices in CI/CD [24], [26], [31], [32].

RQ2 summary. Our analysis of common change patterns in
GHA workflow configurations revealed 22 distinct smells,
which we categorized into three main groups: security
smells (3 instances), performance/optimization smells (10
instances), and other CI/CD smells (9 instances). These
smells were identified based on changes addressing poten-
tial vulnerabilities, resource usage and limitations, and bad
practices or configuration issues. The identified smells are
backed by evidence from previous research on GHA security,
performance, and CI/CD.

VI. RQ3: CAN WE AUTOMATICALLY DETECT GHA
CONFIGURATION SMELLS?

RQ3 methodology: To facilitate the automated detection of
the smells identified in RQ2, we developed a suite of Python
scripts. These scripts can detect lines in GHA configuration
files that contain smells. We provide our Python scripts in our
replication package [38].
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TABLE III: Identified fixed smells in the history of GHA configuration files changes.
Cat ID Smell # Projects # Total Backed-research/Motivation

Se
cu

ri
ty

1 Define permissions for workflows with external actions 39 82 [21]
Problem: Overly permissive access increases security risks.
Solution: Specify minimal permissions.

2 Use commit hash instead of tags for action versions 8 11 [16], [20]
Problem: Tags can be modified, leading to inconsistent behavior.
Solution: uses: actions/checkout@<commit-sha>

3 Set permissions for GitHub Token 4 8 [21]
Problem: Default token has overly permissive access.
Solution: Set permissions under permissions key.

Pe
rf

or
m

an
ce

/O
pt

im
is

at
io

n

4 Prevent running issue/PR actions on forks 12 20 [23]
Problem: Actions fail due to lack of permissions.
Solution: Add condition checking repository owner.

5 Avoid jobs without timeouts 11 14 [23]
Problem: Can run indefinitely, wasting resources and blocking workflows.
Solution: Set timeout for jobs.

6 Stop running workflows when there is a newer commit in PR 8 10 [23]
Problem: Inefficient resource usage and inconsistent results.
Solution: Use concurrency to cancel in-progress runs.

7 Stop running workflows when there is a newer commit in branch 8 10 [23]
Problem: Inefficient resource usage and inconsistent results.
Solution: Use concurrency to cancel in-progress runs.

8 Avoid running CI actions when no source code has changed 7 15 [23]
Problem: Unnecessary resource usage when irrelevant files change.
Solution: Specify trigger files using paths or paths-ignore.

9 Avoid executing scheduled workflows on forks 6 10 [23]
Problem: Inefficient resource usage for inactive forks.
Solution: Add condition checking repository owner.

10 Avoid uploading artifacts on forks 5 6 [39]
Problem: Inefficient resource usage.
Solution: Add condition checking repository owner.

11 Use ‘if’ for upload-artifact action 4 5 [39]
Problem: Unnecessary uploads waste resources and storage.
Solution: Add condition to run only when needed.

12 Avoid deploying jobs on forks 2 2 [23]
Problem: Inefficient resource usage due to unnecessary deployments.
Solution: Add condition checking repository owner.

13 Avoid starting new workflow while previous one is running 2 2 [23]
Problem: Inefficient resource usage and inconsistent states.
Solution: Use concurrency groups to ensure only one runs at a time.

O
th

er
C

I/
C

D
Sm

el
ls

14 Correct indentation 25 57 [31], [32]
Problem: Incorrect indentation reduce readability.
Solution: Use YAML linter to ensure consistent indentation.

15 Use fixed version for runs-on argument 12 17 [24], [26]
Problem: Environment changes can lead to unexpected behavior.
Solution: Specify exact version for runs-on.

16 Name run steps 11 12 [31], [32]
Problem: Unnamed steps reduce readability and debugging.
Solution: Use descriptive names for steps.

17 Use cache parameter instead of cache option 9 11 [24]
Problem: Cache options increase workflow complexity and misconfiguration risk.
Solution: Update workflows to use cache parameter.

