JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AR PRACTICE
J. Softw. Maint. Evol.: Res. Prac008;00:1-7 Prepared usingmrauth.cls [Version: 2003/05/07 v1.1]

Experience

Splitting a Large Software
Repository for Easing Future
Software Evolution — An
Industrial Experience Report*

‘"““WUW"‘““

Marco Glori¢, Andy ZaidmaR**, Arie van Deursefy Lennart Hofland

1 Philips Medical Systems, The Netherlands
2 Delft University of Technology, The Netherlands

SUMMARY

Philips Medical Systems produces medical diagnostic imagg products, such as MR, X-ray and CT systems.
The software of these devices is complex, has been evolviray §everal decades and is currently a multi-
MLOC monolithic software repository. In this paper we report on splitting a single software repository into
multiple smaller repositories so that these can be develodeéndependently, easing the software’s evolution.
For splitting the single software repository, we set up two gperiments that involve well-known analysis
techniques, namely formal concept analysis and clusteringBecause of the sheer size of the monolithic
software repository, we also propose to use a ‘leveled appaoh’, which implies that the analysis technique
is applied in several iterations, whereby in some iteratios only part of the application is subjected to the
analysis technique. Unfortunately, both analysis techniges failed to produce an acceptable partitioning of
the monolithic software repository, even if they are combied with our newly proposed leveled approach.
We provide a number of valuable lessons learned, which mighprevent others from falling into the same
pitfalls.

1. Introduction

Philips Medical Systems (PMS) develops and produces comsgktems to aid the medical world with
monitoring, diagnostic and other activities. Among thegstems are the MR (magnetic resonance),
the X-ray and the CT (computed tomography) systems. Thevaddt for these products is very
complex and has been evolving for decades. The systems arstaration of hardware and software,

*Correspondence to: Andy Zaidman, Delft University of Teabgy, Mekelweg 4, 2628 CD Delft, The Netherlands
*This extends our previous work which can be found in [1].
TE-mail: a.e.zaidman@tudelft.nl

Received 27th June 2008
Copyright(©) 2008 John Wiley & Sons, Ltd. Revised 21st November 2008
Accepted 18th December 2008

2 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

containing (real-time) embedded software modules. Maftywsoe technologies (C, C++, C#, Perl, ...)
are used and third party off-the-shelf modules are integlratt the software. The software is developed
at multiple sites (Netherlands, USA and India) and more tt@hdevelopers are currently working on
the software.

In this study we focus on the software of one of the aforenoaeti medical diagnostic imaging
products. This medical imaging product has a multi-MLOC softwareasifory, called ararchivein
Philips Medical System'’s terminology [1]. The repositopntains approximately 30,000 source code
files that are being developed (and maintained) using biagcMerging the multiple development
branches causes significant overhead due to the many deyméesleThese dependencies make that
the feature that has the longest development time detesntireerelease time of the entire project.
This approach to development has resulted from many yeargabfing the system and the software
department of PMS realizes that the current developmertegsoneeds to be improved in order to
speed up and ease future evolution. Boéware architecture teaf®WAT) is currently investigating
how to improve the development process by evolving the atiaechitecture into a new architecture
that allows for easier maintenance. The vision of this teaia mew architecture consisting of about
severi software components that can be developed independently.

In order to obtain these independent components the cus@fware repository is analyzed
and subsequently modules can be extracted from the sin§l@agse repository into seven smaller
software components. Although out of scope for this paldicypaper, in order to complete the
migration process, clear and stable interfaces should lieedefor each of these seven newly
formed software components. These stable interfacesdkaslre backward and ideally also (partial)
forward compatibility. To detect and subsequently map thgethdencies that exist in the monolithic
software repository we set up two experiments that let ugdtigate whether two well-known
analysis technigues, namelgrmal concept analysi¢FCA) andcluster analysiqCA), are able to
come to an acceptable splitting of the monolithic softwamgository. Both FCA [2, 3, 4, 5, 6] and
CA[7, 8,9, 10, 11] have previously been used for purpose#asittio ours, albeit on a smaller scale.
As such, the contributions of this paper are:

o the description of our experiences with applying FCA and €A industrial setting on a large-
scale legacy application,

e the introduction of develed approachto address scalability issues when working with large-
scale applications. This approach allows one to apply FC&Ain several iterations, whereby
in some iterations only part of the software repository igjscted to the analysis,

¢ the introduction of theoncept qualityneasure, which can help decide which parts to analyze in
detail when using the leveled approach.

This brings us to our main research question for this stddyformal concept analysis or cluster
analysis allow for the splitting of a large-scale monolilsioftware repository?

"Due to a non-disclosure agreement, we are not at libertyvalg# certain details, amongst others on which specific ywod
we applied our analysis, the exact size, and certain diagcfrthe software product under study. In the remainder oftiit
we will refer to the case as the PMS case.

*This number is based on the experiences of the members of SWAT1) the current structuring of the software repository
and (2) their own development activities.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 3

(il

The structure of this paper is as follows: the next secti@mvigles insight into the context at Philips
Medical Systems. In Section 3 we introduce formal conceptyais and explain how we can apply
it to the software repository at hand. Section 4 introdubedéveled approach for concept analysis,
while Section 5 presents the results we obtained from apgIiFiCA. Cluster analysis is introduced
in Section 6, while Section 7 presents and discusses thésakat we have obtained with cluster
analysis. Section 8 covers related work, after which we kmiecwith a summary of contributions and
suggestions for future work.

2. The Philips Medical Systems Repository

The software repository that we consider contains rougblp@0 source code files totaling several
million lines of code. In turn, these source code files areigea in nearly 60®uilding blocks many
dependencies exist between these building blocks. Funtirey, the source code repository is organized
by structuring the nearly 600 building blocks into a treessture. At the highest level of this building
block hierarchy we find theubsystemsawhich in turn contain multiple lower-level building blogsk
The tree-structure of building blocks, however, does nab gligectly onto the high-level architecture
of the system, as a number of building blocks are part of plelthigh-level components.

In this article we narrow the scope to the parts of the sounme dhat are written in C and
C++. This means that the scope of the analysis for our exgerirm this paper is limited to
around 15,000 files and 360 building blocks, still totalireyeral million lines of source code. A
commercial tool calle@otographs available at PMS to extract static relations from the sipoy [12].
These relations include the following reference kindall, read, write, throw, friend declaration,
inheritance, aggregation, type access, throws, polymigrpéll, component interface call, component
call, component inheritancand catch The relations are analyzed at the method / function level.
Relations on higher levels of abstraction — such as the filbuilding block level — are obtained
by accumulating the relations to and from the lower levetlswf abstraction.

