
FireDetective: Understanding Ajax Client/Server
Interactions

Nick Matthijssen
Delft University of Technology

The Netherlands
nick8maal@gmail.com

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

ABSTRACT
Ajax-enabled web applications are a new breed of highly interac-
tive, highly dynamic web applications. Although Ajax allows de-
velopers to create rich web applications, Ajax applications can be
difficult to comprehend and thus to maintain. FireDetective aims
to facilitate the understanding of Ajax applications. It uses dy-
namic analysis at both the client (browser) and server side and sub-
sequently connects both traces for further analysis.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Distribution, Maintenance, and
Enhancement—reverse engineering

General Terms
Human Factors

Keywords
Ajax, program comprehension, web applications, dynamic analysis

1. INTRODUCTION
Over the last decade web development has evolved from creat-

ing static web sites to creating rich, highly interactive web appli-
cations. The most important technology in realizing this shift is
Ajax (Asynchronous Javascript and XML), an umbrella term for
existing techniques such as JavaScript, DOM manipulation and the
XMLHttpRequest object [3]. Since its inception in 2005, Ajax
has gained in popularity and is now part of many websites, e.g.,
Google’s GMail. Unfortunately, Ajax also makes developing for
the web more complex. Classical web applications are based on
a multi-page interface model, in which interactions are based on a
page-sequence paradigm [6]. Ajax changes this by allowing asyn-
chronous requests to be made after a page has been loaded and
allowing JavaScript code to update parts of the page in the browser,
i.e., making delta-updates without reloading the complete page.

Before the dawn of Ajax, Hassan and Holt already noted that
“Maintaining web applications is problematic” [4]. The extra com-
plexity that Ajax adds will certainly not improve this situation.
Strangely enough, research efforts focusing on program understand-
ing specifically for Ajax applications are scarce (e.g., [2]).

These observations, together with the rapidly growing number of
Ajax web applications, motivated us to create FireDetective. Pre-
viously, we witnessed how web developers use a bottom-up ap-

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

Firefox

FireDetective Add-On

FireDetective

Visualizer

Trace data

Java EE Web Server

FireDetective

Server Tracer

FireDetective

Visualizer

Trace data

Figure 1: Architecture of FireDetective.
proach to understand Ajax applications, which is often inefficient
for understanding Ajax applications [5]. In this context, we cre-
ated FireDetective, a dynamic analysis tool that traces both the
client (browser) and server side and connects both traces for fur-
ther analysis. A preliminary user study with 8 participants pointed
out that FireDetective allows web developers to understand Ajax
applications more effectively, more efficiently and with more con-
fidence [5].

2. FIREDETECTIVE
FireDetective is a tool that records execution traces of the Java-

Script code that is executed in the browser and of the server side
code on the server. Subsequently, it “connects” the client and server
side traces, effectively enabling the Ajax developer to see all infor-
mation in a single trace, which, from the interviews that we held
with Ajax developers is regarded as highly useful to get a good
understanding of the control flow through an Ajax application [5].

The high-level architecture of FireDetective is shown in Fig-
ure 1. The tool consists of a Firefox add-on which records Java-
Script traces and information about Ajax abstractions, and a server
tracer which can be hooked into a Java EE1 web server. Both of
these components forward the data that they record (via sockets) to
the visualizer, the third and final component of FireDetective. The
visualizer then processes and visualizes the data in real-time. A
benefit of this architecture is that it allows users to use Firefox to
interact with an Ajax application, as they normally would, and then
use the FireDetective visualizer to inspect what is going on “under
the hood”. Currently, the tool is built for Ajax applications with a
Java + JSP back-end.

2.1 Linking Traces
FireDetective records information about abstractions that are spe-

cific to the Ajax/web-domain, such as (Ajax) requests, DOM events,
timeouts, etc. This is a key element of the tool: it enables us to link
the aforementioned execution traces in meaningful ways. These ab-
stractions can also be used as familiar starting points for program
1Java Enterprise Edition. See http://java.sun.com/javaee/.



understanding, so-called beacons [8]. The Ajax/web domain ab-
stractions that we use are [5]:

• Full page requests
• Non-Ajax requests
• Top-level script load invocations
• Web template invocations

• DOM events
• Ajax requests
• Timeouts

Some links between traces/calls and abstractions represent a causal
relationship, e.g., some JavaScript call causes an Ajax request, which
then causes a server side and – when the response is received –
JavaScript trace to be created. By following these links in one di-
rection, tool users are able to answer “what?” and “how?” ques-
tions about the program, e.g. “how was this DOM event handled?”.
Moreover, links can also be followed in the reverse direction, en-
abling tool users to answer “why?” questions, e.g. “why did this
Ajax request occur?”.