18 Use single-command steps 5 5 [31], [32]
Problem: Multiple commands per step reduce clarity and complicate debugging.
Solution: Split complex steps into simpler single-command steps.

19 Run tests on multiple OS’s 4 10 [24]
Problem: Testing on single OS might miss OS-specific issues.
Solution: Use matrix strategy to run on multiple OSs.

20 Specify package versions 3 5 [26]
Problem: Unspecified versions can lead to non-reproducible builds.
Solution: Specify exact package versions in install commands.

21 Add comments to workflows 3 3 [31]
Problem: Lack of documentation reduces maintainability.
Solution: Add comments explaining purpose and function.

22 Run CI on multiple language versions 2 13 [24]
Problem: Single version might miss version-specific issues.
Solution: Use matrix strategy for multiple language versions.

To select popular and active projects, we started with the
100 most popular projects for each of the five programming
languages used in RQ1 (JavaScript, Java, C#, Python, and
TypeScript). We then applied additional criteria: (1) having
GHA workflows, and (2) not in our dataset of 83 projects for
RQ1. We ordered them by the number of pull requests merged
in the last 30 days and selected the top 40 projects, thus

ensuring these projects are in active development. To evaluate
the effectiveness of our automated smell detection scripts, we
curated a new dataset comprising 119 GHA configuration files
from these 40 projects.

We first established a ground truth by manually analyz-
ing the configuration files and identifying smells. This step
took 1 person 2 days. We then executed our smell detec-
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TABLE IV: Evaluation of automated detection of GHA smells.
Smell # Ground truth FP FN Recall Precision F1-score

1 59 0 0 100% 100% 1
2 88 0 1 98.9% 100% 0.99
3 17 0 0 100% 100% 1
4 27 2 6 85.7% 92.6% 0.86
5 101 0 0 100% 100% 1
6 38 3 5 87.5% 92.1% 0.90
7 37 1 1 97.3% 97.3% 0.97
8 33 4 7 80.6 87.9% 0.84
9 16 0 3 84.2% 100% 0.91

10 18 9 2 81.8% 50% 0.62
11 13 0 2 86.7% 100% 0.93
12 20 1 81 19% 95.0% 0.32
13 38 4 1 97.1% 89.5% 0.93
14 54 0 35 60.7% 100% 0.76
15 99 1 0 100% 98.99% 0.99
16 61 0 0 100% 100% 1
17 7 0 0 100% 100% 1
18 59 0 0 100% 100% 1
19 20 0 30 40% 100% 0.57
20 12 2 9 52.6% 83.3% 0.65
21 25 0 1 96.2% 100% 0.98
22 7 1 8 42.9% 85.7% 0.57

Total 849 Median 91.8% 100% 0.93

tors on the dataset and recorded false positives and false
negatives. Recall, precision, and F1-scores were calculated
for each of the 22 smell detectors using the following for-
mulas: Precision = TP

(TP+FP ) , Recall = TP
(TP+FN) , and

F1 − score = 2 × (Precision×Recall)
(Precision+Recall) , where TP, FP, and FN

represent true positives, false positives, and false negatives.

RQ3 Answer. The results in Table IV demonstrate the overall
effectiveness of our automated smell detection scripts. Notably,
8 out of the 22 smell detectors (36.4%) achieved perfect preci-
sion, recall, and F1-scores of 100%. Furthermore, the median
recall, precision, and F1-score across all smell detectors were
91.8%, 100%, and 0.93, respectively, signalling the overall
good performance of our automated detection approach.

The detectors for smells 12, 19, 20 and 22 exhibited
relatively low recall values of 19%, 40%, 42.9%, 52.6%
respectively. These specific detectors struggle, because more
contextual understanding is required to identify all instances
of these specific smells. Detecting workflows that deploy the
project (Smell 12) or locating where test suites are run (Smell
19 and 22) proved non-trivial. The detectors, focused on a
single workflow, missed instances across multiple workflows.
Smell 20 also received a lower recall score because not all
install commands support version specification, which the
detector relied upon.