We had access to detailed documentation in the form of UMkscldiagrams. Another form of
documentation we had access to is the so-cgheject-documentatigrwhich specifies on a per-
project basis (1) the purpose of the project and (2) whicldmg blocks are expected to be within
the scope of this particular project. We used the projecudtentation of the last two years, which
currently means that we have around 50 documents availablsyich, unfortunately, the content of
these documents does not cover all building blocks.

3. Repository Splitting using Formal concept analysis
3.1. A Primer in Formal Concept Analysis

Formal concept analysis (FCA) is a branch of lattice theloay has been introduced by Wille [13]. Itis
an automated technique that aims to identify sensible gnggpf objects (also called elements) that
have common attributes (also called properties) [14].

To illustrate FCA, let us consider a toy example about muigicaferences [15]. The objects are
a group of people Alice, Bob, Carol, David, Emily, and Fraakd the properties are Rock, Pop,

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

4 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Table I. Incidence table of the music example Table Il. The set of concepts of the example of Table |
prefers [| Rock | Pop | Jazz| Folk | Tango top ({all objectg, 0)
Alice Vi v v c7 ({Carol, David, Emily, Frank, {Jazz)

Bob Vv N4 N4 Cs ({Alice, Carol, Frank, {Folk})
Carol v Vv Cs ({Alice, Bob}, {Rock, Pog)
David Vv C4 ({Carol, Frank, {Jazz, Folk)
Emily v C3 ({Alice}, {Rock, Pop, Folk)
Frank vV IV Co ({Bob}, {Rock, Pop, Tangp

bottom (0, {all attributeg)

Jazz, Folk, and Tango. Table | shows which people preferhwkiied of music, called thincidence
table. Formal concept analysis helps to find maximal groups of |gesiparing maximal sets of music
preferences.

More formally, acontexts a triple(O, A, R), consisting of a set afbjects Q a set ofttributes Aand
anincidencerelationR C O x A containing element®, a) € R indicating that object has attribute.

Let X C OandY C A. Then we can define(X) as the set of common attributes for a set of objects
X, andt(Y) as a the set of common objects for attributeI hen a concept is a pair of sets — a set of
elements (thexten} and a set of properties (thietenf) (X, Y)— such thaty = g(X) andX = 1(Y).

In other words, a concept is a maximal collection of elemsh#sing common properties.

With these definitions, we can obtain maximal rectanglemffable | with relations between people
and musical preferences. For exampl&lice, Bob}, {Rock, Pog) is a concept, whereagDavid},
{Jaz3) is not, sinces({David}) = {Jazz, butt({Jazz) = {Carol, David, Emily,Frank}. The extent
and intent of each concept is shown in Table 1.

The set of all concepts consisting of sets objeaisO», and sets of attribute8;, A; that can be
derived from a context forms a partial order via

(Ol,Al) < (Oz,Az) <= 01 COr<—= A DA

This partial order allows us to organize the concepts intecéatvith meetA and joinv defined as

(Ol,Al)/\(Oz,Az) = (OlﬂOQ,U(OlﬁOZ))
(Ol,Al)\/(Oz,Az) = (T(AlﬂAz),AlﬂAz)

Once the context has been set up, efficient algorithms existdmputing the lattice [16]. The
concept lattice shows the different concepts identifiedthadelations between them.

After the lattice has been constructed for a given contextceptpartitionscan be identified, which
are collections of concepts of which the extents partitiendet of objects. In our setting, each concepts
partition corresponds to a possible modularization of §stesn analyzed. More formally, @ncept
partition is a set of concepts of which the extents are non-empty amd fopartition of the set of
objectsO, given a contextO,A,R). This means that a set of conce@B = {(Xo,Y0) ... (%n,Yn)} is
a concept partition if and only if the extents of the concequiger the object set and are pair wise
disjoint [3, 16]:

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 5

(il

n

X =Oandvi#j, XX =0

i=1

Tonella found concept partitions to introduce an overlyrietive constraint on concept extents by

requiring that their union covers all the objects [3]. Hewsyg that, when concepts are disregarded
because they cannot be combined with other concepts to athasjects, important information that
was identified by concept analysis is lost without reason.sésh, Tonella found that identifying
meaningful organizations should not be limited by the uessary requirement that all objects
are covered. Therefore, he proposes the idexarfcept subpartitionsHe defines thaCSP=
{(X0,Y0) ... (%n,Yn)} is aconcept subpartitioif and only if [3]:

Vi, XX =0

Where CPs can be directly mapped to object partitions — thaaititions of the full object set —
CSPs have to be extended to the object set by subtractingltipasition from the full set, a process
that is described by [3]. In our application of FCA we emplbg t@algorithms proposed by Siff and
Reps [16], using the concept partitions from Tonella [3]l Betails are available in [17].

We apply FCA by using the process presented by Siff and Repsnstead of using the concept
partition we use the concept subpartition as proposed begllEofiL6, 3]. More details on the process
that we have followed can be found in [1].

3.2. Setting up FCA for the PMS repository

Having defined the process to use, we can define the objecttaibdtes to use in our specific context.
As objectswe choose the set dliilding blocksn the PMS repository, a set of size 360. The reason for
this choice is twofold: (1) the building block level of atmttion is instigated by the domain experts
from PMS, as they indicated that building blocks are desigoeencapsulate particular functionality
and (2) we expect to be able to cope with the size of the byjltlock set for our analysis.

To complete the context, the set of attributes has to be dkfirtee set of attributes has to be chosen
in such a way that building blocks that are highly relatedttoleother appear in concepts of the context.
In order to make sure that highly related building blocksespin the same concept, we explicitly
choose a combination of attributes that we consider to be gaticators of a building block:

1. whether it ishighly dependertin another building block;

2. whether it has particuldeaturesassociated to it.

We next discuss these attributes in some more detail.

High dependency attribute. The first type of attribute is extracted from the source c¥deconsider

a building blockA to be dependent on a building blo&kif A uses a function or data structure in
B. The term ‘highly dependent’ is used to discriminate betwte heavy use and occasional of a
building block. As this first kind of attribute is collectedom the source code, we can say that it
is representative for thas-is’ architecture. We used the commercial tool Sotograph taeixthe
interdependencies of the building blocks in the architecand subsequently determine the degree

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

6 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Table Ill. Example context using project documentation

Attributes
PMS context| from source codd from project documentatio
ot oF
oa) m
e) e}
Q Q
[=% o o Q @
> =1 5| @ %
o o [S] >
o o E | @ >
BB, Vv v
@ | BBy v v
3 | BB3 v oV
-8
BBp 1 v v
BBn v v |V

of dependency between the building blocks [12]. Sotogragibrdhines the degree of dependency by
summing up static dependencies up to the desired abstidetiel. A (lower-bound) threshold is used
to filter relations on the degree of dependency.

