
Studying Fine-Grained Co-Evolution Patterns
of Production and Test Code

Cosmin Marsavina
Delft University of Technology

The Netherlands
c.marsavina@student.tudelft.nl

Daniele Romano
Delft University of Technology

The Netherlands
daniele.romano@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Abstract—Numerous software development practices suggest
updating the test code whenever the production code is changed.
However, previous studies have shown that co-evolving test and
production code is generally a difficult task that needs to be
thoroughly investigated.

In this paper we perform a study that, following a mixed
methods approach, investigates fine-grained co-evolution patterns
of production and test code. First, we mine fine-grained changes
from the evolution of 5 open-source systems. Then, we use an
association rule mining algorithm to generate the co-evolution
patterns. Finally, we interpret the obtained patterns by perform-
ing a qualitative analysis.

The results show 6 co-evolution patterns and provide insights
into their appearance along the history of the analyzed software
systems. Besides providing a better understanding of how test
code evolves, these findings also help identify gaps in the test
code thereby assisting both researchers and developers.

I. INTRODUCTION

Lehman has taught us that a software system must evolve, or
it becomes progressively less useful [1]. During this evolution,
the system’s source code continuously changes to cope with
new requirements or possible issues that might arise. However,
software is multi-dimensional, because in order to develop
high-quality systems other artifacts need to be taken into
account, such as requirements, tests and documentation [2].
Therefore, these artifacts should co-evolve gracefully along-
side the production code that is being written.

One of the artifacts that is of particular importance in the
software development process is the developer test, which was
defined by [3] as “a codified unit or integration test written
by developers”. Its importance resides in the fact that it can
provide immediate feedback to the developers [4] and identify
bugs. Moreover, when a software system evolves (e.g., through
refactoring), developers should run the persistent tests to verify
whether the external behavior is preserved [5]. In this context,
Moonen et al. have shown that even though refactorings are
behavior preserving, they can invalidate tests [6]. In the same
vein, Elbaum et al. have concluded that even minor changes in
the production code can significantly affect test coverage [7].

Based on these findings, there clearly is a need for tests
to evolve alongside the production code they are covering in
order to obtain high-quality systems. However, creating and
maintaining tests are expensive tasks. Zaidman et al. have
shown that developing test code that co-evolves gracefully

with the production classes it addresses is generally a difficult
endeavour [8].

In this paper we try to identify fine-grained co-evolution
patterns between production and test code. These patterns
consist of changes that occur in the test code when changes
are made to the production code. It is also likely that some
co-evolution patterns appear more frequently in particular
software systems. Hence, besides identifying these patterns,
we aim at correlating them with the testing effort spent for
each of the analyzed systems. This leads us to our research
questions:

RQ1 What kind of fine-grained co-evolution patterns between
production and test code can be identified?

RQ2 Does the testing effort have an impact on the observed
co-evolution patterns?

We answer the research questions by following a mixed
methods approach [9] that combines quantitative and qual-
itative analyses. First, we use an association rule mining
algorithm to identify co-evolution patterns. Then, we refine
these quantitative results through a qualitative analysis aimed
at manually interpreting the patterns that have been obtained.
The results show: 1) 6 co-evolution patterns mined for 5 case
study systems, 2) how they occur, and 3) whether the testing
effort has an impact on them.

From a research perspective, getting insight into these co-
evolution patterns is particularly useful to check whether
specific changes in the production code should also have
consequences in the test code of a software system. This might
lead to better tool support, thereby assisting developers in
designing higher quality test code.

The main contributions of this paper are as follows:
1) a method to collect and relate fine-grained source code

changes that co-occur in the production and the test code
of a software system;

2) an empirical study to investigate the co-evolution between
production and test code for 5 open-source systems; the
study comprises a quantitative analysis during which a
number of co-evolution patterns have been uncovered
and a more in-depth qualitative analysis with anecdotal
evidence on each of the patterns.

The remainder of the paper is structured as follows. Sec-
tion II presents the approach adopted to collect the data for our

analyses, while Section III illustrates the experimental setup.
Results are described in Sections IV and V that present respec-
tively the quantitative and qualitative analyses. In Section VI
we revisit the research questions and discuss threats to validity.
Related work is presented in Section VII and we conclude the
paper and mention future work in Section VIII.

II. APPROACH

As discussed in the previous section, there is a need within
the scientific community to examine and understand the co-
evolution between the production and the test code of a
software project. The main goal of this study is to identify
a series of patterns consisting of changes that occur in the test
code when the production code evolves. We expect these co-
evolution patterns to vary from one project to another, because
of the different working styles of the development teams or
due to different priorities with regards to testing activities.
Therefore, while performing our analyses, we also assess
the testing effort put into each of the projects under study.
Furthermore, besides uncovering the patterns, we also inspect
the source code to find and understand concrete examples that
help in interpreting the obtained co-evolution patterns.

In the following subsections we describe: (1) the approach
adopted to extract the fine-grained changes and to link pro-
duction and test code; (2) its implementation.

A. Change Extraction

In order to collect relevant data for studying the co-evolution
of production and test code, we first obtain all the versions of
a project. We mine Git as this facilitates the access to the
repositories of a large variety of software projects. Moreover,
it provides functionalities to compute high-level differences
(e.g., addition and deletion of classes) between one version of
a project and another.

However, these differences are not detailed enough to
allow for an in-depth analysis of the co-evolution between
production and test code. For this reason we extract fine-
grained source code changes between different versions using
ChangeDistiller [10]. Table I details the change categories
along with the specific changes that ChangeDistiller can detect
which are related to the source code.

We have extracted these source code changes both from
the production and from the test code. In order to make
the dataset as comprehensive as possible, we have included
additional information such as: the class in which the change
occurred, the version when the change was made along with its
timestamp, and the exact source code entity that was modified.