RQ3 summary. Our evaluation demonstrates the feasibility
and effectiveness of automatically detecting GHA configu-
ration smells using custom-developed Python scripts. While
the majority of our smell detectors exhibited high precision,
recall, and F1-scores, for 4 out of 22 smells our detectors
exhibit low recall.

Fig. 1: An example of the submitted pull request, #35.

VII. RQ4: TO WHAT EXTENT DO DEVELOPERS FIND THE
PROPOSED FIXES FOR IDENTIFIED GHA CONFIGURATION

SMELLS RELEVANT?

RQ4 methodology: To externally validate and assess the
practical relevance of the identified GHA workflow smells, we
conducted an open-source contribution study [40]: we created
pull requests (PRs) to popular and actively maintained GitHub
repositories, addressing the smells detected in their GHA
workflow configurations. By submitting these pull requests,
we aimed to gauge the receptiveness of the open-source
community to our proposed changes and gather insights into
the smells that we observed in RQ2. We acquired approval
from the Human Research Ethics Council of our university
and followed their guidelines throughout the study.

For our contribution study, we selected 40 projects on
GitHub using the same criteria detailed in RQ3. For each
of these projects we ran our tool discussed in RQ3 on their
GHA workflows to identify their smells. Subsequently, we
strategically prepared PRs by addressing multiple smells per
PR, to ensure that each smell received at least one reaction
across all submissions. The PRs included explanations of the
smells they aimed to fix (see Figure 1). To ensure transparency,
we explicitly mentioned that the contribution was part of a
research study and provided a link to a separate web page
containing further information about the study.

Table VI displays the details of the submitted PRs, including
their IDs, associated GitHub projects, status, and the fixed
smells. The order of projects is based on the time of opening
their associated PR. We submitted the PRs in April-May 2024,
ensuring that maintainers of the projects had at least 3 weeks
to provide feedback. In total, out of the 40 submitted PRs,
32 received at least one response at the time of writing this
paper, either in the form of a comment, or a decision regarding
merging or closing the PR. The responses to the proposed
fixes for the smells are as follows: 46 accepted smells ‘ ✓ ’,
34 rejected smells ‘ X ’, and 37 pending final decisions ‘ O ’.
At the time of writing this paper, 15 PRs were merged, 8
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TABLE V: Type of comments received per each smell and the
state of the associated PR(s).

PR state Comment Category
Clarification
Question

Suggest Edit Feedback

Merged 2, 3, 4, 5, 20 4, 6, 7, 9, 10, 11, 12,
18

1, 3, 4, 6, 7, 9, 12

Pending 1, 2, 4, 6, 13 4, 5, 7, 10, 11, 12, 13 2, 13, 15

Closed 2, 4, 11 – 1, 2, 4, 5, 6, 10, 11,
12, 14, 15, 16, 17,
18, 19, 20, 21, 22

closed, and 17 pending. Among the pending PRs, 9 received
comments and are included in Table VI.

The analysis focused on the 165 comments received on
our pull requests (PRs). We used an open card sorting ap-
proach [35], which allows categories to emerge naturally from
the data without imposing pre-defined groups [36]. Initially,
the first and second authors independently coded 20% of
the comments each. After agreeing on the codes, the second
author proceeded to code the remaining comments. The codes
were then sorted using sticky notes on a Miro board2 for
each smell, taking into account the state of the PR related
to that smell (merged, pending, or closed). The first and
second authors collaboratively performed the categorization by
manually sorting the codes into groups during a joint session.
To ensure reliability and validity, they conducted a discussion
meeting to review the codes and categories until reaching a
negotiated agreement [37].
RQ4 answer: The qualitative analysis of the comments re-
ceived on the submitted pull requests adds to quantitative
data on accepted and rejected pull requests; it enables us to
better understand how maintainers perceive the identified GHA
configuration smells, and the proposed fixes.