Feature attribute. The second type of attribute is extracted from: existindhiéecture overviews
and project documentation at PMS as well as from domain é&xp#s such, these attributes pertain
to the ‘as-built’ architecture. The particular properties that we use fos thipe of attribute are:
specificity to the PMS application, layering and historiodbrmation about what building blocks were
affected during prior software (maintenance) tasks. Thtufes associated with the building blocks
are discussed in more detail in Section 3.3.

The reasons to combine two sets of attributes are:

1. The first set of attributes assumes that building blocis dine highly dependent on each other
should reside in the same repository.

2. The second set of attributes assumes that building blbeksshare the same features, such as

building blocks that are all very specific to the PMS applamatshould be grouped in the same
repository.

As such, the two sets of attributes that form the attributethe context are a combination of
the ‘as-is’ architecture extracted from the source code faatlires extracted from the ‘as-built’
architecture, according to the documentation and the domsgierts. Note that while the former is
typically available in most circumstances, the latter nhigbt always be available due to a lack of
documentation or domain experts. Table Il shows an examplhis combination in the context,
using existing documentation.

3.3. Feature attributes

As mentioned in the previous section we use two types ofbats. The first type of attribute
indicates whether building blocks are highly dependenttberbuilding blocks and is extracted from

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 7

(il

source code. The second type of attribute takes into acaewetal features of building blocks, more
specifically:

e Information about which building blocks are affected dgrispecific software maintenance
operations.

¢ To which architectural layer a building block belongs an@tapplication-specific the building
block is.

In Sections 3.3.1 and 3.3.2 we take a closer look at how gxdetlinformation on which building
blocks are affected during specific maintenance operatonsthe information on the architectural
layering come into play. Furthermore, because we expetafalying FCA using the two attribute-
variants will provide different results, we will evaluatestn individually in cooperation with the system
architects.

3.3.1. Information extracted from project documentation

The first approach relies on the software’s documentatiba specific type of documentation describes
for each (sub)project which building blocks are in its scopeplying that the buildings blocks
mentioned in the documentation are expected to change wimeairgtenance operations is carried
out on that particular (sub)project. This scope is deteeahiny the system architects prior to the start
of the project. The scope can consist of building blocks éghatscattered through the entire repository,
but because projects are often used to implement certamtifunality, there typically is an established
relation between the building blocks in the scope.

This particular relation is used to group the building bletgether in the form of concepts after
the construction of the context. The fact that this grouiagsibly crosscuts the repository makes this
feature interesting to use for FCA in combination with thghhilependency relations between building
blocks.

Example given a project that implements a certain feature, nameajéptA-featurel’,
there is documentation at PMS that describes that ‘buildivakA', ‘buildingblockB’ and
‘buildingblockC’ are within the scope of this project, whicrosscuts the source code with
respect to the building block hierarchy. Now the featurejpctA-featurel’ is assigned to
each of the three building blocks in the scope.

When carrying out the experiment however, it became cleat mtiot all building blocks were
documented with the features they are implementing. As,gheffeatures do not cover the complete
object set of building blocks in the context. This has conseges for deducing concepts from a context
with these features. The building block that has no featassggned to it, will be grouped based on
the attributes that indicate high dependency on other imgjldlocks. This high-dependency attribute
however could also be missing, either because there arepemdencies from this building block to
other building blocks or because the number of dependetwiasother building block is below a
chosen threshold. This is a factor that we should keep in mvimeh analyzing the results.

8Building blocks may be application-specific or can be shavitd other medical equipment, such as echo-equipment.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

8 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

While extracting information from the documentation weioed differences in the level of detail
of the documentation, that is, some project-scopes wereeatkfn great detail with respect to the
building blocks in the hierarchy, while others were only defl at a very high level of abstraction.
For example, we encountered a scope in the documentatibwaisadefined as a complete subsystem,
without specifying specific building blocks. If we encourge such an instance, we substituted the
subsystem with all the building blocks that are underlyimghtat subsystem. For example, when the
project documentation states that the scope of ‘projeeitfrel’ is ‘platform’, all underlying building
blocks in the building block structure of ‘platform’ are givthe feature ‘projectA-featurel’, including
‘platform’ itself.

The basic idea of this approach is that building blocks wéllgrouped together based on whether
they are related through certain features of the softwaaettiey implement. This grouping can be
different from a grouping based on high dependencies betwhez building blocks and as such, we
think it is interesting to use both types of features in thetert for analysis, as a combination of the
‘as-is’ architecture and the ‘as-built’ architecture.

3.3.2. PMS-specificity and layering

The other approach is taking into account the PMS-spegifaitd layering of the entities in the
repository.

PMS-specificity refers to the notion that some building kkoare only to be found in PMS software,
while others are common in all medical scanner applicatmmeven in other applications, such as
database management entities or logging functionalityn®a experts at PMS assigned the features
to the building blocks. This was done using a rough scale HerRMS-specificity{very specific,
specific, neutral, non-specific, very non-spegific

With regard to the layering attribute, we use a designatatédor the building blocks that states
whether a building block is at the ‘service level’ or at thppéication/Ul level’. For example, a ‘process
dispatcher’ is most likely to belong to the service leveljletscan-define UI’ is likely to be found at
the application/Ul level. For the layering a similar scatdds starting from application/Ul level to the
service level.

In our analysis, the complete object set of building blosksavered, that is, each entity has a feature
indicating the PMS-specificity and a feature indicating léeering. As such, for each building block
there are 5 5= 25 possible combinations with respect to the PMS-spegifaid layering.

We have chosen these specific features — PMS-specificity ayrtihg — because of the wish
of Philips Medical Systems to evolve to a more homogeneoganization in terms of software
applications. As such, an interesting opportunity arigesansider reusing building blocks that are
common in medical scanner software in other departmentevaidp maybe start developing building
blocks together with other departments and use them ashieusailding blocks.