B. Linking production and test code

Once we have the fine-grained changes, we link the test
cases to the production code they cover. We prefer a dynamic
solution over a static analysis approach because it is more
precise as pointed out by Van Rompaey and Demeyer [11].
The key idea behind our approach is to run each test case
separately, thereby identifying all the entities from the produc-
tion code addressed by the test, similarly to the approach used

Change category Change

ADDED CLASS ADDITIONAL CLASS
REMOVED CLASS REMOVED CLASS
CLASS DECLARATION CLASS RENAMING,

PARENT CLASS CHANGE,
PARENT CLASS DELETE,
PARENT CLASS INSERT,
PARENT INTERFACE CHANGE,
PARENT INTERFACE DELETE,
PARENT INTERFACE INSERT,
REMOVED FUNCTIONALITY,
ADDITIONAL FUNCTIONALITY

METHOD DECLARATION RETURN TYPE CHANGE,
RETURN TYPE DELETE,
RETURN TYPE INSERT,
METHOD RENAMING,
PARAMETER DELETE,
PARAMETER INSERT,
PARAMETER ORDERING CHANGE,
PARAMETER RENAMING,
PARAMETER TYPE CHANGE

ATTRIBUTE DECLARATION ATTRIBUTE RENAMING,
ATTRIBUTE TYPE CHANGE,
ADDING ATTRIBUTE MODIFIABILITY,
REMOVING ATTRIBUTE MODIFIABILITY,
ADDITIONAL OBJECT STATE,
REMOVED OBJECT STATE

BODY STATEMENTS STATEMENT DELETE,
STATEMENT INSERT,
STATEMENT ORDERING CHANGE,
STATEMENT PARENT CHANGE,
STATEMENT UPDATE

BODY CONDITIONS CONDITION EXPRESSION CHANGE,
ALTERNATIVE PART DELETE,
ALTERNATIVE PART INSERT

TABLE I: Categories of changes retrieved with ChangeDis-
tiller.
in [12]. To retrieve the covered entities (e.g., Java classes) we
process test coverage information gathered with Cobertura1.

C. Implementation

To implement our approach we use a process consisting of
two steps that is described in Figure 1.

As a first step (see Figure 1(a)), we use the jGit API2

to retrieve the software project’s source code from the cor-
responding Git repository. Then, we compute the differences
between two consecutive versions of the system using the same
API. Based on the types of the changes retrieved between
versions, one of the following two approaches is selected:

1) When entire Java classes are added or deleted, the names
of the fields and the methods declared in those classes
are recorded.

2) Otherwise, ChangeDistiller is utilized to extract the fine-
grained changes.

A specific procedure is applied to each project version for
which the test code has been modified (shown in Figure 1(b)).
We first compile the production code using Maven in order to
ensure that it does not contain any errors. If the compilation
is successful, the test cases of that version are run separately.
For each test case, we let Cobertura generate a coverage report
file. This file is then parsed with the jDom API3 to identify the
methods from the production code covered by the respective
test method. We record these results which are used afterwards

1http://cobertura.github.io/cobertura/ — last visited June 13th, 2014.
2http://eclipse.org/jgit/ — last visited June 19th, 2014
3http://www.jdom.org/ — Last visited June 19th, 2014.

Project Git
Repository

Type of
Change

Change
Recorder

File
Retriever

diff
Extract fine-

grained changes

Project Version w.
Additional Tests

Built
Project coverage.xml coverage.xml coverage.xml

for each
test method

generate
coverage report

Production / test
correlations build with

Maven
process

XML

(a)

(b)

Fig. 1: Overview of the data collection process.

to determine the links between production classes and test
cases.

III. EXPERIMENTAL SETUP

This section describes how the empirical study has been
conducted, including: project selection, the initial analysis that
was performed to determine testing effort, and the process
through which the quantitative and qualitative studies have
been carried out.

A. Project Selection

We have chosen 5 projects on which we conduct our
empirical study. We rely on the criteria set by Pinto et al.
in [13] to select the projects, namely: (1) a large number
of versions, (2) considerable size (in terms of production
classes and methods), (3) an extensive JUnit test suite, and
(4) be in active maintenance. For each of the systems, all
their versions have been included in the analysis. An overview
of the main characteristics of the 5 projects is presented in
Table II; it contains the total number of versions studied and
shows metrics collected for the first version of a project and
the last version considered.

B. Preliminary Analysis

As a preliminary analysis, we have studied the 5 systems
in order to understand how well they are tested. Four perspec-
tives have been considered: (1) changes that occurred in the
production / test code, (2) branch coverage obtained during
the lifespan of the project, (3) number of versions that did
not compile because of test failures, and (4) ratio between the
amount of test code and production code. An overview of this
preliminary analysis is shown in Table II.

The reported branch coverage has been recorded for the last
version that we have considered (column Branch Coverage)
and it was determined with Cobertura. We have also col-
lected coverage information for each release of a project and
observed that the overall branch coverage remains relatively
stable.

The table also includes the number of versions that raised
problems during compilation because of test failures (column
Number of Non-Compiling Versions Test Failures). We have
relied on Maven to compile the projects and recorded all
the situations in which not every test from a version passed.

Finally, we have calculated the ratio between the lines of
test code and production code lines (globally, for all versions
combined) as a measurement for quantifying the volume of
testing that has been done for a system (column Σ∀viLOCtest

/ Σ∀viLOCprod).
Subsequently, we have analyzed the 5 software projects to

determine which types of changes occur in their production
and test code. Table III contains an overview of these changes
grouped into 10 categories corresponding to the 10 major types
of changes identified by ChangeDistiller. For our analyses we
only consider the first 7 categories of changes, as the last 3
are not related to the source code of the system. The total
number of production and test code changes per software
project has been calculated. In order to get an indication of
testing “effort”, we have also determined the percentage of
test code changes from to the total number of changes. This
is depicted in the final row of Table III.