Our qualitative analysis revealed seven general types of
comments: (1) Clarification Question: comments asking for
further information or explanations regarding the proposed
changes; (2) Suggested Edit: comments providing suggestions
to improve the submitted PR; (3) Feedback: comments ex-
pressing opinions or concerns about the proposed fixes for the
smells, or discussing the judgments of the PR; (4) Automated
messages: Comments from software bots [41] that automate
tasks or report to facilitate contribution; (5) Decision-related
comments: comments regarding the decision to accept or re-
ject the contribution; (6) Appreciation: comments expressing
gratitude for the submitted contribution; and (7) Unrelated
comments: comments not directly related to the proposed
changes, e.g., mentioning other maintainers to review the PR.

We focus on the first three types of comments received on
PRs related to each smell, as they provide relevant information
about how maintainers perceived our identification and fixes of
the GHA configuration smells. The details of this qualitative
analysis are available in our replication package [38].

Clarification Question: were related to the purpose and
impact of the proposed changes to fix a smell (Smell 1, 2, 3,

2https://miro.com/

4, 6, 11, 12, 13, 15, 19, and 20). Maintainers sought to better
understand how fixing the smells will impact their workflow.
Figure 2 shows an example related to Smell 1, where the
developer asks questions to better understand how permission
configuration of the workflow works.

In 5 cases of a smell fix, our PRs were merged after address-
ing clarification questions, while in 7 cases, the proposed fixes
were rejected (see Table V). The reasons for rejection varied.
For PR 29273, maintainers stated that they would consider an
alternative solution for Smell 2, but since the workflow’s task
was not critical, they decided against making changes. In PR
28909, a maintainer expressed concerns about the trade-offs
of fixing Smells 11, 15, and 19, as modifying the functioning
workflow could lead to unintended consequences, potentially
compromising its stability. Another maintainer in the same
PR argued that addressing Smells 4 and 12 would introduce
a trade-off between maintainability and resource optimization.
Fixing these smells would require adding more “if” statements
to prevent running the workflow on forks, which would
optimize resource usage. However, this optimization comes
at the cost of reduced maintainability, as the additional con-
ditional statements make the workflow harder to understand
and modify. We see indications that the maintainers tend to
prioritize maintainability over resource usage optimization of
their project’s forks. Lastly, in PR 23965, the attempt to fix
Smell 19 by running tests on multiple operating systems using
a matrix strategy led to a trade-off between test coverage
and developer productivity. The increased number of jobs
resulted in a higher occurrence of false positives due to flaky
tests, requiring developers to manually verify more test cases.
Consequently, the expanded testing effort reduced developer
productivity, as they spent more time on testing-related tasks
rather than other aspects of development.

Fig. 2: Example of a comment asking a clarification questions.

Suggested Edits: maintainers suggested edits for 10 of the
smells, falling into two categories: 1) alternative smell fixes
and 2) typographical corrections. In terms of alternative
smell fixes (Smell 4, 9, 10, and 12), developers proposed
different approaches to address these smells compared to our
original fixes, aiming to enhance workflow reusability and
maintainability (Figure 3). These alternative solutions can
provide insights into resolving smells while aligning with
project-specific needs. Secondly, maintainers identified and
suggested typographical corrections for our our submitted PRs,
such as incorrect capitalization. The suggested edits confirm
the maintainers’ receptiveness to accepting smell fixes, as
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TABLE VI: List of repositories that received at least a response from the maintainers. The complete list of opened PRs is
available in our replication package [38].