Concept analysis using these feature attributes will findlwoations such as a group of building
blocks that are ‘very PMS-specific’ and are on the ‘applmafil] level’. We expect the resulting
grouping to be different from the grouping based on the higpethdencies between building blocks,
and, as such, it is to contrast the obtained solution as wéakéng at the results of the groupings
obtained from the ‘as-built’ architecture versus the ‘sisarchitecture.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 9

(il

Table IV. Example context, shown in the building block hretsy
subsystem| building block | attributes

platform PMS-neutral

basicsw PMS-neutral, acqcontrol

computeros | PMS-non-specific
configuration | PMS-specific
acquisition PMS-specific
acqcontrol PMS-specific, patientsupport

4. Aleveled approach to concept analysis

The process that we propose to obtain a splitting of the regggenerates CSP-collections from the
specified context. Considering the size of the applicatidvaad, we expect that scalability issues come
into play, because we use the set of building blocks in thesigry as the set of objects in the context.
The repository consists of around 360 building blocks, Whesults in a big context with the attributes
defined, which in turn yields a large corresponding concafitke, and many CSP-collections (which
have to be processed by hand; to give an indication of sizeesaf our results generated millions of
CSPs).

To cope with the large number of results we introducke\eledapproach, which we designed
to make use of the hierarchical structuring of the PMS rdposi the repository is modularized in
high level ‘subsystems’, which consist of multiple ‘buitdi blocks’, which again are structured in a
hierarchy.

By analyzing parts of the hierarchy in detail, resulting ogpts from that analysis areergedfor
the next analysis. This will make the context and concepit&abf the next analysis round smaller
and we expect the resulting number of CSPs to also decrelas®idh the use of the leveled approach
some parts of the repository can be analyzed in detail, vieiéping the other parts at a high level.
The results from this analysis, such as groupings of ‘loweell building blocks, can be accumulated
to a next analysis round where another part is analyzed @ild€hese groupings are accumulated
by merging the building blocks into a single fictive buildibfpck to make the context and resulting
concept lattice smaller. This is repeated until all buigdbiocks are analyzed in detail and the results
are accumulated.

As an example of this accumulation, when a part of the hiésaof the repository is not examined
in detail, the attributes are accumulated to the entity ihakamined globally. Table IV shows part
of an example hierarchy and the assigned attributes. Wecthredecide that the ‘platform-subsystem’
in the hierarchy of the repository is analyzed globally amel dthers in detail. This results in Table V
showing that all the features in the lower levels in the topl@dV of the ‘platform-subsystem’ are
accumulated to ‘platform’.

The analysis itself was performed using a newly developet-te named'Analysis Selector—
that uses the output of the analysis performed by Sotograpith recognizes the hierarchy of the
repository and relations between building blocks (seei@e®). Further, separate input files are given

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

10 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Table V. Accumulated features for the platform subsystesmfirable 1V
subsystem| building block | attributes

platform PMS-neutral.
PMS-non-specific
PMS-specificacqcontrol
acquisition PMS-specific
acqcontrol PMS-specific, patientsupport

Figure 1. Overview of the FCA process when using the levepguiaach.

i
Analysis Selecto ConExp
[

2

Sotograph @

(Intermediate)
Analysis Results

to the tool for the features, either extracted from the mopanning or from PMS-specificity and
layering documentation.

The tool enables the selection of parts of the hierarchy &dyae in detail and enables viewing the
resulting concept subpartitions and merging resultingigigs in the concept subpatrtitions for further
analysis. After selecting what part should be analyzed taibd@nd what parts should not be analyzed
in detail the context is created using the accumulatedatss of the context.

This context can be exported to a format that an existing ¢aaluse as input. For this study, we
used ‘ConExp’ [18]; ConExp creates the concept latticeegponding to a given context. This concept
lattice can be exported again to serve as input for our Aiefslector tool, which can deduce concept
subpartitions from the concept lattice (also see Figure 1).

Merging concepts Considering the large number of CSPs that might result frontepts, the number
of concepts taken into consideration should be kept smahwdalculating the concept subpatrtitions.
This can be accomplished byergingthe extents of the concepts (the object sets of the concepts)
resulting from the context of an analysis (a process weotaitept merging

When a conceptis merged, the objects of that concept wiltbemed into a so-called ‘merge’ which
is a fictive object with the same attributes as the originabept. It is expected that the context is now
reduced in size for a successive analysis round and a femeepts will result from the next analysis
round. This process of merging and recalculating the caraed concepts can be continued until a
small number of concepts result from the defined conteximRigese concepts then the CSPs can be
calculated.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 11

Concept quality In order to select concepts that should be merged, we pr@plsetion to measure
the concept quality This function indicates how strong the grouping of the @ptdgs, and is based on
the relative number of attributes of a concept on the one temalon the relative number of objects on
the other.

With respect to the number of attributes, recall that a cphiceludes a the maximal set of attributes
that a group of objects share. Intuitively when few objectsggouped by many attributes, this indicates
a strong grouping of these objects and therefore is assigmégh concept quality value. Conversely,
when a small number of objects shares just a single attrithisecan be seen as weaker grouping, and
therefore is assigned a lower quality value.

A similar degree of quality is devised for the number of obje6iven a set of attributes, when
few objects share this set of attributes, this can intuigilbe seen as a strong grouping, while a large
number of objects sharing this set can be seen as a weakgimggoliherefore, the quality function is
also based on the degree of objects in a concept sharing bageilmutes.

Because a degree of attributes in a concept and a degreesaf®lnj a concept is measured for each
concept, aceiling valueis defined. As ceiling value the maximum number of objects attributes
respectively are taken given a set of concepts (called 'Mge€s’ and 'MaxAttributes’, repsectively).

Thus, we define theoncept qualityanging from 0 to 100 for a concepgs follows:

MaxObjects-#Objects #Attributes

1
MaxObjects " MaxAttributes - 00

Quality(c) =

Given this quality function all resulting concepts from antext are evaluated and based on the
values, concepts are merged into single entities. Thesgaseaf building blocks are taken as one
entity for the next round of analysis, with the purpose ofrdasing the number of concepts.

5. Formal Concept Analysis Results
5.1. Project documentation features

We first discuss how we use the information extracted from phgject documentation (see
Section 3.3.1) in combination with the dependency attalthiat we extract from the source code.
We perform our analysis on the complete building block strees with no threshold imposed on the
relations. This means that every static relation betweeldibg blocks is considered to be a high
dependency attribute in the context. This is combined vhighibformation extracted from the project
documentation. Figure 2 shows the number of concepts glatiainst the number of analysis rounds.

The full context results in 3,031 concepts. This number ¢sl&ge for us to derive CSPs from.
Figure 2 shows that the number of concepts decreases ovanthessive analysis rounds.

