On The Energy Consumption of Continuous
Integration in Open-Source Java Projects

Robert Arntzenius
robertarntzenius@gmail.com
Delft University of Technology
Delft, The Netherlands

Abstract—Continuous integration is essential for software
quality, yet the energy footprint associated with its frequent
execution has largely remained invisible. We provide the first
comprehensive baseline of CI energy use through a large-
scale study of 204 open-source Java projects with repeated
measurements under Maven and Gradle. Our results show that
energy use is highly skewed: while most projects consume energy
modestly, a small number of “Cl-intensive” systems can reach
annual CI energy footprints of hundreds of kilowatt-hours,
which is comparable to a quarter of an average EU household’s
electricity use. We further show that immediate, practical savings
are possible: simply enabling dependency caching cuts energy
by 30% on average in some Maven projects and by over
90% in some Gradle cases. These findings matter not only for
individual developers, but also for large organizations that run
thousands of builds. In those settings, even small inefficiencies
can add up to very large energy costs. By exposing where energy
is consumed and how to reduce it, our study establishes an
actionable foundation for greener CI pipelines.

Index Terms—energy consumption, continuous integration,
software testing, sustainable

I. INTRODUCTION

As we have grown accustomed to living in a software-
filled world, we are also more and more relying on software
for everyday tasks [1]]. Because of our reliance on software,
there is a greater need for the reliability of the software
that we produce [2]]. For example, it has been estimated that
software failures in 2017 cost the economy $1.7 trillion [3].
Additionally, from an analysis of newspaper articles, Ko et
al. estimate that software failures can be linked to the loss
of 15,000 human lives [4]. In this light, the role of software
quality assurance becomes ever more important.

To safeguard software quality, engineers employ approaches
such as testing [5]-[8]], code review [6], [9], [10]], static
analysis [11]], [12], and build automation [[13[]-[|16]]. Many of
these practices, particularly testing, static analysis, and build
automation, are now routinely executed through continuous
integration (CI) pipelines [13].

More generally, the Information and Communication Tech-
nology (ICT) sector itself has become a growing concern
in the climate change debate. In 2020, ICT was estimated
to consume about 15% of global electricity, with projections
suggesting this figure could rise to 20% by 2025 [17]], [18]].
The environmental impact of this consumption depends on
the carbon intensity of the electricity, i.e., the grams of CO»

Xutong Liu
x.liu-14Q@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Andy Zaidman
a.e.zaildman@tudelft.nl
Delft University of Technology

Delft, The Netherlands

emitted per kilowatt hour (kWh) of electricity produced, which
varies substantially depending on whether energy is generated
from renewable resources or fossil fuels [19]. Overall, ICT
accounts for roughly 2-4% of global greenhouse gas emis-
sions [20]. While this share may seem modest compared to
transportation (27%) and manufacturing (24%) [21]], there is
broad consensus that “urgent policy action and investment are
needed to limit increases in energy use driven by increasing
demand of ICT services” [22].

In software engineering research, initial evidence suggests
that CI build processes can consume non-negligible amounts
of energy [23]]. This is particularly relevant given that 40%
of the 34,000 most popular GitHub projects employ CI, with
adoption rising to 70% among the top 500 projects [15].
Zaidman’s study, however, was limited to 10 systems and a
single measurement per system [23]].

This paper extends these insights by conducting a large-
scale study of the energy requirements of building open-source
Java projects. We analyze 204 projects using an automated
pipeline that enables repeated measurements, allowing us to
characterize energy usage in a local CI environment. Our work
is guided by the following research questions:

RQ1. To what extent do the build and test phases of CI
contribute to energy consumption in open-source Java
projects?

CI automates multiple activities in the development process,
such as building and testing. While these activities are essential
for software quality, they likely differ in their potential energy
footprint. Understanding how much energy is spent in CI
pipelines, and which phases dominate consumption, is crucial
to assessing the sustainability of software development.

RQ2. How is energy consumption distributed across different
phases of the CI pipeline?

Build pipelines are not monolithic: compilation, depend-
ency resolution, and testing each impose different workloads.
Identifying which phases act as energy hotspots enables us to
move beyond aggregate numbers and pinpoint opportunities
for optimization. However, little is known about how these
costs manifest across a large and diverse set of open-source
projects.

RQ3. How does dependency caching affect the runtime and
energy usage of large Java projects?

mailto:robertarntzenius@gmail.com
mailto:x.liu-14@tudelft.nl
mailto:a.e.zaidman@tudelft.nl

Developers routinely use caching mechanisms in CI to
speed up builds. However, the energy-saving effects of cach-
ing—beyond mere reductions in build time—remain under-
explored. Investigating how caching impacts the runtime and
energy efficiency of CI pipelines can reveal whether widely
adopted practices also provide tangible environmental benefits.

Taken together, our findings provide the first large-scale
view of energy usage in Java-based CI, demonstrating not
only where energy is consumed, but also which practices can
mitigate it. By raising awareness, our study contributes to
ongoing calls for integrating sustainability considerations into
everyday software engineering practice [24]-[26].

This paper is structured as follows: in Section [lI| we present
fundamental background information. Section [I1I| explains our
experimental setup, while Section [[V] presents our results. In
Section |V| we discuss our results, and in Section |VI| we relate
our work to existing work. Section discusses threats to
validity. We present our conclusions in Section [VII]

II. BACKGROUND
A. CI Pipelines

CI has become a cornerstone of modern software develop-
ment, automating activities such as compilation, testing, and
static analysis to ensure continuous quality assurance [13]]-
[15]. A typical CI pipeline executes these tasks on dedicated
infrastructure, often cloud-based services such as GitHub
Actions, Jenkins, TravisCI, or CircleCI [15]]. Because pipelines
are triggered frequently—sometimes after every commit—CI
builds represent a recurring workload whose cumulative en-
ergy cost may be substantial [23]. Understanding this cost
is essential to assess the environmental footprint of software
engineering practices [24].