# Project # Stars Status PR ID Fixed Smells
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 Jackett/Jackett 11.4k Merged 15274 – – – – – ✓ ✓ – ✓ – – – – – – – – – – – – –
2 jquery/jquery 58.9k Closed 5480 – – – – – – – – – – – – – – – – X X X – – X
3 oracle/graal 19.8k Pending 8836 – – – – – – O – – O – – O – – – – – O – –
4 prisma/prisma 37.5k Merged 23965 – – – – – – – – – ✓ ✓ – – – – – – – X – – –
5 nuxt/nuxt 52.4k Merged 26937 – – – – – – – – ✓ ✓ ✓ – – – – – – – – – – –
6 cypress-io/cypress 46.2k Merged 29416 – – ✓ – – – – ✓ ✓ – – – – – – – – – – – – –
7 dotnet/AspNetCore.Docs 12.4k Merged 32420 – – – – – – ✓ – ✓ – – – – – – – – – – – – –
8 ray-project/ray 31.5k Merged 44990 – – – – ✓ – – – – – – – – – X – – – – – – –
9 parcel-bundler/parcel 43.2k Pending 9672 – – – – – O – O – O O – – – – – – – – – – –
10 halo-dev/halo 32k Merged 5809 – – – – – ✓ – – – – ✓ ✓ – – – – – – – – – –
11 doocs/leetcode 29.2k Merged 2677 – – – – – ✓ ✓ ✓ – – – ✓ – – ✓ – – – – – – –
12 spacedriveapp/spacedrive 29.1k Merged 2412 ✓ ✓ – – – – – – ✓ – – – – – – ✓ – ✓ – – – –
13 unoplatform/uno 8.5k Merged 16508 – ✓ – – – – ✓ – – – – – – – – ✓ – X – – – –
14 scikit-learn/scikit-learn 58.4k Closed 28909 – – – X – – – – – – X X – – X – – – – X – –
15 microsoft/semantic-kernel 18.6k Pending 6041 – O – O O – – – – – – – – – O O – O – – – –
16 keycloak/keycloak 20.2k Closed 29164 – – – – – – – X – X X – – X – – – – – – – –
17 getsentry/sentry 37.1k Closed 69915 X X – – X – – – – – – – – – X X – X – – – –
18 dbeaver/dbeaver 37.8k Closed 29273 X X – – – X – – – – – – – – X – – – – – – –
19 commaai/openpilot 48.2k Closed 32326 – – – – – – – – – – – – – X – – – – – – X –
20 abpframework/abp 12.3k Pending 19665 – O – – O – – – – – – – – O – O – O – O O –
21 App-vNext/Polly 1.2k Merged 2097 – – – ✓ – – – – – ✓ ✓ ✓ – – – – – – – – – –
22 jenkinsci/jenkins 22.5k Pending 9236 O – – – – O – – – – – O – – – – O – – – – –
23 trpc/trpc 33k Closed 5702 – – – – – – – – – – – X – – – X – – X – – –
24 appwrite/appwrite 41.5k Pending 8075 – – – O – O – – – – – O – – – – – – – – – –
25 gui-cs/Terminal.Gui 9.2k Pending 3449 – – – – O – – O – – – O – – – – – – – – – –
26 gpt-engineer-org/gpt-engineer 50.8k Merged 1156 ✓ – – – – ✓ – – – – – – ✓ – – – – – – ✓ – –
27 cheeriojs/cheerio 27.9k Merged 3826 – – – – – – – ✓ – – – ✓ – – – – – ✓ – – – –
28 remix-run/remix 28.1k Pending 9478 O O – – O – – – – – – – – – – – – – – – – –
29 localstack/localstack 52.5k Merged 10870 ✓ – ✓ – – – – – – – – ✓ – – – – – – X – – –
30 netty/netty 32.9k Closed 14077 – X – – – – – – – – – – – – – – X – – – – –
31 openzipkin/zipkin 16.8k Merged 3770 – – – – ✓ – – – – – – – – – – – ✓ – – – – –
32 google/gson 23k Pending 2684 – – – – O – – – – – – – – – O – – O – – – –

Summary: 40 Opened, 15 Merged, 8 Closed, 17 Pending PRs; Total Accepted: 3 2 2 1 2 4 4 3 5 3 4 5 1 0 1 2 1 2 0 1 0 0
Total Rejected: 2 3 0 1 1 1 0 1 0 1 2 2 0 2 4 2 2 3 4 1 1 1

confirmed by Table II, which shows that no PRs receiving
edit suggestions were closed.