The following thresholds have been selected: 1) percentage
of test changes - over 33%; 2) branch coverage - over 0.67;
3) percentage of non-building versions - less than 2.5%; 4)
test code lines - over 0.25. A system is considered properly
tested if at least 3 of the thresholds are met. Based on the
above information which can be considered an indicator of
testing effort, we classify the projects as extensively tested
(CommonsLang), relatively well tested (CommonsMath, Gson)
and rather poorly tested (PMD, JFreeChart).

C. Analyses performed

We have performed our study following a mixed methods
approach [9] that combines quantitative and qualitative analy-
ses as described in the following subsections.

1) Quantitative Analysis: We first identify frequently oc-
curring fine-grained co-evolution patterns between production
and test code. The spmf4 tool is used to generate a series of as-
sociation rules. We have configured the Apriori algorithm with
support and confidence values of 50% and 60%, respectively.

The following steps have been applied to obtain the rules.
For each version of a system, all the changes that occur in
the production code and in the associated tests are recorded
per production class using a bucket list representation. Instead
of the actual values, we use discrete values to quantify the

4http://www.philippe-fournier-viger.com/spmf/ — Last visited June 19th,
2014

Project First version Final version considered Number of Non- Σ∀vi
LOCtest

Prod. # Test Release # # Prod. # Test Release Branch Building Versions /
Versions Classes Methods Methods Classes Methods Methods Coverage due to Test Failures Σ∀vi

LOCprod

PMD 7165 316 1846 340 11/2002 822 4418 1340 12/2013 0.51418 369 0.130
CommonsLang 3856 31 373 318 12/2002 177 2442 2851 02/2014 0.90678 54 0.442
CommonsMath 5174 83 758 501 12/2004 985 6548 6201 02/2014 0.80254 131 0.366

JFreeChart 519 423 5790 1297 11/2006 701 7776 2403 03/2014 0.49274 17 0.219
Gson 322 73 414 131 05/2008 142 719 1010 08/2012 0.66233 12 0.287

TABLE II: Overview of selected projects.

ChangeDistiller category PMD CommonsLang CommonsMath JFreeChart Gson
Prod Test Prod Test Prod Test Prod Test Prod Test

ADDED CLASS 4690 599 679 410 3074 1172 929 1128 130 124
REMOVED CLASS 4269 733 306 287 905 739 1154 185 84 35

CLASS DECLARATION 8742 1207 2396 2179 7379 4007 1777 847 542 460
METHOD DECLARATION 3038 169 1146 376 2730 709 641 399 286 64

ATTRIBUTE DECLARATION 7558 307 795 198 2787 746 890 33 330 27
BODY STATEMENTS 107831 8179 12933 15924 44098 28260 16266 17705 4947 1134
BODY CONDITIONS 16507 58 1466 85 2365 284 774 1 500 9

COMMENTS 2285 99 709 527 2762 1015 406 224 70 10
DOCUMENTATION 2363 88 3534 513 9145 468 449 401 212 15

OTHERS 1621 136 246 101 1051 236 14 394 114 97

TOTAL 159628 10851 24495 20315 76996 36936 23485 21132 7239 1961

TotalTest/(TotalTest+TotalProd) 6.37% 45.33% 41.10% 47.36% 21.32%

TABLE III: Total number of changes in the production / test code per ChangeDistiller change category.

number of changes that occur from each of the categories. We
did this in order to facilitate the generation of the association
rules, as it would not be possible to obtain rules with the
specified support and confidence if numerical values were
used. In the cases of class additions and removals, only YES
and NO values have been utilized, as these kinds of changes
can either happen or not. For the other types of changes, one of
the following 5 values is assigned: NONE, LOW, MED LOW,
MED HIGH or HIGH. In order to assign these values, the
set containing the number of occurrences of the respective
change in each class in which it was made (for all the versions
of a system) has been constructed; extreme values have been
filtered out, to prevent the results from being skewed. The last
4 discrete values (LOW, MED LOW, MED HIGH and HIGH)
correspond to the (0%-25%], (25%-50%], (50%-75%], [75%-
100%] intervals of values from this set. After we put the data in
the appropriate format (version — production class — changes
in class / associated test classes = value), the association rules
are computed.

2) Qualitative Analysis: To refine the results from the
quantitative analysis, we perform a qualitative study in order to
better understand some of the co-evolution patterns that have
been obtained during the previous analysis. We concentrate
on the following 5 categories of production code changes:
added class, removed class, class declaration change, attribute
declaration change, and body condition change. We disregard
the other 2 categories because (1) a large variety of fine-
grained changes are part of the METHOD DECLARATION
category, therefore it was difficult to find a substantial number
of examples for each of them and (2) BODY STATEMENT
changes occur in almost every commit, thus making it hard to
separate them from the other types of changes.

We carry out this qualitative analysis by studying concrete
examples of test code changes that occur as a result of a

particular change in the production code. From each category
of production changes (see Table I), we investigate every type
of change in depth. For each occurrence of the change in a
production class, all the changes it has triggered in the test
code are recorded and analyzed. In order to ensure that there
is indeed a connection between the production and the test
code changes, the links between the respective production
class and the corresponding test cases are inspected, along with
the actual source code and the commit message of the project
version under consideration. After gathering these examples,
we make a series of observations based on them regarding (1)
how co-evolution happens together with (2) an interpretation
of the co-evolution patterns identified during the quantitative
analysis.

IV. QUANTITATIVE ANALYSIS

A number of association rules have been generated for each
category of production code changes. Table IV provides an
overview of these association rules for each of the 5 systems
along with the support and confidence values obtained. The
second column (i.e., Association Rule) contains the retrieved
association rule; however, the value of the consequent is miss-
ing in this column. This value can be found in the subsequent
columns that are specific to each project under analysis. These
columns contain the support and the confidence of the rule
together with the value of the consequent (e.g, YES, NO,
SOMETHING). For instance, for rule 1, the column PMD
shows that no test classes are added (i.e., NO) when new
production classes are created; the rule has a support value
of 4161 and a confidence value of 0.906 for the respective
project. Therefore, the complete set of association rules for a
project is obtained by concatenating the second column with
the specific column for that project.