After 25 rounds the number of concepts has decreased to w@e\er, calculating CSPs from this
set of concepts still results in more than 10 million CSPs.

When discussing the resulting (intermediate) concepts thi2 domain experts, we noticed that the
objects of the concepts were mainly grouped on the high digay attributes in the context. This
can be explained by the fact that the features extracted é&dsting project documentation covered
around 30% of the complete set of around 360 building blocks.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

12 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Figure 2. Results of analysis with features extracted froojegt documentation
3500

3000

Number of concepts
o MmN
o o (=] o
o o o o
o o o o

33
1=}
15}

o

123456 7 8 91011121314 151617 181920 21 2223 24 25
Analysis rounds

Thus, when grouping objects in the defined context by coscdm@ main factor of grouping is
determined by the dependencies. The degree of influenceediitih dependency attributes can be
decreased by using a threshold on the strength of the stddittons. This also means that there will
be more objects in the context that have no attributes asgigmthem. This in turn implies that no
information is available on how to group these objects, Itegpin objects that will not be grouped
into meaningful concepts.

For this reason we have chosen not to continue the analy#isfeatures extracted from project
documentation and an imposed threshold. We also decidetb rastalyze the same setup using our
leveled approach.

5.2. Analysis Based on PMS-specificity and layering featuse

Next we present the results from analysis on the contexttiv@glPMS-specificity and layering features
(see Section 3.3.2) in combination with the dependencigaeted from source code.

Full building block structure. The first results of the analysis with the PMS-specificity &yering
features are the results of the analysis of the completartiey of building blocks, with no threshold
imposed on the static dependencies (Figure 3).

The full context results in 3,011 concepts. Similar to thalgsis on the project documentation
features, this number of concepts is too large to derive Ci9Rs

Thus, concepts were chosen to be merged each round. Fighm3 shat the number of concepts
decreases over the analysis rounds. After 27 rounds the emaflzoncepts has decreased to 351.
Calculating CSPs from this set of concepts resulted in mwae 10 million CSPs.

As a next step we imposed a threshold of 25 on the static deperes and proceeded with analyzing
the complete hierarchy of building blocks with the PMS-sfigity and layering features. This resulted
in a full context containing 719 concepts, which is still tBwge a number to create CSPs from.
Therefore, concepts were chosen to be merged each roundeRBighows the decrease of the number

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 13

Figure 3. Results of the analysis with PMS-specificity aryetang features
3500

3000 -

N}
133
S
S

Number of concepts

13 5 7 9 11 13 15 17 19 21 23 25 27
Analysis rounds

Figure 4. Results of the analysis with PMS-specificity arnygtang features, with imposed threshold of 25

800

~
=]
5]

@
1=}
5]

a
3
3

N
S
3

Number of concepts
@
8
38

200

1 2 3 4 5 6
Analysis rounds

of concepts over the successive analysis rounds. After iysisaounds the number of concepts has
decreased to 378. Calculating CSPs from this set of constifitsesulted in more than 10 million
CSPs, making it difficult to define a splitting.

One subsystem in detail. Because of the inherent scalability issues that we encoeohtghen
analyzing the complete application, we decided to focus simgle subsystem. Figure 5 shows the
results of this analysis on one subsystem, for which we Use8MS-specificity and layering features;
the analysis has no threshold imposed on the static depeieden

The aforementioned analysis results in 458 concepts irathtext. By applying our leveled approach
that merges concepts using the concept quality measuréytaim®@5 concepts after 30 analysis, which
in turn yields 490,000 CSPs. Table VI shows the number ofitiaguCSPs from the last five analysis
rounds.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

14 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Figure 5. Results of the analysis with PMS-specificity angtang features on one subsystem
500 -

450

[EREN
[=)
S o

S
1S3

=3
1S3

Number of concepts
- N N w
@ P
B g

=)
1S3

o
S

o

13 5 7 9 11 13 15 17 19 21 23 25 27 29
Analysis rounds

Table VI. Resulting concept subpartitions from the set ofogpts of the analysis on one
subsystem with no threshold

Round | Concepts| CSPs &1000)
26 114 600
27 106 500
28 101 555
29 96 500
30 95 490

We also carried out the same basic analysis, but this time avitimposed threshold on the static
relations. More specifically, we performed the analysiséyionce with a threshold of 25 and once
with a threshold of 50. The results of this analysis are shiowrigure 6.

The analysis with an imposed threshold of 25 starts with gesarthat results in 338 concepts,
whereas the analysis with a threshold of 50 starts with aextitihat results in 287 concepts. When
performing the leveled approach, we see that in the casediitkshold of 25, we obtain 311 concepts
after 7 analysis rounds. Similarly, for the threshold of &@, obtain 269 concepts after 7 analysis
rounds.

5.3. Discussion

In this experiment we used FCA as an analysis method to obtaplitting of the repository for the
PMS case. The process of analysis works with a leveled appro&., some parts of the building
block hierarchy in the repository are analyzed in detailijewther parts are analyzed at a higher level.
Results from a previous analysis are used for a next analjsse more parts are analyzed in detail.
Selecting which parts are used for successive analysisisdasteered by the concept quality function.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 15

Figure 6. Results of analysis with PMS-specificity and laygfeatures on one subsystem, with imposed threshold
of 25 (left) and 50 (right)

290

w
r
&

©
g
S

285

@ W
B
S &
N
@
3

IS
&

&

W oW oW oW
N
N
=)

N 8
B 5
Number of concepts
N
e

Number of concepts

305

w

8

3
N
>
a

N
©
&
N
-3
3

1 2 3 4 5 6 7 1 2 3 4 5
Analysis rounds Analysis rounds

When we look at the results of both analyses (with the twosygiéeatures) on the complete building
block structure, we can see that the number of concepts alsesdoy applying the leveled approach
and the concept quality function. However, we had expettatlly decreasing the number of concepts
over the several analysis rounds, the number of concepgsiitiyms (CSPs) would also decrease.

The number of resulting CSPs actually decreases, e.g., wharonsider both the analyses on the
complete building block hierarchy. However, as each CSkesgmts a possible partitioning of the set
of building blocks, the number of CSPs has to remain undetrcbas each CSP has to be evaluated
by domain experts. During our experiment, we have not bekntatkeep the number of CSPs at such
a level that it would have been manageable for domain exfreeigaluate each of the CSPs.

The huge number of CSPs can be explained by the degree oapwarthe objects in a resulting
concept set. For example, when each combination of two gidsde this set of concepts has an
intersection of their objects set that is empty, the numb&S3Ps from this set grows quickly.