CI pipelines are not monolithic: they consist of dis-
tinct phases such as dependency resolution, compilation,
and testing. Each phase stresses hardware resources differ-
ently—network and I/O for dependency management, CPU
for compilation, and CPU/memory for testing—making them
natural candidates for detailed energy profiling [8]. Identifying
which phases dominate energy consumption provides insights
into where optimizations would be most effective.

Modern CI platforms further influence energy usage by of-
fering caching mechanisms. Dependency caches, for example,
allow build tools such as Maven and Gradle to reuse previously
downloaded libraries and build artifacts across runs [13].
While primarily intended to reduce build times, caching may
also reduce energy consumption by avoiding redundant I/O
and computation. The extent of these benefits, however, has not
been systematically quantified, making caching a key factor in
our investigation [27].

B. Measuring energy consumption in software projects

Measuring software energy consumption has often been
carried out using energy profilers, mainly due to their ease of
use and accessibility. These profilers typically estimate energy
consumption by monitoring the load of system components,
such as the CPU, and applying estimation models [28]], [29]].

However, such tools have been shown to vary significantly
in their estimates depending on the profiler used [30], which
questions their reliability.

In contrast, hardware power monitors measure the ac-
tual power drawn by the entire system with high precision,
providing more reliable measurements. While this introduces
additional setup overhead, it also enables capturing energy
consumption of components not directly visible to profilers,
such as storage devices or network activity. Therefore, the
choice between profilers and hardware monitors can be seen
as a trade-off between ease of use and measurement accuracy.

Moreover, related work has demonstrated that software
execution environments can also impact energy measurements.
For instance, Santos et al. [27] showed that running software
in Docker containers incurs a measurable energy penalty.
This highlights the importance of carefully selecting both the
measurement method and the execution environment when
designing empirical studies of software energy consumption.

III. EXPERIMENTAL SETUP
A. Energy measurement setup

The objective of our experiment is to obtain reliable and
repeatable measurements of CI energy consumption for a
representative set of open-source projects. To this end, we
designed a controlled measurement environment as follows.
Measurement procedure. Each CI build is measured five
times to account for variability, with enforced waiting periods
between runs as recommended in prior work [31]. Although
some studies use more repetitions (e.g., 30 runs) to further
reduce noise [32], [33]], this would be prohibitively expensive
in our setting, as our experimental campaign involves building
204 projects, each measured repeatedly. We therefore balance
statistical robustness and practical feasibility by using five
repetitions per build. We discuss consistency in Sections
and
Measurement device. We use an AVHzY CT-3 power mon-
itoﬂ which supports USB-C pass-through and USB connectiv-
ity to the host. The device reports a resolution of 0.0001V and
0.0001A with an accuracy of 0.1% + 2d, corresponding to an
error of approximately 0.1% per reading. This precision allows
us to capture the energy consumption of the entire system,
including CPU, storage, and network components.
Hardware platform. Measurements are conducted on a local
mini-PC (MinisForum EM68 equipped with an AMD
Ryzen 7 6800U CPU (8 cores, 16 threads) and 16 GB RAM.
The device has no internal battery, which allows direct power
intake measurement without interference from charging cycles.
Software environment. The experiments were conducted on
Ubuntu 22.04.4 LTS (Linux 5.15.0-119, x86_64) with minimal
background processes. Multiple Java versions (8, 11, 17,
and 21, temurin distributions) were installed via SDKMAN!,
together with Python2/3, and Docker (v26.1.1), to support

Uhttps://store.avhzy.com/index.php?route=product/product&product_id=51,
last visited 29/09/2025.

Zhttps://minisforumpc.eu/products/minisforum-em680-em780-refurbisched,
last visited 29/09/2025.

https://store.avhzy.com/index.php?route=product/product&product_id=51
https://minisforumpc.eu/products/minisforum-em680-em780-refurbisched

diverse project requirements. A dedicated low-privilege user
was used to control cached state and background activity.
Docker was only employed when explicitly required by a
project, as containerized execution has been shown to incur
a measurable energy overhead [27].

B. Repository List

Our dataset builds on the collection of locally buildable
Java projects by Khatami and Zaidman [34]], which originally
contained 202 Gradle and 457 Maven projects, each identified
by a specific buildable version. As the dataset was constructed
earlier, we revalidated all projects in our current environment.
For each repository, we selected the most recent commit that
successfully passed all GitHub workflows, ensuring up-to-
date and buildable versions. To identify a compatible Java
version, we sequentially attempted builds with Java 8, 11,
17, and 21 until success, avoiding reliance on potentially
outdated configuration metadata. Following this process, our
final dataset consists of 122 Gradle and 82 Maven projects.
Detailed information can be found in our replication kit [35].
This set represents a diverse and actively maintained sample
of Java systems with buildable CI configurations.

C. CI Setup

We simulate the CI pipeline using a bash script that
performs three steps: (i) cloning the repository, (ii) com-
piling the application, and (iii) running the test suite.
For Gradle, compilation and testing are executed via
./gradlew assemble and ./gradlew check; for
Maven, via . /mvnw compile and ./mvnw test.

To ensure a clean state for each experiment, we use a
cleanup script (cleanup. sh) that removes all cached files
and directories, including project-level caches, Docker con-
tainers, and common home-directory caches (e.g., .cache,
.gradle, and .m2). Only essential configuration files (e.g.,
.sdkman, . ssh, session-specific .profile, and shell con-
figuration files) are preserved, and Docker is explicitly reset.
This procedure ensures that all experiments start from an
identical environment.