Fig. 3: Developer providing a different fix to Smell 4.

Feedback: maintainers provided three categories of feedback:
1) positive feedback on the impact of fixing the smell
(Smell 3 and 7): maintainers acknowledged that fixing Smell 3
improves the developer experience, and for Smell 7, they
confirmed that the workflow functions as expected after the
changes. 2) skepticism about the value of the contribution
(Smell 1, 2, 4, 6, 10, 11, 12, 14, 15, 17, 20, 21): maintainers
expressed doubts about the usefulness of the proposed fixes,
finding the purpose of the PRs unclear or questioning the ne-
cessity of modifying functioning workflows (Figure 4). In PR
32326, Smell 14 and 21 were rejected because the maintainers
found the explanations regarding the smells unclear. Moreover,
Smell 4, 10 and 12 received conflicting feedback in two PRs,

where maintainers were uncertain about GitHub’s policy on
running workflows on forks, leading them to question the rel-
evance of the smells. Ultimately, PR 2097 was merged, while
PR 28909 was closed, with the maintainers’ doubts about
GitHub’s policy about running project’s workflows on its forks
being the primary reason for their skepticism. Additionally, PR
28909, which aimed to fix Smell 11, 12, 15, and 20, was closed
due to the developers’ concerns about potential side effects.
However, since at least one other PR addressing these smells
was merged, we believe that a more thorough explanation
of the smells could have helped alleviate the maintainers’
skepticism. Moreover, reporting a calculation of the impact
of smell fixes along with the PR, similar to what Durieux
has done in a contribution study of Docker smells [42], can
address this skepticism about fixing GHA smells in future
studies. Two PRs addressing Smell 1, 2, 15, 16, and 18 also
received feedback indicating that the maintainers preferred
discussing changes to workflows before submitting PRs. In
these cases, the maintainers’ reluctance to accept external
contributions that change infrastructure-related aspects of the
project, such as GHA workflows, was evident. Overall, the
skepticism regarding the value of the proposed smell fixes
appears to stem from two main factors: first, maintainers’
uncertainty about the relevance and necessity of the fixes,
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particularly for functioning workflows, highlighting the impor-
tance of clear and comprehensive explanations when proposing
changes. Second, the culture of open-source projects, which
tends to be cautious about accepting external contributions that
modify infrastructure-related aspects, such as GHA workflows,
without prior discussion [“appreciate the contribution but
please in the future discuss changes to infrastructure...”, PR
69915]. 3) explanations for why the smell is not applicable
(Smell 2, 4, 9, 10, 12, 15, 17, 19, 22): maintainers indicated
that the workflows in question do not perform critical tasks
(Smell 2, 15, 17, 19, 22), or expressed deliberately keeping
upload artifacts actions on forks because they need it (Smell
10 and 11), [“we want to upload artifacts because we need
them later, also forks will or might need them, I see no reason
to add a condition for this.”, PR 29164].

Fig. 4: An example of maintainers skeptical about changing
the workflow.

To answer RQ4, we analyzed the reactions received for each
smell ( X and ✓ in Table VI) and identified three groups: 1)
mostly accepted smells, which received at least 2 acceptances
and at most 1 rejection, indicating maintainers’ receptiveness
to fixing these smells in their workflows; 2) mostly rejected
smells, which had more rejections than acceptances, with at
least two non-pending PRs, suggesting that developers were
generally not open to accepting the proposed fixes; and 3)
smells with mixed opinions or insufficient responses, which
received both positive and negative reactions or had only one
non-pending PR, indicating no clear consensus regarding the
importance or relevance of these smells.
Mostly accepted: 7/22 smells are considered mostly accepted
(Smell 3, 5, 6, 7, 8, 9, and 10) and were merged in 14 projects
(Table VI). Out of these smells, 3 received no rejections (Smell
3, 7, and 9), while 4 received 1 rejection each (Smell 5, 6, 8,
and 10). Smell 5 was rejected in PR 69915 because of project’s
culture of not accepting external contribution to infra-structure
related aspects of the project. Similarly, Smell 6 was rejected in
PR 29273 through feedback indicating that the maintainer did
not consider the contribution valuable in case of their simple
workflow. Smell 8 and 10 were rejected in PR 29164 due to the
existing workflow logic already handling the skipping of runs
based on modified code areas, and the maintainer mentioned
that artifacts are needed by other workflows being run on forks,
aligning with the category of “explanations for why the smell
is not applicable.” While a few rejections occurred, e.g., due
to project-specific factors, the overall positive receptiveness of
developers regarding these smells highlights their recognition
of the value in fixing them.
Mostly rejected: 6/22 smells were mostly rejected: Smell 2,