2.2 Interactive Visualization
The visualizer displays the collection of traces and abstractions

to the user. Its interface is shown in Figure 2. The visualization’s
design is loosely based on guidelines outlined by Shneiderman [7]:
information visualization tools should allow for creating overviews,
zooming, filtering, and providing details on demand. This design
correlates with a top-down comprehension strategy [8].

Three main views are used, each of which shows a different level
of detail. The first view is a high-level view (annotated with “1”
in Figure 2), which shows a tree representation of the aforemen-
tioned abstractions (except template invocations). Expandable tree
nodes may reveal more detail, e.g., expanding an Ajax request node
shows its relation to particular traces and calls, i.e. the life cycle of
the request. The second view is a trace view which displays one
execution trace at a time, as a call tree. Each tree node represents a
single call, with expandable subcalls. The third view is a standard
source code view.

The three views are linked: selecting a high-level entity in the
first view shows the related trace in the trace view, and selecting
a call in the trace view shows the related code. There is also one
side view (annotation 4), which contains a tree representation of
the resources (e.g., code files) of the Ajax application. Clicking a
resource shows the file in the code view. The view can be filtered
to only show the files that were used for the current page, which
greatly reduces the number of files that are shown, and allows a
tool user to quickly see which resources are involved on the current
page. The user can also select a block of code (e.g., a JavaScript
function) to highlight and cycle through invocations of that block
of code in the high-level view and trace view.

A disadvantage of execution traces is that they can quickly grow
to massive proportions [9]. In order to reduce the size of traces,
we use two simple, well-known trace reduction mechanisms [1].
The first one is to filter out all library calls and only keep calls that
are specific to the Ajax application that is being analyzed. Both
client side libraries (such as Dojo2) and server side libraries (such
as Java EE server internals) are filtered out. The second mechanism
concerns stopping and starting recording. This allows the user to
time slice the Ajax application, and, for example, to find out how a
particular interaction with the Ajax application is handled.

3. IMPLEMENTATION & CHALLENGES
The various components of FireDetective are implemented in

different languages, using different APIs. First, the FireDetective
add-on is implemented in JavaScript, using the add-on API that
Firefox provides3. We chose Firefox because it is well-known,
2See http://dojotoolkit.org/.
3Also see https://developer.mozilla.org/en/Extensions.

and it provides a relatively mature platform for building browser
add-ons. The add-on consists of about 2.2Kloc. The FireDetec-
tive server tracer is implemented in C++ (and a tiny bit of Java),
a choice which was dictated by the tool interface that we use for
tracing the execution of Java code. The server tracer consists of
about 1.4Kloc. Finally, the visualizer is implemented in C#; it is
the largest component in terms of lines of code: about 8.1Kloc.

3.1 Implementation Details
JavaScript function calls and Java calls are recorded using Fire-

fox’ debugger interface and the Java VM tool interface, respec-
tively. This has the advantage that no code needs to be instru-
mented, and that the approach also works for JavaScript code that
is generated dynamically and “eval”-ed on the fly.

The connection between browser and server is made by append-
ing a custom header X-REQUEST-ID containing an id, to every out-
going HTTP request. Upon receiving the request on the server side,
the id can be detected by the server tracer. DOM events are reg-
istered in Firefox by adding event listeners for all possible DOM
events for the window and document objects. Ajax requests and
JavaScript timeouts (and intervals) are registered by wrapping all
related properties, functions (e.g., XMLHttpRequest.responseXML,
window.setTimeout) and callbacks. JSP invocations are recon-
structed by recognizing certain calls that occur within the JSP en-
gine, which works well for most applications, although it fails to
scale up to bigger applications with multiple JSP files with the same
name, but in different directories. A possible solution would be to
instrument JSP files prior to analysis, which has the additional ben-
efit of not depending on implementation details of the JSP engine.