In addition to this main setup, we designed a variant to
answer RQ3: How does dependency caching affect the runtime
and energy usage of large Java projects? For this variant, we
optionally preserved dependency caches in the home direct-
ory (i.e., /.gradle and ~/.m2) rather than delete these
directories before every build, allowing Gradle and Maven
to potentially reuse previously downloaded dependencies and
build artifacts. This allows us to investigate the impact of
dependency caching on runtime and energy consumption under
conditions where cache reuse is possible.

D. Measurement framework

Measuring energy consumption with a power monitor
device requires a system that controls this device and reads it
out. We use a Windows PC as the controlling device: it sends
commands to start the CI pipeline for a specific project on the
MinisForum device and reads the power monitor while waiting

[S5)
[

L]
1 = Mean: 2.63 Wh Il === Mean: 2.60 Wh
! 111 !
20 9| || === Median: 1.48 Wh 40 1} —— - Median: 1.72 Wh
! : I +1 Std: 5.75 Wh
2 | +1 Std: 5.74 Wh 2304
s g :
=3 01 El I
| o 410
2104y 2207 (f
I I
411N 41N
5 i 10 f
1] |_| I »
0 i T 0 I 2 o0 o0 o
0 5 10 15 0 10 20
Mean Energy (Wh) Mean Energy (Wh)

(a) Maven projects (b) Gradle projects

Figure 1: Total energy consumption distribution of Maven and
Gradle projects

for the process to finish. Throughout the experiment, constant
communication between the systems is maintained. Messages
and commands are exchanged sequentially, and the controller
always waits for explicit confirmation before proceeding to the
next step. The controller system can issue complex commands
to the MinisForum, such as generating a build script that
includes the relevant repository information. The MinisForum
responds to these commands via the shellstream output using
predefined code words. This communication structure also
clearly delineates the different phases of the experiment,
with specific messages indicating the start and end of each
phase. Together, these interactions ensure a well-synchronized
execution of the CI pipeline and accurate alignment between
experimental phases and energy measurements.

IV. RESULTS

A. RQI: How much energy is used by an open-source Java
project during the build and test phases of CI?

To answer RQI, we gathered and calculated the average

energy consumption for each project. Figures [Ta] and [Tb| show
the corresponding histograms, including mean and median
values, for Maven and Gradle projects. From these results,
we derive the following observations:
Skewed Distribution and High-Energy Outliers. Both
Maven and Gradle projects exhibit strongly right-skewed CI
energy distributions, where a small number of outliers sub-
stantially inflate the mean. For Maven projects, the mean
energy consumption is 2.63 Wh versus a median of 1.48 Wh;
for Gradle, the mean is 2.60 Wh and the median 1.72 Wh.
This gap highlights the impact of extreme cases, e.g., Apache
Iceberg consumes up to 21.47 Wh per build. As its CI config-
uration triggers at least fourteen build-and-test jobs per commit
across multiple Java versions and operating systems, its annual
CI energy consumption is estimated to exceed 442 kWh. Under
the average 2023 EU electricity mi this corresponds to
approximately 213 kg of CO,, exceeding the emissions of a
round-trip flight between Amsterdam and DublinE]

3According to Our World in Data; URL |https://ourworldindata.org/
electricity-mix

4According to Carbon Calculator; URL https://www.carbonfootprint.com/
calculator.aspx

https://ourworldindata.org/electricity-mix
https://ourworldindata.org/electricity-mix
https://www.carbonfootprint.com/calculator.aspx
https://www.carbonfootprint.com/calculator.aspx

Table I: Characteristics of High Energy-Consuming Java Projects in CI

Project Build Energy Key Characteristics Reasons for High CI Energy Consumption
Tool (Wh)

apache- Maven 12.10 Workflow orchestration platform with complex module ~ Multi-module builds and integration with heavy data

dolphinscheduler dependencies and integrations. systems increase build time and CI load.

spring-cloud-stream Maven 15.47 Event-driven microservice framework relying on mes- Integration tests involving message brokers and asyn-
saging middleware chronous behavior prolong CI cycles.

apache-iotdb Maven 15.56 Time-series database optimized for IoT workloads, with Resource-intensive end-to-end tests simulating time-
complex query and storage engines series ingestion and queries.

pravega-pravega Gradle 14.10 Stream storage supporting high-concurrency segmenta- CI includes multithreaded tests and failure-recovery
tion and fault tolerance simulations.

apache-groovy Gradle 17.51 Dynamic JVM language supporting DSLs, scripting, Extensive runtime behavior tests and compatibility
and metaprogramming checks with Java increase CI time.

apache-iceberg Gradle 21.47 Data lake table format supporting Spark, Flink, ACID Integration tests across multiple compute engines and

transactions, and schema evolution

heavy Docker setups raise energy use.

Minimal Impact of Build Tool Choice. The average energy
consumption between Maven and Gradle projects is nearly
identical (2.63 vs. 2.60 Wh), and their median values are
similarly close (1.48 vs. 1.72 Wh). As our sample did not favor
either tool, the comparable distributions suggest that the choice
of build tool alone does not significantly impact overall CI
energy consumption. Instead, the differences are likely rooted
in project-specific characteristics such as codebase size, test
complexity, or dependency configurations.