In some cases an association rule has not been generated

between a production and a test code change. This is caused by
the fact that the changes in the production code are dispersed
over a number of intervals, i.e. (LOW, MED-LOW, MED-
HIGH, or HIGH), see for example the antecedents of rules
7 through 9 for CommonsLang. Because of this dispersion the
threshold value for confidence might not be met, which in turn
means that an association rule is not generated. However, if
there was no link between the production and the test code
change, we would expect that an association rule containing
NONE as the value of the consequent would have been
generated, thus indicating the lack of connection. The fact that
this association rule with NONE is not produced suggests that
there might still be a (weak) link, thing that we marked with
the keyword SOMETHING in the consequent.

Table IV also has some empty cells. This happens for
some of the rules that have MED LOW as the value for the
production change. It is caused by the fact that the respective
production changes generally occur only once for a class
in a commit, therefore the intervals corresponding to (0%-
25%] (LOW) and (25%-50%] (MED LOW) of the values are
identical (contain only 1 values).

As an example of mined association rules, consider the
following two rules that address the addition of production
classes for the CommonsLang project:
Association rule 1.1

ADDED CLASS PRODUCTION=YES → ADDED CLASS TEST=YES

support: 412, confidence: 0.643

This first association rule indicates that for CommonsLang,
a project that has been categorized as extensively tested, the
creation of a new production class leads to the addition of a
corresponding test class in around 64% of the cases.
Association rule 1.2

ADDED CLASS PRODUCTION=YES → CLASS DECLARATION TEST=NONE

support: 557, confidence: 0.871

The second rule reveals that sometimes when a production
class is created additional test cases are developed in the
already existing test classes in order to cover it. Even though
the value of CLASS DECLARATION TEST is NONE, the
confidence of this rule indicates that in roughly 13% of the
cases a different value than NONE was registered; therefore,
in these situations at least one test case is created when the
new production class is added.

A. Co-Evolution Patterns

By inspecting the association rules from Table IV we
have noticed a number of interesting differences between the
systems under analysis. We have identified 6 co-evolution
patterns (shown in Table V) that we distilled from Table IV
by generalizing what has been observed for the 5 projects.
These 6 co-evolution patterns are further subdivided into two
categories: positive, marked by the a suffix, and negative as
exemplified by the b suffix. The positive patterns reflect co-
evolution, while the negative ones point towards a lack of
co-evolution.

We will now discuss these co-evolution patterns per project.

1) CommonsLang: In the case of CommonsLang, an exten-
sively tested project, a series of co-evolution patterns (we are
referring to the numbering of Table V) have been observed,
namely:
Pattern 1a The generated association rule shows that corre-

sponding test classes are indeed created when new produc-
tion classes are developed (confer rule 1 in Table IV, CONF
= 0.643), suggesting that the developers actually test the
production code they write.

Pattern 2a Another rule has uncovered that in most of the
cases test classes are removed (rule 2, CONF = 0.998) when
the production classes they cover are deleted, indicating that
the programmers are careful not to leave non-compiling test
classes in the system.

Pattern 3a The rules highlight that when a certain number
of methods are added / removed from production classes
corresponding test cases are also created / deleted (rules 4–
6).

Patterns 4a and 5a They also show that test cases are up-
dated accordingly when attribute or method related changes
are made in the production code (rules 7-14).

Pattern 6a Finally, the association rules uncovered that test
cases are created / removed when conditional statements are
changed in the production classes (rules 16-18).
The patterns presented above indicate that thorough testing

has been done for CommonsLang, which is in concordance
with the initial observations that we made regarding this
system.

2) CommonsMath: In general, the association rules gen-
erated for CommonsMath resemble the ones obtained for
CommonsLang; however, from the confidence values retrieved,
it can be observed that less emphasis has been put on testing
for this project.
Patterns 1a and 3a For example, when new production

classes / methods are developed corresponding test classes
/ cases are created, but their number is slightly lower than
in the CommonsLang case (rules 1 and 4–6 respectively)

Pattern 2a Associated test classes are removed when produc-
tion classes are deleted (rule 2, CONF=0.974).

Patterns 4a and 5a Test cases are altered accordingly in
situations when the attributes / methods of a production class
are modified (rules 9–10 and 13–14).

Pattern 6a Tests are written / dropped when conditions are
changed in the production code (rules 15–18).
Even though CommonsMath is not tested in such detail as

CommonsLang, the project can still be considered adequately
tested as only positive co-evolution patterns occur.

3) PMD: Most of the association rules that were generated
for PMD are negative (i.e., have NONE as the value for the
test related changes).
Pattern 1b We see strong indication that for PMD test classes

are not developed when production classes are created (rule
1, CONF=0.906).

Pattern 4b and 5b In the cases when attributes or methods
from the production classes are modified tests are rarely

Id Association Rule PMD CommonsLang CommonsMath JFreeChart Gson

1 ADDED CLASS PRODUCTION=YES → ADDED CLASS TEST NO YES SOMETHING NO YES
4161/0.906 412/0.643 -/- 832/0.805 85/0.772

2 REMOVED CLASS PRODUCTION=YES → REMOVED CLASS TEST YES YES YES YES YES
4926/0.998 569/0.998 1554/0.974 1331/0.954 89/0.936

3 CLASS DECLARATION PRODUCTION=LOW → CLASS DECLARATION TEST NONE NONE NONE NONE NONE
1767/0.998 244/0.953 1129/0.981 360/0.954 159/0.975

4 CLASS DECLARATION PRODUCTION=MED LOW → CLASS DECLARATION TEST - LOW SOMETHING - -
132/0.8 -/-

5 CLASS DECLARATION PRODUCTION=MED HIGH → CLASS DECLARATION TEST NONE SOMETHING SOMETHING NONE LOW
855/0.808 -/- -/- 174/0.754 43/0.651