3.2 Technical Challenges
Anonymous Functions. One caveat regarding JavaScript tracing
is that the language allows a developer to define anonymous func-
tions, a mechanism which is commonly used by web developers.
Because many trace visualizations (including ours) display the names
of invoked functions, this becomes a problem: e.g., a call tree show-
ing “anonymous” functions calling each other is not particularly
helpful. In practice, it turns out that a function is often assigned to
exactly one variable, e.g.: var f = function(...){...}. There-
fore, whenever this is the case, we use the name of the variable to
identify the function. We parse all JavaScript files and for every
anonymous function definition that we encounter, we try to find
a variable or instance variable that precedes it. Note that this ap-
proach is not always correct: in the example, f could be reassigned
another function. However, the approach seems to work well in
practice: for example, the popular Firefox FireBug add-on4 uses a
similar technique (albeit simpler, based on regular expressions) to
“name” anonymous functions.
Lazy Loading. Another potential issue is the “lazy loading” of
JavaScript files, a technique that is used in the Dojo library, for
example. “Lazy loading” refers to retrieving a script file by means
of an Ajax request, and subsequently “eval”-ing it, reducing the
initial page load time. However, because of the “eval” call, the link
between the original filename and code is lost. This can lead to the
undesirable situation of having a fragment of code and not knowing
where it came from, except that it was dynamically generated at
some point. The tool solves this problem by computing a hash
code for the response text of every Ajax request, and every “eval”-
ed string. When the tool shows a fragment of “eval”-ed code and
finds a matching Ajax response text hash, the tool can reconstruct
the filename of the “eval”-ed code.

4FireBug 1.5.0, see http://getfirebug.com/.



Figure 2: The visualizer, showing an analysis of a small sample application. 1. High-level view. An Ajax request is expanded; related
traces/calls are shown. 2. Trace view. 3 Code view. 4. Resource list, showing only the files that were used on the current page.

4. USING FIREDETECTIVE
Goals and Experiences. With FireDetective we have created a
tool in which trace analysis is applied to the domain of Ajax web
applications. The tool design demonstrates how to employ abstrac-
tions from the Ajax/web domain to link execution traces, at both
the client (browser) and server-side.

Our goal with FireDetective is to help improve the program un-
derstanding process of web developers. In [5] we describe a pre-
experimental pretest/posttest user study of which the main result is
that participants found that FireDetective helps them to understand
Ajax applications (1) more effectively, (2) more efficiently and (3)
with more confidence.
Downloadable and Open-Source. FireDetective’s homepage is
at: http://swerl.tudelft.nl/bin/view/Main/FireDetective;
the tool is downloadable and contains detailed instructions on how
to use it. We tried it out on Windows Vista SP2, with Firefox 3.5.11,
Eclipse 3.6 and Java EE 5 with a GlassFish 2.1 webserver. The
source-distribution is also available and a video can be found at:
http://www.youtube.com/watch?v=Trp82FNBeEU

Future Developments. During development and evaluation, the
following directions for future developments were identified:

• While tracing small applications happens without significant
performance degradation (e.g., the Java Pet Store 5), the Java-
Script tracing should be improved as to allow the tracing of
larger applications, without the user being confronted with
slowdowns.

• Currently, FireBug and FireDetective cannot coexist as Fire-
fox plug-ins. A number of users pointed toward the fact that
it would be helpful to have a feature that allows to inspect
variables, something that FireBug offers, but FireDetective
currently lacks. Therefore, we plan to look into integrating
FireBug and FireDetective.

5https://blueprints.dev.java.net/petstore/

5. REFERENCES
[1] Bas Cornelissen, Leon Moonen, and Andy Zaidman. An

assessment methodology for trace reduction techniques. In
Int’l Conf. Softw. Maintenance, pages 107–116. IEEE, 2008.

[2] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon
Moonen, and Rainer Koschke. A systematic survey of
program comprehension through dynamic analysis. IEEE
Transactions on Software Engineering, 35(5):684–702, 2009.

[3] Jesse J. Garrett. Ajax: A new approach to web applications,
2005. http://www.adaptivepath.com/ideas/essays/
archives/000385.php, retrieved on December 7th, 2010.

[4] Ahmed E. Hassan and Richard C. Holt. Architecture recovery
of web applications. In Proc. of the International Conference
on Software Engineering (ICSE), pages 349–359. ACM, 2002.

[5] Nick Matthijssen, Andy Zaidman, Margaret-Anne D. Storey,
Ian Bull, and Arie van Deursen. Connecting traces:
Understanding client-server interactions in Ajax applications.
In Int’l Conf. on Program Comprehension (ICPC), pages
216–225. IEEE, 2010.

[6] Ali Mesbah and Arie van Deursen. A component- and
push-based architectural style for ajax applications. Journal of
Systems and Software, 81(12):2194–2209, 2008.

[7] Ben Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Proc. Symposium
on Visual Languages (VL), pages 336–343. IEEE, 1996.

[8] Anneliese von Mayrhauser and A. Marie Vans. Program
comprehension during software maintenance and evolution.
IEEE Computer, 28(8):44–55, 1995.

[9] Andy Zaidman, Bart Du Bois, and Serge Demeyer. How
webmining and coupling metrics improve early program
compehension. In Proc. Int’l Conf. on Program
Comprehension (ICPC), pages 74–78. IEEE, 2006.