High Energy Projects Share Common Characteristics.
Analysis of the top three energy-consuming projects under
Maven and Gradle (Table |I) reveals common drivers of high
CI energy usage. These projects have complex, multi-module
architectures (e.g., workflow engines, databases, and data lake
systems) and require tight integration with external ecosystems
such as Zookeeper, Hadoop, or Flink. Their CI pipelines are
dominated by extensive integration and stress tests, including
high-concurrency workloads and multi-engine compatibility
checks, which result in long-running, CPU-intensive builds. As
these workflows rely on full integration tests and deployment
simulations rather than unit tests, they are less amenable to
standard optimization techniques such as caching or mocking.

(Answer to RQ1. On average, CI builds of open-source |
Java projects consume about 2.6 Wh per run, with Maven
and Gradle projects showing nearly identical energy profiles.
While most projects have modest energy demands, a small
number of Cl-intensive systems — driven by extensive
testing and ecosystem dependencies — consume much more
| and dominate the overall energy use.

B. RQ2:How is energy consumption distributed across differ-
ent phases of the CI pipeline?

Fig. 2] presents the distribution of the percentage of energy
consumption spent on the compilation phase during the entire
build process for Maven and Gradle projects. We observe that:
Compilation and Testing as Even Contributors: On average,
Maven projects spend 50.6% of their build energy on compil-
ation and Gradle projects 54.2%, leaving nearly the other half
to testing. This shows that compilation and testing contribute
in roughly equal measure to CI energy consumption, making
both phases important targets for optimization.

w w
[] == * Mean: 50.6% ==« Mean: 54.2%
8 =1 Median: 51.4% 10 = Median: 53.2%
> 6 - > 8 7 I
5} 1 5
8 8
= = 6
o o
247 2
= = 44
24
’V N
0 0

1 T T T
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

(a) Maven projects (b) Gradle projects

Figure 2: Histogram of percentage of energy spent on compil-
ing among whole build process for Maven and Gradle projects

Limited Impact of Build Tools: Maven and Gradle projects
show minimal differences in compilation energy consumption
ratios, indicating that build tool type is not a decisive factor.
Strong Dependence on Project Type: To further invest-
igate how compile energy varies across project types, we
categorized subject projects based on their function (details
in replication package [35]]). Fig [3| shows the distribution of
compile energy ratios.

Game-related projects exhibit the highest ratios (mean
85.4%), likely due to expensive compilation of graphics-
and engine-heavy codebases combined with limited automated
testing [36]. Communication/Social and Server/Infrastructure
projects show similar trends. In contrast, Data Processing/Ana-
Iytics and Development/Testing tools display much lower ra-
tios (mean 35.2%), as energy consumption is often dominated

1.0 1
S
7
ol
5 069 O
2 o
2 0.4
£ o
&)
0.2 1
T T T T T T
\ \ \
3 \c’f’i\oo de(\\o‘e 9 o & 00\.5 < ;é\(\%
W & o 2N o
o SO o o o A
¢ e " PR ’ Q\O?i 05\\0%0"’@ P&«b\‘!

e oe
Figure 3: Distribution of compile energy ratios across project
categories for Gradle projects

by test execution involving I/O, databases, or large-scale data
processing. Enterprise frameworks and utility libraries are
more heterogeneous, reflecting varied build sizes and testing
strategies. Overall, these results indicate that compilation
impact depends on project functionality and testing practices,
suggesting the need for project-specific energy optimization.

Answer to RQ2. On average, compilation and testing each
contribute about half of CI build energy, while dependency
resolution plays a minor role unless caching is ineffective.
Differences across project types outweigh those between
Maven and Gradle: game-like and infrastructure projects are
compilation-heavy, whereas data- and tool-oriented projects
are testing-dominated. Consequently, optimization strategies
should be tailored to project type.

C. RQ3: How does dependency caching affect the runtime and
energy usage of large Java projects?

To examine the impact of dependency caching on energy
consumption during CI process, we selected a set of relatively
high energy consuming Java projects from our study projects
for an extra experiment. The selection criterion was based on
the average energy consumption in the uncached setting, from
which we ranked the projects and chose the top nine Maven
and Gradle projects. This allows us to focus on projects where
dependency resolution might be costly and where caching
might provide most benefits.

Tables || and present a comparison between uncached
(UC) and cached (C) builds. For each project, we report the
average energy consumption in both settings, the absolute
difference (Diff), and the relative change (Ratio). The last row
shows the overall average across the selected projects.

For Maven-based projects (Table [[I), dependency cach-
ing consistently reduced energy consumption across all
nine projects. The relative improvement ranges from mod-
est reductions (e.g., —6.8% for smallrye-smallrye-
reactive-messaging) to substantial savings (e.g.,
—82.7% for shopizer-ecommerceshopizer). On aver-
age, Maven projects experienced a 30.9% decrease in energy
consumption, suggesting that caching provides benefits.

Gradle-based projects (Table displayed more vari-
ation. Some projects showed a dramatic decrease in en-
ergy consumption, such as apache-groovy (—97.7%)

Table II: Comparison of Uncached and Cached Performance
Across Maven Projects

Project ucC C Diff Ratio
apache-iotdb 156 12.1 350 -222%
spring-cloud-spring-cloud-stream 15.5 7.4 8.0 -51.9%
apache-dolphinscheduler 12.1 9.5 26 -21.6%
fabric8io-kubernetes-client 10.6 9.4 -2 -11.0%
apache-incubator-shenyu 9.8 73 26 -26.0%
smallrye-smallrye-reactive-messaging 8.4 7.8 -0.6 -6.8%
apache-dubbo 7.5 53 23 -299%
googlecloudplatform-spring-cloud-gcp 6.0 44 -1.6 -26.4%
shopizer-ecommerce-shopizer 59 1.0 -49 -82.7%
Average 10.2 7.1 -3.0 -30.9%