14, 15, 17, 18, and 19. Smell 14, and 19 were rejected in all
PRs, with no acceptance. Smell 15 and 19 had the most rejec-
tions (4 each), suggesting developers were not receptive to the
proposed changes. For Smell 14 and 15, maintainers showed
“skepticism about the value of the contribution”. Smell 19 was
rejected because maintainers “did not find the smell applicable
to their project”. These findings highlight that certain smells
were rejected due to maintainers skepticism about the value of
the contribution or its relevance to their projects, or project-
specific reasons making the smells inapplicable.
Mixed opinions/inconclusive: 9/22 smells received mixed
opinions or insufficient responses: Smell 1, 4, 11, 12, 13, 16,
20, 21, and 22. Smell 4, 16, and 20 have an equal number
of rejections and acceptances, preventing strong conclusions
about their perception by developers. Smell 1, 11, and 12 have
3, 4, and 5 accepted PRs, respectively, but were also rejected
twice due to developers showing “skepticism about the value
of the contribution.” Despite the higher acceptance rate, the
presence of multiple rejections prevents us from confidently
stating that developers were receptive about these smells. Smell
13, 21, and 22 received only one response each, with the
remaining PRs pending, providing insufficient data to draw
conclusions about their perception by developers. In summary,
the mixed opinions and limited responses for these smells
necessitate further investigation.

RQ4 summary. While there was a consensus among main-
tainers regarding the relevance and value of fixing 7/22
smells (Smell 3, 5, 6, 7, 8, 9, and 10), as indicated by their
acceptance, 6/22 smells (Smell 2, 14, 15, 17, 18, and 19),
were mostly rejected, suggesting a lack of consensus on the
applicability or importance of the proposed fixes for these
smells in their projects. Additionally, there were 9/22 smells
(Smell 1, 4, 11, 12, 13, 16, 20, 21, and 22) that received
mixed opinions or insufficient responses, preventing a clear
consensus about their perception by developers.

VIII. DISCUSSION

This study provides insight into the existence and relevance
of seven GHA workflow smells, which have been validated
by open-source developers through our contribution study.
The novelty of this work lies in the bottom-up approach
that we have taken to identify these seven workflow smells:
from identifying frequent change patterns in GitHub Actions
workflows, to analyzing the negative side effects that are
alleviated through the change patterns and thus establishing a
set of candidate workflow smells, to validating the candidate
smells through a contribution study. Through this process, we
were also able to identify a new smell, namely: Smell 10:
“Avoid uploading artifacts on forks”.

The identification of Smell 10 is a key contribution of
this study, as it highlights the resource usage optimization
with avoiding uploading artifacts on forked repositories. The
validation of this smell through open-source contributions,
demonstrates its relevance and importance in the context of
GHA workflow optimization.
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The other six smells identified in this study were previously
discussed in the literature, with five of them (Smell 5, 6,
7, 8, and 9) presented as optimization techniques, and one
(Smell 3) flagged as a security concern (Table IV). However,
prior to our study, there was a lack of evidence regarding
developers’ perceptions and willingness to accept fixes for
these smells. Our contribution study fills this gap by providing
valuable insights into how developers view these smells and
their readiness to accept the PRs fixing them. The acceptance
of fixes by developers for all seven smells, including the newly
introduced Smell 10, suggests that addressing these issues is
considered important and beneficial by the maintainers of the
projects that we worked with.