6 CLASS DECLARATION PRODUCTION=HIGH → CLASS DECLARATION TEST NONE HIGH SOMETHING NONE SOMETHING
503/0.797 85/0.658 -/- 102/0.743 -/-

7 METHOD DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST NONE SOMETHING NONE NONE NONE
634/0.725 -/- 331/0.614 134/0.814 60/0.833

8 METHOD DECLARATION PRODUCTION=MED LOW → BODY STATEMENTS TEST - SOMETHING - - -
-/-

9 METHOD DECLARATION PRODUCTION=MED HIGH → BODY STATEMENTS TEST NONE SOMETHING SOMETHING NONE SOMETHING
309/0.887 -/- -/- 65/0.893 -/-

10 METHOD DECLARATION PRODUCTION=HIGH → BODY STATEMENTS TEST NONE MED-HIGH SOMETHING NONE SOMETHING
234/0.823 37/0.616 -/- 49/0.871 -/-

11 ATTRIBUTE DECLARATION=LOW → BODY STATEMENTS TEST NONE SOMETHING NONE NONE NONE
1244/0.737 -/- 558/0.722 148/0.833 82/0.828

12 ATTRIBUTE DECLARATION=MED LOW → BODY STATEMENTS TEST - SOMETHING - - -
-/-

13 ATTRIBUTE DECLARATION=MED HIGH → BODY STATEMENTS TEST NONE SOMETHING SOMETHING NONE SOMETHING
528/0.907 -/- -/- 62/0.853 -/-

14 ATTRIBUTE DECLARATION=HIGH → BODY STATEMENTS TEST NONE SOMETHING SOMETHING NONE SOMETHING
628/0.834 -/- -/- 74/0.822 -/-

15 BODY CONDITIONS PRODUCTION=LOW → CLASS DECLARATION TEST NONE NONE SOMETHING NONE NONE
1044/0.976 126/0.670 -/- 94/0.853 72/0.9

16 BODY CONDITIONS PRODUCTION=MED LOW → CLASS DECLARATION TEST - SOMETHING - - -
-/-

17 BODY CONDITIONS PRODUCTION=MED HIGH → CLASS DECLARATION TEST NONE SOMETHING SOMETHING NONE NONE
357/0.952 -/- -/- 134/0.763 37/0.822

18 BODY CONDITIONS PRODUCTION=HIGH → CLASS DECLARATION TEST NONE SOMETHING SOMETHING SOMETHING SOMETHING
430/0.926 -/- -/- -/- -/-

TABLE IV: Associations rules mined from the evolution of the analyzed projects.

Pattern Explanation CommonsLang CommonsMath PMD Gson JFreeChart

1a When a new production class is added, an associated test class is also created
√ √ √

1b When a production class is created, no new class is added in the test code
√ √

2a Upon the deletion of a production class, its associated test class is also removed
√ √ √ √ √

2b When a class from the production code is removed, the test class covering it is not deleted
3a When a new production method is created, one or more test cases addressing it are also developed

√ √ √

3b Upon the addition of a method in the production code, no new test cases are created
√ √

4a When method-related changes occur in the production code, the tests are updated accordingly
√ √ √

4b When modifications are made to the signature or return type of a production method, no changes
occur in the test code

√ √

5a When a field is added in the production code, the eisting test cases are updated in order to address
this change

√ √ √

5b When a new production field is added, no modifications occur in the test code
√ √

6a Upon modifying conditional statements in methods from the production code, new test cases are
created to cover each possible path throughout the respective method

√ √ √ √

6b When conditions are changed in production methods, no new test cases are added
√

TABLE V: Co-evolution patterns for each system under study.

changed; only a limited amount of updating is done in the
test code to ensure that the test cases still compile (rules 7,
9-10, 11, and 13-14).

Pattern 6b Also, test cases are not created / deleted when
conditional statements are modified in production methods
(rules 15 and 17-18).

From the patterns that were inferred, it is clear that PMD does
not have a structured approach to co-evolving production and
test code. This observation is in-line with our initial assessment
that PMD is a poorly tested project.

4) Gson: In most cases, the rules generated for Gson are
similar to the ones obtained for CommonsLang and Common-

sMath.

Pattern 3a In contrast to the aforementioned CommonsLang
and CommonsMath, for Gson we have found that when
methods are added / removed from production classes,
the number of test cases created / deleted is significantly
lower in comparison to the other two projects (rules 5-6);
nevertheless, a positive sub-pattern was still detected.

Pattern 6a Also contrasting CommonsLang and Commons-
Math, only when numerous condition related changes are
made in the production methods, test cases are created /
deleted in order to address the additional / removed branches
(rule 18).

We conclude that Gson can be regarded as a well-tested project
as most of the changes in the production code are accompanied
by changes in the test classes.

5) JFreeChart: JFreeChart is a project that is not tested
as extensively as CommonsLang, CommonsMath or Gson.
Generally, the association rules that have been obtained in this
case resemble the ones that were generated for PMD.
Patterns 1b and 3b Even though new production classes /

methods are not backed up by additional test classes (rule
1) / cases (rules 3 and 5–6), we still see that the testing
effort put into JFreeChart is higher compared to PMD’s
case, because the negative association rules have a lower
value for confidence.

Patterns 4b and 5b We observe that test cases are rarely
updated when changes related to attributes or methods are
made in the production code (rules 7, 9–10, 11, 13–14).

Pattern 6a In several cases we have noticed that test methods
are created / deleted when conditional statements are altered
in the production classes (rule 18).

The amount of testing that has been done while developing
JFreeChart is on the low side, as indicated by the numerous
negative association rules that were obtained.

V. QUALITATIVE ANALYSIS

The quantitative analysis has provided insight into the co-
evolution of production and test code: 6 fine-grained co-
evolution patterns have been identified for the 5 projects under
analysis. We now turn towards a qualitative analysis that is
aimed at 1) manually investigating how co-evolution happens
and 2) interpreting the observed co-evolution patterns.