Furthermore, we observed many concepts in the sets with hrsamaber of objects. Concepts with
a small number of building blocks as their object set ardyike be combined with other concepts,
as the chance of an overlap with building blocks in the otlo&icepts is small. More combinations of
concepts result in more CSPs.

If we consider around 100 concepts resulting in around BWOSPs, we do not expect to get
significantly fewer concept subpartitions if we choose te different attributes in the starting context,
for example other features, or a more detailed scale for Bh&-Bpecificity and layering features. This
is inherent to the mathematical definition of the CSP, whithldes small sets of concepts to result in
many of CSPs.

In essence, we found that the leveled approach works, asreed by the decreasing number of
concepts. However, we also found that obtaining partitiohthe set of building blocks is still not
possible. This is due to the large number of CSPs that neeel¢oitsidered for a system of the size of
our PMS case.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

16 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

6. Cluster analysis

Our second series of experiments involves the useludter analysigo regroup building blocks
contained in the PMS repository. The goal of software chisgeis to partition the structure of a
software system using the entities and relations that ageifsgd in the source code into a set of
cohesive clusters, which (will) typically form the subsrsis [19].

6.1. Search-Based Software Modularization

A range of different clustering algorithms have been preplas literature. For our experiments, we
decided to use the search-based algorithm as implementtgk iBunch tool [10, 20], which has
been specifically designed for remodularization purpoaed,which has been used in several other
remodularization cases [21, 20]. Furthermore, perforradras been a key driver in the design of
Bunch, and Mitchell and Mancoridis claim that relativelyga systems can be clustered in about 30
seconds [20].

Bunch works independently of the programming language alilsron source code analysis tools
to build up a graph representation of the source code, theaked Module Dependency Graph
(MDG) [20]). Like in the concept analysis case, in our seftime modules are the PMS building blocks;
the dependencies between them reflect usage of functioret@stdictures as obtained by Sotograph
(see Section 3.2).

Addressing the modularization problem using search teglas has been described as heuristically
“finding a good partitioning of the MDG”, where “good” refet® a partition where highly
interdependent modules (nodes) are grouped in the samgsseins (clusters), and, conversely,
independent modules are assigned to separate subsyst@mEia can be formalized by means of an
objective function, called th®lodularization Quality(MQ) function, which determines the quality of
a partition as the trade-off between interconnectivity emichconnectivity. Various definitions of MQ
can be used, which are described by Mitchell and Mancor&0i§ and which are implemented in the
Bunch tool.

With a way of measuring the quality of resulting modulariaas, we adopt a hill climbing algorithm
to search for partitions that are of good quality. Bunchtstaith a random partitioning of the MDG.
Nodes in this partition are then systematically rearrarigeah attempt to find an improved with a
higher MQ-value. Furthermore, Bunch adopts simulated alimgpto mitigate the risk that local optima
prohibit searching for further alternatives [20].

6.2. Leveraging Domain Knowledge

While Bunch can operate in a fully automatic way, it alsoado perform “user-directed clustering”.
With this feature enabled, the user is able to cluster sondutes manually, using domain knowledge,
while still taking advantage of the automatic clusteringatailities of Bunch to organize the remaining
modules [11].

We propose to use this mechanism to iteratively improve tifugiisg point of the genetic algorithm
by using the suboptimal solution of the algorithm and byeesing the solution with domain experts,
such as architects and developers of the PMS departmenprdbess can be described as follows:

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 17

-

Obtain the Module Dependency Graph (MDG) of the sources aming the commercial tool
Sotograph.

N

. Use the algorithm provided by the tool Bunch to obtain ateting of the MDG.

w

. Review the results with domain experts by visualizingrdsailts (see Section 6.4).

4. Use the new knowledge thus obtained as a starting solfdgiathe genetic algorithm provided
by Bunch.

5. Repeat steps 2 until 4 until satisfying results are obthinalidated by the domain experts and
the value of the MQ function.

6.3. Scalability issues and the leveled approach

Initial experiments when applying the process proposetiérprevious section have shown that there
are scalability issues with this approach. To be more peediee search space for the analysis is
extremely large, as the number of possible clusterings giyonentially with the number of building
blocks. As such, a first run clustering of the building bloekl probably result in a clustering from
which domain experts cannot extract usable information.

Therefore, we again propose to uskeeeled approachin similar fashion to what we did for FCA
(see Section 4). The leveled approach makes use of thedt@akstructure of the source code, which
is composed of multiple ‘subsystems’, which in turn consfanultiple ‘building blocks’.

With the leveled approach, certain parts of the repositaty lbe analyzed in detail while other
parts of the repository are analyzed at a higher level. Re$tdm the analysis of one part of the
repository can be used for a next iteration of the analysiselkample, one subsystem can be analyzed
in detail, while other subsystems are analyzed globallyelva subsystem is analyzed globally, the
relations from all underlying building blocks in the hiethy are accumulated to be relations from the
higher level subsystem. Also relations from one buildimecklto the underlying building blocks in the
hierarchy are adjusted to the higher level subsystem.

When after an analysis round some building blocks are gledt®gether, these building blocks can
bemergednto one entity, called a ‘merge’. This merge is in fact afietbuilding block. The relations
are accumulated to the merge as mentioned above.

An example of a merge is shown in Table VII. Here the buildidgcks ‘platform’, ‘basicsw’,
‘computeros’ and ‘configuration’ are merged into one new geemamed ‘merge’. Table VII also
shows that the relations of the named building blocks areraatated and designated to the new
building block ‘merge’. Also the relatiorns the building blocks are changed to relations to the merge.

The analysis itself is performed using the newly developed tAnalysis Selector’, which we
also used to enable the leveled approach for FCA. The toal tiigeoutput of the static dependency
analysis of Sotograph, from which we can also extract theahs@y of the building blocks of the PMS
application.

The tool enables the selection of parts of the repositorgtaralyzed in detail, while other parts are
kept at a higher level. When the user has made his selectiongbessary relation accumulation that
is a consequence of the merge is performed and the Modulendepey Graph (MDG) is adjusted
accordingly. This new MDG is then used as input for Bunch ohierforms the actual clustering.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

18 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

Table VII. Before/after example of a merge of a group of baiddblocks.

[Subsystem | Building block | Relation (strength) |
platform
basicsw acquisition (5)
computeros acquisition (5)
configuration acqcontrol (2)
acquisition
acqcontrol basicsw (5)
merge acquisition (10) , acqcontrol (2
acquisition
acqcontrol merge(5)

Figure 7. Overview of the process for the leveled approach.