Table III: Comparison of Uncached and Cached Performance
Across Gradle Projects

Project ucC C Diff Ratio
apache-iceberg 215 212 0.2 -1.1%
apache-groovy 17.5 04 -17.1 -97.7%
pravega-pravega 14.1 13.5 -0.6 -4.5%
typetools-checker-framework 9.2 94 0.2 2.3%
broadinstitute-picard 9.1 9.3 0.2 2.6%
consensys-teku 9.1 79 -2 -132%
openrewrite-rewrite 7.7 1.4 -6.3 -82.0%
odpi-egeria 7.5 29 46 -61.9%
hibernate-hibernate-orm 6.9 0.5 -64 -92.8%
Average 114 74 -4.0 -38.7%

and hibernate-hibernate-orm (—92.8%). We at-
tribute these large savings to the fact that, without
caching, these projects spend substantial effort on re-
peatedly resolving and downloading dependencies. With
caching enabled, this overhead is almost eliminated. Two
projects (e.g., typetools—checker—framework and
broadinstitute-picard) exhibited small regressions
(+2.3% and +2.6%, respectively). Despite these anomalies,
the overall average for Gradle projects still reflected a sizable
energy reduction of 38.7%.

Answer to RQ3. Overall, enabling dependency caching
improves the runtime and energy efficiency of CI builds
in our study, although the magnitude of improvement varies
across projects. Caching remains a practical mechanism for
greener pipelines, but it comes with trade-offs, such as
additional storage or potential cache invalidation.

V. DISCUSSION

A. Consistency of energy consumption measurements in
Gradle projects

To validate the reliability of our experimental findings, we
analyze the consistency of the energy measurements. The
more consistent the results across independent runs, the greater
confidence we can place in the reliability of the data.

20.01
15.01 9
10.01 I8
5.0 Yy
0.0

O RN OO A0 O~ O RO O— O AT 00O—
R e O\ ool ot el ol el el ol S s asagasas sang aa s N an

3.0

2.0

LO# s atslannatvyantat Il-l . |l atavlavy,

THRRRNRANNNAANNANN 0000000 0O T T Te@o

1.0
0.751
0.5
HERN RN | *
S ine et R A AL R LL AL LA L L ETTTTTTTIRRTIN! Y
0.0 b
CPRAAIABAATTOCOTTOTOT T TS OO ——+——+———+———CD\DN

Figure 4: Total energy consumption from Gradle projects

ordered by energy intensity.

Distribution of Total Energy Consumed (Wh)

Fig. [presents the distribution of energy consumption
across Gradle projects, with each project executed five times
and ordered according to its mean energy consumption. For
brevity, project names are replaced by numerical identifiers,
and the full mapping between identifiers and project names is
available in our replication kit [35]]. As shown in Fig. [} the
spread of data points for most relatively small-scale projects
typically falls between < 0.1Wh and 0.5Wh, while for larger-
scale projects the spread generally ranges between < 0.1Wh
and 1Wh. A notable exception is the Apache Lucene project
(number 78 in Fig. @), whose spread extends from 1.2Wh
to 3.4Wh. Overall, the relatively narrow variation across
repeated runs demonstrates the consistency of the energy
measurements, suggesting that the results are reproducible and
not substantially influenced by random noise.

B. Consistency of energy consumption measurements in
Maven projects

Similar to Section this subsection analyzes the con-
sistency of energy consumption measurements for Maven
projects. Fig. [5] shows the distribution of energy consumption
across projects, each measured five times and ordered by
mean energy consumption. For brevity, projects are labeled
with numerical identifiers; the full mapping is provided in the
replication kit [35]].

Compared to Fig. il Maven projects exhibit substantially
lower measurement consistency. In addition to higher vari-
ability in energy consumption, we observed practical issues
such as long delays or failures during dependency downloads,
often due to timeouts. To assess whether dependency retrieval
contributes to these inconsistencies, we conducted an addi-
tional experiment on a subset of Maven projects whose pom
configurations allow caching to be disabled. The experiment
differed from the original setup only in that dependencies were
cached in advance by preserving the .m2 directory, thereby
eliminating download-related delays during subsequent builds.
The results are shown in Fig. [6]

20.0]
15.0{8
1001441

5.0 iy
0.0

—'NMQ‘W\DI\OOO\O—NMVW\OI\OOO\S
—

et e et

Sk
coocooo
-
—

3.0
2.0
1.0

ooll et il

-1.0

Distribution of Total Energy Consumed (Wh)

O\O——< ﬁ' l\ O\O-—'Nm W\Ol\ O\Ov—«\l
V]'!)V\\D\O\D\O\O\D@\D\O@l\l\l\l\l\l\l\l\l\l\wwwww

Figure 5: Total energy consumption from Maven projects
ordered by energy intensity.

Now
n o
L

Distribution of
Total Energy Consumed (Wh)

123456789 101112131415161718192021222324252627
Project Number (sorted by energy consumption)

Figure 6: Total energy consumption from a subset of Maven
projects with caching.

S o = = b
> W o W o
R R

After enabling caching, measurement inconsistencies in
Maven largely disappeared, with most projects yielding nearly
identical results, with Shopizer as a notable exception due
to an unexplained multi-minute compilation delay at near-
idle power levels; similar Maven freezes have been reported
previously E}

In summary, Maven projects exhibit lower measurement
consistency than Gradle projects, largely due to dependency
retrieval during CI builds. This highlights the critical role of
build system characteristics and dependency management in
energy consumption, and calls for additional caution when
interpreting Cl-related energy results for Java projects.