A. How Co-Evolution Happens

Examples of test code changes that occur when specific
changes are made in the production code have been manually
analyzed. In particular, we consider the association rules 1.1
and 1.2 from the previous section.

For CommonsLang we have determined that in most cases
a new test class is indeed created when a production class is
developed. We have come across the following 4 scenarios:

1) Occurs in the same commit: The test class is generally
added during the same commit (in roughly 90% of the cases),
thus suggesting that the developers actually test the new
production code before committing it.

2) Occurs in a following commit: We have noticed sit-
uations in which the corresponding test class is developed
during a following commit. This indicates that even though
the production class was not tested at the time of its creation,
the respective production code is still covered (at a later time).

3) Does not occur, but a different type of change is made
in the test code: Cases in which a multitude of different types
of test changes occur when a new production class is created
have also been identified. This corresponds to a scenario in
which the developers update the already existing tests instead
of developing a separate test class to address the production
class that was added. We have observed the following changes
in the test classes: the creation of test cases (corresponding to

association rule 1.2), the insertion of statements containing
method calls, and the addition of catch blocks.

4) Does not occur: In some cases we have witnessed that
a test class is not added when a production class is developed
(in about 35% of the total number of cases). When such a
situation occurs, the production code corresponds to either a
mock class, an abstract class / an interface, or a class that is
reimplemented (for which a test class does exist). Cases in
which important production classes were not covered by tests
have rarely been seen for CommonsLang.

The examples listed above show that different things can
happen in the test classes as a result of a change in the
production code. They have also demonstrated that in the cases
when a change is made in the tests, it does not necessarily
happen in the same commit as the production change that
triggered it; therefore, a number of subsequent commits have
to be inspected in order to ensure that all the test changes
that occur due to a specific production change have been
identified. Furthermore, this qualitative analysis has lead to
other insightful findings; for example, if no changes are
observed in the tests when a production class is created, the
analysis uncovered examples of reasons why changes are not
necessarily needed in those particular situations.

B. Interpretation of the fine-grained co-evolution patterns

As explained in Section III, for 5 of the changes that occur
more frequently in the production code, we investigate the
associated changes that are made in the test classes in greater
detail. The considered changes are (1) class addition, (2)
method addition, (3) class removal, (4) field addition and (5)
alternative condition block addition. For each of these types of
changes, we collect examples of test changes that they trigger
and study them.

1) Class addition: In terms of entire production class
additions, we observe a number of interesting facts. First of
all, we see that the addition of a production class triggers the
creation of a corresponding test class for the projects that are
adequately tested (rule 1 in Table IV). When this does not
happen, we have determined that the new production classes
are either auxiliary classes or abstract classes / interfaces for
which the classes that extend / implement them are tested.
Another situation that we have witnessed is that production
classes are removed and subsequently added again (therefore
a test class already exists for them). For the other two projects,
PMD and JFreeChart, the development of corresponding test
classes was observed less frequently; the developers seem to
prefer adding test classes that contain integration tests which
cover multiple production classes that were recently created.
For all the systems that we have analyzed, the new test class
is generally developed in the same commit as the production
class it addresses. Additionally, we have found other types of
changes in the test code when production classes are created.
The most commonly observed ones are (1) the addition of
new test cases in the already existing test classes and (2)
statement-level changes in some of the test methods. For the

two systems that are tested less, these kinds of changes occur
more frequently than the insertion of test classes.

2) Method addition: We also zoom in on the changes that
are made in the test code when production methods are added.
Intuitively we understand that the creation of a method in the
production code should trigger the addition of at least one
new test case. However, this expectation is fulfilled by only 3
of the analyzed projects, CommonsLang, CommonsMath and
Gson; for the other two, this was rarely the case (rules 3–6).
Even for the adequately tested projects, there are situations in
which no changes are made in the test code when this type of
change occurs in a production class. Upon further investigation
we have established that the production methods that are not
backed up by additional test cases are generally part of abstract
or mock classes; therefore, the fact that they are not addressed
does not represent a serious issue. Nevertheless, in some cases
new utility methods have not been tested, thing that could
prove problematic. In general, we see that the corresponding
test cases are added in the same commit as the production
methods they cover. There are few cases in which they are
developed in a following commit. We have also found other
types of test code changes, most of which are at a statement-
level, corresponding to updates to the already existing test
cases by inserting or modifying a number of statements.

3) Class removal: With regard to production class re-
movals, we have determined for all the 5 projects that if an
associated test class exists, it is also deleted (rule 2). However,
we did find situations in which the test class is not removed
in the same commit as the production class it covers. For
example, in the case of PMD, the TokenSetTest class is
discarded two commits after TokenSet is deleted. This is
particularly interesting considering the fact that compilation
errors arise because the production class that is being tested
was already removed. Changes from other categories have
also been identified in the test code. For example, statement
deletions and updates have been encountered in the tests, sug-
gesting that test cases that address more than one production
class are modified accordingly. In some cases we have noticed
that methods from multiple test classes are removed, indicating
that the respective production class was covered by more than
one test class.

4) Field addition: The addition of fields in production
classes was also inspected. We have observed several types of
changes in the test code in this case, especially for the systems
with a higher testing effort. In a number of cases adding a field
in the production code co-occurs with the creation of a new test
case. A deeper inspection revealed that the test case does not
specifically address the respective field, but rather a production
method that uses it. We have also noticed statements being
inserted in the existing tests, with which the field from the
production class is covered. In some cases, a field is added in a
test class as well; it corresponds to one of the fields introduced
in the production code and is used all throughout the tests.
For the projects that are tested less, PMD and JFreeChart,
all the test changes mentioned above occur less frequently
compared to the other 3 systems. Especially in the case of

PMD, the developers seem to completely disregard this type
of production change when it comes to testing, as generally
no changes can be observed in the test classes.