We developed automated smell detectors for the GHA
configuration smells. The evaluation of these detectors showed
promising results, with the majority exhibiting high precision,
recall, and F1-scores (0.84 - 1). However, Smell 10 had a lower
F1-score (0.62), as our detector only considered two common
artifact upload actions on GHA. Future work should analyze
more upload actions to improve the detector’s F1-score.

The rejection and mixed opinion of the maintainers of the
projects in our contribution study other 15 candidate workflow
smells, makes us less confident about their relevance. In future
research, we intend to expand the contribution study and set up
interviews with maintainers to better understand the relevance
of these smells in different project contexts.

A. Implications & Future Work

The findings of this study have several implications for
researchers, tool developers, and practitioners working with
GitHub Actions:
Awareness of GHA workflow smells: the identified smells
provide a foundation for understanding common issues in
GHA configurations. Researchers and practitioners can lever-
age this knowledge to develop best practices and create
educational materials that raise awareness [43], [44] about
these smells, ultimately helping developers prevent, identify,
and address them in their GHA workflows.
Tool support for smell detection and refactoring: the auto-
mated smell detectors developed in this study can be integrated
into existing GHA development tools or integrated develop-
ment environments (IDEs) to provide real-time feedback and
suggestions for improving workflow configurations [45]–[47].
Empirical studies on workflow smells: for some candidate
workflow smells, we received mixed opinions on their rele-
vance, which could be explained by project-specific circum-
stances. Further study is needed to better understand how
context influences the perception and importance of smells.

B. Threats to Validity

This section discusses potential threats to the validity of our
study and the steps taken to mitigate them [48]:
External validity: the identified smells and their validation are
based on a sample of 83 and 40 GitHub projects, respectively,
which may not be representative of all GHA workflows. To

mitigate this threat, we selected popular, active projects with
diverse programming languages, sizes, and domains.
Internal validity: the identification of workflow smells and
the development of automated detectors relied on the authors’
expertise and interpretation of the frequent change patterns
which formed the internal validation of the potential smells. To
mitigate potential biases, two authors independently reviewed
the change patterns and discussed any disagreements until
a consensus was reached. Additionally, we associated the
identified potential smells with other studies on GHA and
CI/CD to mitigate our own bias.
Conclusion validity: the conclusions drawn from the contri-
bution study (RQ4) are based on a limited number of PRs
and subjective opinions, potentially affecting generalizability.
Many candidate smells received mixed or insufficient feedback
due to the limited number of contributions. Future larger-
scale studies, or survey/interview studies with more developers
could strengthen the findings.

We followed a rigorous methodology and thoroughly doc-
umented the source code, scripts, and procedures to ensure
replicability, enhancing transparency and reliability. We pro-
vide an replication package with all our materials [38].

IX. CONCLUSION

This study provides insights into the existence and relevance
of seven GitHub Actions (GHA) workflow smells. Employing
a bottom-up approach, by analyzing frequent change patterns
in 10,012 commits from 83 projects, we identified 64 change
patterns grouped into 8 categories (RQ1).

From these frequent change patterns, we identified and
defined a candidate list of of 22 potential GHA workflow
smells (RQ2). The external validation confirmed the relevance
of six previously discussed smells and identified a new smell,
Smell 10: “Avoid uploading artifacts on forks”, highlighting
optimization of resource usage. Custom smell detectors (RQ3)
showed promising results, with F1-scores ranging from 0.84
to 1 for most smells, except for Smell 10 with a lower recall
due to considering limited actions for uploading artifacts in
out detector. The contribution study (RQ4), involving 32 pull
requests, provided insights into developers’ perceptions and
willingness to accept fixes, which enabled us to validate 7 out
of the 22 candidate GHA workflow smells as actual smells.

The insights of this study can inform future research and
tool development efforts in GHA workflow optimization and
maintenance, supporting the growing adoption of GHA in the
GitHub software development ecosystem.
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