The results of this clustering can be imported into the Satply tool using a plug-in that we have
written. Sotograph then visualizes the results and pravidetrics on the clustering result. More
information about this can be found in section 6.4. Usingo§ph, domain experts can now select
certain parts of the clustering to be merged for a next arsabtep. The parts can be selected in the
Analysis Selector, after which a next round of analysis d¢art.g~igure 7 shows how this works.

Sotograph

(Intermediate)
Analysis Results

6.4. Visualization and validation

Reviewing the result of the clustering with domain expegn be aided by visualizing the results.
Early results were visualized with a tool called ‘dotty’, ih displays the clustering of the modules
and the dependencies between the modules [22]. Howeverveednosen to use Sotograph [12] as a
visualization tool, because we found the visualizatioredéifiies to be superior and because Sotograph
offers several useful metrics for studying the clusterirggeh as LOC of clusters and dependency
metrics. Therefore, we developed a plug-in for Sotograji #tlows to load in our (intermediate)

analysis results.

] |
Analysis Selecto Bunch
-

=

Copyright(©) 2008 John Wiley & Sons, Ltd.

Prepared usingmrauth.cls

J. Softw. Maint. Evol.: Res.

(il

Prac008;00:1-7

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 19

Table VIII. Results of analysis on complete hierarchy
Result Number of clusters Objective Function Value (MQ)

1 84 4.034784274
2 39 2.574595769
3 40 3.970811187

Sotograph maintains a database of information extracted the source code using static analysis.
This information includes the dependencies between satode entities, size of entities and many
other metrics. The tool enables the user to visualize th&teling, get more detailed information on
the dependencies between the clusters and within the dusée what entities are placed in a particular
cluster and retrieve the sizes of the clusters.

Results of the cluster analysis are evaluated by the dompgres at PMS in Sotograph and building
blocks are selected as merges for a next analysis rounds@ssded in the previous Section 6.3.

7. Results of the cluster analysis approach

This section presents the results of several variationduster analysis that we performed on the
building block hierarchy of the PMS software. We start withave setup for the experiment, where
we just provide the nodes and edges as Sotograph extraetad e then apply our leveled approach
to cluster one subsystem in detail, after which we start wngrkvith improved start solutions for
the clustering process, based on prior knowledge. In togalnwvestigate 5 solutions in Sections 7.1
through 7.5. For each analysis that we perform, we discliessabpe of the analysis and present the
evaluation of the domain experts. In Section 7.6 we evaloat@pproach.

7.1. Complete building block hierarchy

Cluster analysis was performed on the complete buildingkbtteerarchy. The input file given to Bunch
consisted of 369 nodes (building blocks) and 2232 edgegMeid dependencies). We applied Bunch
three times, because the genetic algorithm does not gesrtrd same results for each run. Table VI
shows the results for this analysis.

As can be seen in Table VIl the MQ values do not differ sigaifitty, indicating that each clustering
is of almost equal quality. We therefore visualized all ehresults in Sotograph and subsequently, all
three solutions were evaluated by domain experts at PMS.dbh&ain experts however could not
extract clusters of building blocks from the three clustgsito merge for a next analysis round. The
reasons for that include:

e The three executions of Bunch result in three completefgidift clusterings, which made them
hard to compare.

e The resulting clusters differed significantly in size (LQ@Gp to a factor 20,000.

e On average around 25% of the clusters contained one (log}lbuilding block.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

20 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Table 1X. Results of analysis on one subsystem only
Result Number of clusters Objective Function Value (MQ)

1 12 3.906895931
2 13 5.343310963
3 12 4.470282759

Table X. Results of analysis with one subsystem in detail
Result Number of clusters Objective Function Value (MQ)

1 13 3.782851141
2 19 4.331546729
3 15 3.921600527

e For some of the resulting clusters dependencies betwektirtgiblocks within that cluster were
not evident or were not there at all.

7.2. One subsystem in detail only

This analysis was performed on one subsystem only, napielyf orm of which all the building
blocks were analyzed in detail. The input file given to Bunahsisted of 121 building blocks as nodes
and 409 weighted dependencies as edges. Table IX showssthitsref three executions of the genetic
algorithm in Bunch.

All the three results were visualized in Sotograph. Domaipeets have evaluated all three
clusterings. Domain experts at PMS could not extract gmggiof building blocks from the three
clusterings for a next analysis round. The reasons for titdtide:

e The three executions of Bunch result in three completefgidnt clusterings, which made them
hard to compare.

e A big difference in size of the clusters with respect to LO@ taia factor 100.

e For some clusters dependencies between building blockegbia the clusters were not evident
or were not there at all.

7.3. One subsystem in detail — others at higher level

This analysis was performed on the hierarchy with one suesy& detail (platform), while keeping
the others at the higher level. The input file given to Bunchsisted of 138 nodes (building blocks)
and 655 edges (weighted dependencies). Table X shows thiesrebthree executions of the genetic
algorithm in Bunch.

All three results were visualized using Sotograph, afteictvidomain experts have evaluated the
proposed clusterings. However, the domain experts at PM&I ¢t extract groupings of building
blocks from the three clusterings for a next analysis roiling. reasons for that include:

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 21

(il

Table XI. Results of analysis with one subsystem in detaiiprioved start solution
Result Number of clusters Objective Function Value (MQ)

1 31 3.865839028
2 29 3.493834319
3 27 2.750577642

e The domain experts had difficulty understanding the pres@fanultiple subsystems in one
particular cluster in the results. This cluster containaole 40% of the total size in lines of code
of the entire repository.

e A big difference in size of the clusters with respect to LO@ taia factor 200.
e On average (over the three runs) 20% of the clusters cowmtaine (low-level) building block.

e For some clusters the dependencies between building bfilaked in these clusters were not
evident or were not there at all.

7.4. One subsystem in detail — improved start solution

This analysis was performed on the building block hieramttli one subsystem in detail, namely the
platformsubsystem, while the other subsystems were analyzed aharh&yel. Each of these higher
level subsystems were placed in a cluster to start with, kvBisnch enables through the so called
‘user-directed’ clustering input file. The basic idea behihis setup is that all the building blocks of
the platform subsystem will be divided among the other ssiesys.

The input file for Bunch consisted of 138 building blocks ade®and 655 weighted dependencies
as edges; a configuration-file assigned all higher levelysibsis to a cluster. Table XI shows the
results of three executions of the genetic algorithm in Bunc

Domain experts have evaluated the three results. The fimlitppoints were observed:

e The three executions of Bunch result in three completefgidnt clusterings, which made them
hard to compare.

e On average (over the three runs) 20% of the clusters comtaine (low-level) building block.

e For some clusters dependencies between building blockegia the clusters were not evident
or were not there at all.

e The third clustering has a nice distribution of the subsyst@ver the clusters; there are no
multiple subsystems present in a cluster.