5) Alternative condition block addition: Finally, we study
the insertion of alternative conditional blocks. For the ade-
quately tested projects we see two types of changes in the tests.
First and foremost, new test cases are usually created when
alternative conditional blocks are added in the production code
(rules 15–18). This indicates that the developers adhere to the
guidelines specified for unit testing which state that a test case
should be created for each independent path through the tested
method. However, there are situations in which they altered
existing test cases instead of adding new ones. Through code
inspections we have determined that various statement-level
changes are done in the tests, such as modifying the values of
the parameters with which a production method is called in
order to trigger a different path through the respective method.
We have rarely observed cases in which no changes are made
in the test code for two of the systems, CommonsLang and
CommonsMath. For the other 3 projects, Gson, PMD and
JFreeChart, our findings are significantly different. Although
there are some situations in which the existing test cases are
changed when alternative conditional blocks are inserted in
production methods, in general new test cases are not created.
Most of the times the developers do not make any kinds of
changes in the test code for these projects.

VI. DISCUSSION

In this section we first summarize our findings with regards
to the two research questions addressed by this paper. Then
we discuss threats to validity that might affect our study.

A. Revisiting the research questions

a) RQ1. What kind of fine-grained co-evolution patterns
between production and test code can be identified?: By using
association rule mining we have observed 6 fine-grained co-
evolution patterns in our 5 case study systems (see Table V).
These 6 patterns can be summarized as follows: (1) simulta-
neous introduction of production and test class (patterns 1a
and 1b), (2) simultaneous deletion of production class and
associated test class (2a and 2b), (3) introduction / deletion
of production method leads to the addition / removal of one
or more test cases (3a and 3b), (4) modification of production
method leads to statement-level changes in the test cases (4a
and 4b), (5) production field changes lead to statement-level
changes in the test cases (5a and 5b), (6) conditional statement
changes in the production code lead to the addition / deletion
of test cases (6a and 6b).

A more qualitative analysis revealed how the co-evolution
takes place, to be more precise, whether it happens simulta-
neously or not. Additionally, this in-depth analysis also goes
into the reasons why sometimes the patterns are not upheld,
e.g. a test class is not added for a mock class (pattern 1b).

b) RQ2. Does the testing effort have an impact on the
observed co-evolution patterns?: As a first step, we have
evaluated the testing effort put into each of the 5 case study

projects. This has been done on the basis of 4 criteria: (1) the
ratio between the number of lines of test code and the number
of production code lines, (2) the number of versions that did
not compile because of test failures, (3) branch coverage, and
(4) the ratio between the number of changes in the test code
and the total number of changes for the respective project.
Based on these measurements, the systems have been classified
as: extensively tested (CommonsLang), adequately covered
(CommonsMath, Gson) and poorly tested (PMD, JFreeChart).

For each of the 6 patterns that we observed, we have
distinguished a positive and a negative sub-pattern, namely
the positive or “a” pattern in which co-evolution does occur
and the negative or “b” pattern in which case the co-evolution
was absent. From this classification, our main observation is
that for the software projects for which we have seen high
testing effort, i.e. CommonsLang, CommonsMath and Gson,
the positive patterns are more likely to occur. Similarly, for the
two systems for which we have observed a less intense testing
effort (PMD and JFreeChart), the negative patterns are more
common. However, there are cases in which a pattern from
the a group can be found in a project with a lower testing
effort; for example, for JFreeChart we have established that
test cases are sometimes created / removed when conditional
statements are modified in the production code.

Class removal is the only production change for which the
same pattern has been identified for all the 5 projects; in this
case, the associated test class is deleted as well, which is
unsurprising considering the fact that it would cause errors
during compilation if it were to be left in the code.

B. Threats to validity

The following threats to validity have been identified:
Internal threats: Internal threats might be caused by issues

in the code that has been developed in order to collect the
information regarding production / test code changes and links
between tests and corresponding production classes. In order
to mitigate these threats, our approach has been thoroughly
tested using a number of small examples to ensure that it
works properly. Additionally, we have performed a manual
inspection of the data obtained for each of the projects in
order to be certain that the changes extracted and the coverage
information inferred are correct.

External threats: Our observations may not be generalizable
to other systems. More specifically, all 5 projects are open-
source, therefore the results that we have obtained might not
apply to commercial systems. In particular, different patterns
might be uncovered for industrial projects compared to the
ones gathered for the 5 systems included in the analysis.
As discussed in Section III, the investigated projects have
been chosen based on several criteria, therefore our findings
should be valid for a wide range of software systems. Future
replications of the study should rule out this threat to validity.

Finally, the support and confidence values that were used
when generating the association rules might also represent an
external threat to validity. Different association rules would

have been obtained if different values for support and confi-
dence were utilized. We aim for the rules to be as reliable as
possible, therefore we decided not to lower these thresholds.

VII. RELATED WORK

This section covers similar work from fellow researchers.
Gall et al. reported on analyzing the information obtained

by mining software repositories [14]. Two tools are introduced:
Evolizer, which is a platform for mining software repositories,
and ChangeDistiler [10], a change extraction and analysis
tool that can be used to investigate fine-grained source code
changes. Of particular interest to us is ChangeDistiller, which
extracts source code changes from the different versions of a
Java class gathered with Evolizer. The source code of each
analyzed version is represented as an abstract syntax tree
(AST) and the changes between two versions are determined
by computing the differences between their corresponding
ASTs. A taxonomy for source code changes has also been
defined along with the significance level of each type of
change. We rely on their work in this paper.

Pinto et al. [13] investigate how unit test suite evolution
occurs. Their main finding is that test repairing is an often oc-
curring phenomenon during evolution, indicating for example
that assertions are fixed. The study also shows that test suite
augmentation is another important activity during evolution
aimed at making the test suite more adequate. One of the
most striking observations that they make is that failing tests
are more often deleted than repaired. Among these deleted
test cases, tests fail predominantly (over 92% of the time)
with compilation errors, whereas the remaining ones fail with
assertion or runtime errors. In a controlled experiment on
refactoring in connection with developer tests, Vonken and
Zaidman also note that participants usually deleted failing
assertions instead of trying to address them [15].