C. Yearly estimates

After establishing the average energy consumption per CI
run, we estimate yearly CI energy usage for the twenty projects
with the highest per-run energy costs. This estimation relies
on commit counts to the project’s HEAD in 2023 and the
assumption that each commit triggers a single build-and-test
cycle. The resulting yearly estimates are reported in Table

Table shows that yearly CI energy consumption varies
widely across projects and is driven by both per-run energy
cost and commit frequency. For example, Apache Iceberg
has the highest yearly estimate (31.61 kWh), due to its high
per-run cost (21.47 Wh) and 1472 commits. In contrast,
Hibernate ORM ranks third with 17.13 kWh, driven by fre-
quent commits (2483) despite a low per-run cost (6.90 Wh).
Similarly, OpenRewrite and Apache Dubbo accrue substantial
yearly consumption because of high development activity,
whereas Picard and Shopizer remain comparatively low due
to infrequent commits despite per-run costs near 9 Wh.

It is important to note that these estimates represent con-
servative lower bounds. We assume a single build per com-
mit, whereas in practice CI pipelines often trigger multiple
builds across different Java versions or operating systems [|13].
Even under this assumption, several projects already reach
tens of kilowatt-hours per year. For example, accounting for
multiple Spark CI runs increases the estimate for Apache
Iceberg to 442.54kWh annually, corresponding to about 26%
of the average yearly household electricity consumption per
person in the EU [19], or roughly 213kg of COy emissions

SMaven hangs for ~20 mins during the project
build (used to work fine), last accessed: August 30th,
2024. See: https://stackoverflow.com/questions/43792427/

maven- hangs-for-20-mins-during- the- project-build-used- to- work- fine

https://stackoverflow.com/questions/43792427/maven-hangs-for-20-mins-during-the-project-build-used-to-work-fine
https://stackoverflow.com/questions/43792427/maven-hangs-for-20-mins-during-the-project-build-used-to-work-fine

Table IV: Energy and commits of 20 projects with the highest
energy consumption during CI.

Project Avg. Energy Commits Yearly Energy
(Wh) (2023) (kWh)
Apache Iceberg 21.47 1472 31.61
Apache Groovy 17.51 671 11.75
Apache IoTDB 15.56 1742 27.11
Spring Cloud Stream 15.47 287 4.44
Pravega 14.10 103 145
Apache DolphinScheduler 12.10 571 6.91
Armeria 11.66 423 4.93
Fabric8 Kubernetes Client 10.57 723 7.64
Apache ShenYu 9.82 524 5.15
Typetools Checker Framework 9.20 887 8.16
Picard 9.09 38 0.35
Teku 9.07 754 6.84
SmallRye Reactive Messaging 8.42 616 5.19
OpenRewrite 7.66 1499 11.48
Apache Dubbo 7.53 1282 9.65
Egeria 7.48 1080 8.08
Hibernate ORM 6.90 2483 17.13
Enonic XP 6.18 281 1.74
Spring Cloud GCP 6.00 493 2.96
Shopizer 5.94 25 0.15

based on 2023 carbon intensity figures [37]. Moreover, our
measurements were performed on a MinisForum devicd?| with
a Thermal Design Power (TDP) of 28 W, i.e., the maximum
heat a processor can generate under normal workload, which
roughly reflects its power consumption. This is much lower
than typical server CPUs such as the Intel Xeon Gold 6338[]
(205 W), suggesting that real-world CI energy consumption is
likely higher. These findings highlight that the CI energy usage
should not be overlooked.

VI. RELATED WORK

Research on the energy consumption of software systems
has approached the problem from multiple perspectives, ran-
ging from the evolution of energy usage over time to the
impact of development practices and testing strategies.

Measurement and evolution of software energy con-
sumption focus on how energy usage changes as software
evolves and how it can be quantified in practice. Hagen
analyzed longitudinal energy trends using regression testing
as a proxy, focusing on relative rather than absolute values
due to hardware abstraction [38]]. Hindle proposed a general
methodology linking software changes and object-oriented
metrics to energy consumption, with case studies on large
systems and library evolution [29]]. At a lower level, Marini et
al. showed that compiled and semi-compiled languages tend
to be more energy-efficient than interpreted ones, although
algorithmic choices may dominate [39].

Energy impact of development and testing practices
examine how engineering processes affect energy usage. Perez
et al. showed that in DevOps pipelines, cumulative energy
consumption is mainly driven by the frequency of build execu-
tions [40]. Focusing on testing, Verdecchia et al. demonstrated
that energy-aware test prioritization can reduce energy con-
sumption without harming effectiveness [41], while Kifetew

Shttps://minisforumpc.eu/products/minisforum-em680-em780-refurbisched?
_pos=1&_psq=MinisForum+EM680&_ss=e&_v=1.0&variant=
51834741653870

"https://www.intel.com/content/www/us/en/products/sku/212285/
intel- xeon- gold-6338- processor-48m-cache-2-00- ghz/specifications.html

et al. identified test generation strategies and cyclomatic
complexity as key drivers of energy cost [42], [43]]. From
a socio-technical angle, Blokland et al. reported that limited
awareness and tooling hinder the adoption of energy as a first-
class development metric [44].

VII. THREATS TO VALIDITY

Internal validity. Although we employed a hardware power
monitor to avoid the limitations of profilers [28]], [[29]], meas-
urement noise and background processes could still affect
results. To mitigate this, each experiment was repeated five
times with waiting intervals, following established guidelines
for energy measurement [31]].

External validity. Our dataset consists of buildable Java
repositories selected from a curated benchmark [34], excluding
projects requiring extensive configuration. This may bias the
sample toward smaller or less complex systems, limiting
generalization to other languages, industrial-scale projects,
or evolving CI practices. Moreover, our exploratory study
simulates CI builds on a Linux mini PC, which enables
controlled and reproducible measurements but does not reflect
large-scale cloud infrastructure. As a result, reported values
should be interpreted as conservative approximations rather
than representative industrial figures. Nevertheless, this work
aims to raise awareness of Cl-related energy consumption, in
line with prior calls for improved energy insights [24]—[26].
Construct validity. Our experiments were conducted over
several months, during which temperature and network condi-
tions were not constant. Such environmental variation may
have influenced build durations and thus energy usage.
Moreover, our setup simulates CI on a local mini-PC with an
energy-efficient AMD Ryzen processor (TDP 28W), whereas
server-grade processors typically operate at much higher TDP
values (e.g., 85W [23])). The reported values should therefore
be interpreted as conservative lower bounds.

VIII. CONCLUSION

In this work, we conducted a large-scale empirical study
of the energy consumption of open-source Java projects in
CIL. Our analysis of Maven- and Gradle-based projects reveals
three key insights. CI energy use is highly skewed, with a few
integration-heavy projects dominating overall consumption
while the choice of build tool has minimal effect (RQ1).
Compilation is the primary energy hotspot, but its relative
weight depends on project domain, being highest in game-
related projects and lowest in data- and tool-oriented ones
(RQ2). Dependency caching consistently improves efficiency,
reducing energy by about 30% in Maven projects and in some
Gradle cases by over 90% (RQ3).

In our discussion, we extrapolate to yearly consumption
estimates, highlighting that some projects reach tens to hun-
dreds of kilowatt-hours, comparable to a non-trivial share
of household electricity usage. These findings demonstrate
that CI energy consumption is not negligible and should be
treated as a sustainability concern. Future work will expand
to other ecosystems, develop predictive models linking project

https://minisforumpc.eu/products/minisforum-em680-em780-refurbisched?_pos=1&_psq=MinisForum+EM680&_ss=e&_v=1.0&variant=51834741653870
https://minisforumpc.eu/products/minisforum-em680-em780-refurbisched?_pos=1&_psq=MinisForum+EM680&_ss=e&_v=1.0&variant=51834741653870
https://minisforumpc.eu/products/minisforum-em680-em780-refurbisched?_pos=1&_psq=MinisForum+EM680&_ss=e&_v=1.0&variant=51834741653870
https://www.intel.com/content/www/us/en/products/sku/212285/intel-xeon-gold-6338-processor-48m-cache-2-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/212285/intel-xeon-gold-6338-processor-48m-cache-2-00-ghz/specifications.html

features to energy profiles, and explore optimization strategies
for greener software pipelines.

DATA AVAILABILITY

The datasets and research artifacts related to this paper are
available at: https://zenodo.org/records/17242523,

[1]

[2]
[3]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

REFERENCES
R. Kazman and L. Pasquale, “Guest editors introduction: IEEE theme
issue on software engineering in society,” IEEE Software, vol. 37, no. 1,
pp. 7-9, 2020.
H. Pham, Software Reliability. Springer, 2000.
S. Matteson, 2018. [Online]. Avail-
able: https://www.techrepublic.com/article/

report-software-failure-caused- 1- 7- trillion-in- financial-losses-1n-2017/
A.J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software problems
in the news,” in International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). ACM, 2014, pp. 32-39.
M. Aniche, Effective Software Testing: A Developer’s Guide. Manning
Publications, 2022.

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 757-773, 2013.
G. Balogh, T. Gergely, A. Beszédes, and T. Gyiméthy, “Are my unit
tests in the right package?” in Int’l Working Conference on Source Code
Analysis and Manipulation (SCAM). 1EEE, 2016, pp. 137-146.

M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261-284, 2019.
A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in International Conference on Software
Engineering (ICSE). 1EEE, 2013, pp. 712-721.

M. Beller, A. Bacchelli, A. Zaidman, and E. Jiirgens, “Modern code
reviews in open-source projects: which problems do they fix?” in
Working Conf. on Mining Software Repositories (MSR). ACM, 2014,
pp. 202-211.

M. Beller, R. Bholanath, S. Mclntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Int’l Conference on Software Analysis, Evolution, and Reengineering
(SANER). 1EEE, 2016, pp. 470-481.

D. Han, C. Ragkhitwetsagul, J. Krinke, M. Paixao, and G. Rosa,
“Does code review really remove coding convention violations?” in
Int’l Working Conference on Source Code Analysis and Manipulation
(SCAM), 2020, pp. 43-53.

M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
an explorative analysis of Travis CI with GitHub,” in Int’l Conference
on Mining Software Repositories (MSR). 1EEE, 2017, pp. 356-367.
A. Rahman, A. Partho, D. Meder, and L. Williams, “Which factors influ-
ence practitioners’ usage of build automation tools?” in Int’l Workshop
on Rapid Continuous Software Engineering (RCoSE), 2017, pp. 20-26.
M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE). ACM, 2016, pp. 426-437.

O. Elazhary, C. M. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, and
M. D. Storey, “Uncovering the benefits and challenges of continuous
integration practices,” IEEE Trans. Software Eng., vol. 48, no. 7, pp.
2570-2583, 2022.

E. Gelenbe and Y. Caseau, “The impact of information technology on
energy consumption and carbon emissions,” Ubiquity, pp. 1-15, 2015.
A. Fonseca, R. Kazman, and P. Lago, “A manifesto for energy-aware
software,” IEEE Software, vol. 36, no. 6, pp. 79-82, 2019.

N. Scarlat, M. Prussi, and M. Padella, “Quantification of the carbon
intensity of electricity produced and used in europe,” Applied Energy,
vol. 305, p. 117901, 2022.