In the context of test suite augmentation, Santelices et.
al. [16] present an enhanced methodology for improving
existing tests as a result of evolving software, that can be
used to (1) asses the adequacy of a regression test suite when
changes are made in the production code, and (2) facilitate the
generation of new test cases that cover the untested behaviours
introduced by the production changes.

Zaidman et al. have proposed a set of visualizations that
aid in understanding how production code and (developer)
test code co-evolve [8]. Their analysis is coarse-grained, as
they only inspect whether a production / test file is added
or changed, while our analysis is much more fine-grained.
The authors have observed that the co-evolution does not
always happen in a synchronized way, i.e., sometimes there
are periods of development followed by periods of testing.
Lubsen et al. have a similar goal, however they use association
rule mining to determine co-evolution [17]. Their work is
particularly close to ours, albeit they study the co-evolution
at a file level, while we focus on more fine-grained changes.

In response to observations on the lack of co-evolution,
Hurdugaci and Zaidman [12] and Soetens et al. [18] proposed

ways to stimulate developers to co-evolve their production and
test code by offering specialized tool support.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated the fine-grained co-
evolution of production and test code. We did this in order
to: (1) gain a deeper understanding of the way in which tests
evolve as a result of changes in the production classes, (2)
identify possible gaps in the test base, thus signalling to the
developers the parts of the production code that have not been
adequately addressed by tests.

In doing so, we make the following contributions:
• We present an approach to study the fine-grained co-

evolution between production and test code.
• We perform an empirical study on 5 open-source software

projects, thereby gaining insight into how co-evolution
does (not) occur.

• We identify 6 co-evolution patterns based on this empir-
ical study.

We are now in a position to answer our research questions.
For RQ1, “What kind of fine-grained co-evolution patterns
between production and test code can be identified?”, we have
uncovered 6 fine-grained co-evolution patterns by using an
association rule mining technique. For each of these patterns,
a positive and a negative sub-pattern have been identified. The
positive patterns reflect co-evolution, while the negative ones
point towards a lack of co-evolution.

For RQ2, “Does the testing effort have an impact on
the observed co-evolution patterns?”, we first determine the
testing effort put into each of the 5 projects. Afterwards,
we have established that positive patterns are more likely to
be encountered in thoroughly tested software systems (i.e.,
CommonsLang, CommonsMath, Gson), while the negative
ones are generally seen in projects for which the testing
effort is low, such as PMD or JFreeChart. The qualitative
evaluation that we have performed allowed us to gain a more
in depth understanding of how the co-evolution takes place. In
particular, we have found reasons why negative co-evolution
patterns are obtained. For example, we now have insight
as to why sometimes new test classes are not added when
production classes are created (e.g., because the later is a mock
class).

Future work. A first direction for future work entails
extending the empirical study by analyzing the co-evolution
between the production and the test code of new projects,
especially from industry. Commercial systems in particular
might exhibit different co-evolution patterns as more or less
testing effort may have been put into them.

Another area to concentrate on is studying whether specific
development methodologies (e.g., Test-Driven Development)
shows different co-evolution strategies.

We also aim to improve the characterization of testing effort
by making use of the recent test code quality model presented
by Athanasiou et al. [19].

Finally, we want to use the knowledge that has been
obtained through this empirical study to look into test repair
techniques. Of particular interest are intent-preserving tech-
niques, assuring that the repaired test cases address the same
production functionalities as before they were broken.

ACKNOWLEDGMENT

This work was partly funded by the NWO TestRoots project
(project number 639.022.314).

REFERENCES

[1] M. Lehman, “On understanding laws, evolution and conservation in the
large program life cycle,” Journal of Systems and Software, vol. 1, no. 3,
pp. 213–221, 1980.

[2] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
M. Jazayeri, “Challenges in software evolution,” in Proc. Int’l Workshop
on Principles of Software Evolution (IWPSE). IEEE, 2005, pp. 13–22.

[3] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[4] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 25,
no. 4, pp. 22–29, 2006.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[6] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “The
interplay between software testing and software evolution,” in Software
Evolution. Springer, 2008, pp. 173–202.

[7] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proc. Int’l Conf. on Software
Maintenance (ICSM). IEEE CS, 2001, pp. 170–179.

[8] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[9] J. Creswell and V. Clark, Designing and Conducting Mixed Methods
Research. SAGE Publications, 2010.

[10] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Trans. Software Eng., vol. 33, no. 11, pp. 725–743, 2007.

[11] B. Van Rompaey and S. Demeyer, “Establishing traceability links
between unit test cases and units under test,” in Proc. Conf. on Software
Maintenance and Reengineering (CSMR). IEEE, 2009, pp. 209–218.

[12] V. Hurdugaci and A. Zaidman, “Aiding software developers to maintain
developer tests,” in Proc. of the European Conference on Software
Maintenance and Reengineering (CSMR). IEEE, 2012, pp. 11–20.

[13] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012, p. 33.

[14] H. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer and
changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

[15] F. Vonken and A. Zaidman, “Refactoring with unit testing: A match
made in heaven?” in Proc. of the Working Conf. on Reverse Engineering
(WCRE). IEEE Computer Society, 2012, pp. 29–38.

[16] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold, “Test-suite augmentation for evolving software,” Proc. ASE, pp.
218–227, 2008.

[17] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production & test code,” in Int’l Working Conf.
on Mining Software Repositories (MSR). IEEE, 2009, pp. 151–154.

[18] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-based test
selection in the presence of developer tests,” in Proc. Conf. on Software
Maintenance and Reengineering (CSMR). IEEE, 2013, pp. 101–110.

[19] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” Transactions
on Software Engineering, To appear.