E. Gelenbe, “Electricity consumption by ict: Facts, trends, and meas-
urements,” Ubiquity, no. 8, pp. 1-15, 2023.

K. Kirkpatrick, “The carbon footprint of artificial intelligence,” Commu-
nications of the ACM, vol. 66, no. 8, pp. 17-19, 2023.

C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and
A. Friday, “The real climate and transformative impact of ICT: A critique
of estimates, trends, and regulations,” Patterns, vol. 2, no. 9, 2021.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Zaidman, “An inconvenient truth in software engineering? The
environmental impact of testing open source Java projects,” in Int’l Conf.
on Automation of Software Test (AST). ACM, 2024, pp. 214-218.

C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?”’ [EEE Software,
vol. 33, no. 3, pp. 83-89, 2016.

S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
training software energy models with automatic test generation,” Em-
pirical Software Engineering, vol. 24, no. 4, p. 1649-1692, July 2018.
R. Verdecchia, F. Ricchiuti, A. Hankel, P. Lago, and G. Procaccianti,
“Green ICT research and challenges,” in International Conference on
Environmental Informatics (Envirolnfo). Springer, 2016, pp. 37-48.
E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does docker
affect energy consumption? evaluating workloads in and out of docker
containers,” J. Syst. Softw., vol. 146, pp. 14-25, 2018.

L. Cruz, “Tools to measure software energy consumption from your
computer,” July 2021, online; last accessed: July 3 2024. [Online].
Available: https://luiscruz.github.io/2021/07/20/measuring-energy.html
A. Hindle, “Green mining: A methodology of relating software change
to power consumption,” in Working Conference on Mining Software
Repositories (MSR). 1EEE, 2012, pp. 78-87.

E. Jagroep, J. M. E. M. van der Werf, S. Jansen, M. Ferreira, and
J. Visser, “Profiling energy profilers,” in Proceedings ACM Symposium
on Applied Computing, ser. SAC *15. ACM, 2015, p. 2198-2203.

L. Cruz, “Green software engineering done right: a scientific
guide to set up energy efficiency experiments,” October 2021,
online; last accessed: August 31 2024. [Online]. Available: https:
/Muiscruz.github.10/2021/10/10/scientific- guide.html

L. Cruz and R. Abreu, “Performance-based guidelines for energy ef-
ficient mobile applications,” in Int’l Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2017, pp. 46-57.

E. Barba Roque, L. Cruz, and T. Durieux, “Unveiling the energy
vampires: A methodology for debugging software energy consumption,”
in Int’ Conf on Software Engineering (ICSE). 1EEE, 2025, pp. 655-655.
A. Khatami and A. Zaidman, “State-of-the-practice in quality assurance
in java-based open source software development,” Software: Practice
and Experience, vol. 54, no. 8, pp. 1408-1446, 2024.

Anonymous, “Replication kit for “on the energy consumption of
continuous integration in open-source java projects”,” Oct. 2025.
[Online]. Available: https://doi.org/10.5281/zenodo.17242523

M. Viggiato, D. Paas, and C.-P. Bezemer, “Prioritizing natural language
test cases based on highly-used game features,” in Proc. Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2023, p. 1961-1972.

H. Ritchie and P. Rosado, “Electricity mix,” Our World in
Data, 2020, last revised in January 2024. [Online]. Available:
https://ourworldindata.org/electricity-mix:

K. Hagen, “E-compare: Automated energy regression testing for soft-
ware applications,” Master’s thesis, TU Delft, 2024.

N. Marini, L. Pampaloni, F. Di Martino, R. Verdecchia, and E. Vicario,
“Green Al: Which programming language consumes the most?” in Int’l
Workshop Green and Sustainable Software (GREENS), 2025, pp. 12-19.
Q. Perez, R. Lefeuvre, T. Degueule, O. Barais, and B. Combemale,
“Software frugality in an accelerating world: the case of continuous
integration,” 2024. [Online]. Available: https://arxiv.org/abs/2410.15816
R. Verdecchia, E. Cruciani, A. Bertolino, and B. Miranda, “Energy-
aware software testing,” in Int’l Conf. on Software Engineering — New
Ideas and Emerging Results (ICSE-NIER). 1EEE, 2025, pp. 101-105.
F. Kifetew, D. Prandi, and A. Susi, “On the energy consumption of test
generation,” in 2025 IEEE Conference on Software Testing, Verification
and Validation (ICST). 1EEE, 2025, pp. 360-370.

G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans.
Software Eng., vol. 39, no. 2, pp. 276-291, 2013.

E. Blokland, L. Cruz, and A. van Deursen, “Edata: Energy debugging
and testing for android,” in Int’l Conf on Mobile Software Engineering
and Systems (MOBILESoft). 1EEE, 2025, pp. 94-104.

https://zenodo.org/records/17242523
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://luiscruz.github.io/2021/07/20/measuring-energy.html
https://luiscruz.github.io/2021/10/10/scientific-guide.html
https://luiscruz.github.io/2021/10/10/scientific-guide.html
https://doi.org/10.5281/zenodo.17242523
https://ourworldindata.org/electricity-mix
https://arxiv.org/abs/2410.15816

	Introduction
	Background
	CI Pipelines
	Measuring energy consumption in software projects

	Experimental setup
	Energy measurement setup
	Repository List
	CI Setup
	Measurement framework

	Results
	RQ1: How much energy is used by an open-source Java project during the build and test phases of CI?
	RQ2:How is energy consumption distributed across different phases of the CI pipeline?
	RQ3: How does dependency caching affect the runtime and energy usage of large Java projects?

	Discussion
	Consistency of energy consumption measurements in Gradle projects
	Consistency of energy consumption measurements in Maven projects
	Yearly estimates

	Related Work
	Threats to Validity
	Conclusion
	References