Having evaluated the three results, the domain expertsmemmded to take the results from the
third clustering for a next analysis round. In agreemenhhie domain experts, we decided to take
all clusters containing more than 3 building blocks as a mdog the next analysis. The remaining
clusters were seen by the domain experts as not logical @nefftire the building blocks contained in
these clusters are used as single entities for the secohdmmaund. Table XII shows the results of

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

22 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

Table XllI. Results of analysis with one subsystem in detathproved start solution,

round2]
Result Number of clusters Objective Function Value (MQ)
1 12 2.132841135

Table XIll. Results of analysis with two predefined largestiurs
Result Number of clusters Objective Function Value (MQ)
1 29 2.022904392

one execution of the analysis. We have chosen to performardyexecution, because of lack of time
of the domain experts to review three new executions forséisp.

The input file for Bunch consisted of 42 nodes and 226 edgegnWisualizing the results of the
analysis in Sotograph the domain experts observed tha tha&s one huge cluster containing around
40% of the lines of code of the entire repository. This is restichble for PMS and therefore we decided
not to continue with the analysis of one subsystem, whil@kegthe other subsystems at the highest
level.

7.5. Two predefined large clusters — improved start solution

We performed another cluster analysis on the building bloiekarchy, but this time we had two
predefined large clusters as start solution. We preparsttrissolution with the two predefined clusters
through the merging of the building blocks in the clusterfole executing the analysis. The two
clusters were defined by domain experts: one cluster cadaimainly image handling software and
the other contained mainly scanning software. The firstetusontains 2 subsystems from the building
block hierarchy and the latter cluster contains 11 subsystieom the building block hierarchy. The
remaining 2 subsystems were analyzed in detalil.

As a start solution there is already a ‘bipartitioning’ oétkource code repository. The idea behind
the analysis is to see how the remaining building blocks aneed among the two partitions, or see
how the remaining building blocks are grouped in new pariii Table XIII shows the results of one
execution of the genetic algorithm.

The input file given to Bunch consisted of 129 building bloas nodes and 485 weighted
dependencies as edges. Domain experts observed the fojldems:

o A few building blocks were divided among the two predefinadtgrs.
e The majority of the building blocks were clustered in 27 tdus.

e For some of the 27 clusters dependencies between buildouikdplaced in the clusters were
not evident or were not there at all.

Together with the domain experts we decided to continue tgranalysis, by merging the building
blocks that were clustered with the two predefined clusiiéne. remaining building blocks (in the 27

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 23

Table XIV. Results of analysis with two predefined large t8us, round 2
Result Number of clusters Objective Function Value (MQ)
1 20 3.069774546

other clusters) were not merged and are used as single étittye next analysis round. Table XIV
shows the results of one analysis with the genetic algorithBunch.

The input file given to Bunch consisted of 109 building blods nodes and 385 weighted
dependencies as edges. Domain experts observed the fojldems:

e A few building blocks were divided among the two predefinadtgrs.
e The majority of the building blocks were clustered in 18 tdus.

e For some of the 18 clusters dependencies between buildouk®placed in the clusters were
not evident or were not there at all.

Because the building blocks that were clustered with the pnexlefined clusters had very low
dependencies or even no dependencies on the other builttiokshin the clusters, we decided that
continuing with this analysis — by merging the added buiiditocks to the two predefined clusters —
was not useful. Therefore we decided not to continue witratiaysis on the two predefined clusters.

7.6. Discussion

This section investigated whether cluster analysis allosui® obtain multiple independent components
from the original source code repository of the PMS case. ¥ huilding blocks as entities for
analysis, static dependencies as similarity measure anghatig algorithm to execute the actual
analysis. We performed the analysis using the leveled appron several parts of the source code
repository. This means that some parts of the repositornaaatyzed in detail, while other parts are
analyzed at a higher level.

Domain experts from Philips Medical Systems evaluatedititerfnediate) results that we obtained
by visualizing these results in Sotograph. However, thealoraxperts could not identify groupings
of building blocks from clusterings that could serve as ‘ge=’ for a next analysis because of the
following reasons:

o Different executions of the algorithm result in differeftisterings, which makes it hard to
compare the results. This is similar to the stability crderthat Wu et al. introduced for
clusterings [23].

e Multiple clusters contain one building block, i.e., therextity of the cluster distributions is
high [23].

e Multiple clusters contain building blocks that are not tethaccording to the domain experts,
i.e., the authoritativeness of the result is low [23].

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

24 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

The intermediate results of the analysis were often foundetdnon-acceptable’ for the domain
experts. A direct consequence then is that the leveled apprdoes not work, as this approach relies
on previous analysis rounds which need to be acceptablerte degree to continue with the analysis.

The fact that the intermediate results could — in most casemtbe used by the domain experts is
also caused by the genetic algorithm of Bunch. The algorjifoduces results with clusters that highly
differ in size (LOC). The system’s architects found thastisinot desirable for the PMS case. ‘Cluster
size equality’, or in other words a small extremity [23], isemuirement that was not made explicit
in the beginning of this research, but during the evaluatieith the domain experts, it became clear
that this requirement is very important to the domain expéntsome cases the genetic algorithm also
produced clustering results with one cluster containingpuf0% of the original size of the repository,
which was deemed undesirable by the domain experts.

Also of importance to note for the practical applicabilifytoe cluster analysis approach is the fact
that it takes a long time to perform the actual clusteringafeystem of the size of PMS. Some of the
clusterings that we have performed have taken 10 hours oe,méth some clusterings taking more
than 24 hours. Another factor to take into account is thatrtgadomain experts evaluate a potential
remodularization can be costly. In our case, evaluatingugdulness of a remodularization done by
cluster analysis takes at least 1/2 day.

Using Bunch also caused some problems. More specificatlyjging a pre-defined starting solution
to Bunch proved problematic, because Bunch sometimesaparspre-defined clusters and reclusters
the elements contained in these clusters. Such a situaiparticularly undesirable when domain
experts are able to provide an initial clustering.

8. Related work

The remodularization of (legacy) applications is an activea of research, in which both clustering
and concept analysis are in use. However, most of the expatgrdescribed in literature report on
systems that are (significantly) smaller than our PMS sgttin

Snelting provides a comprehensive overview of applicatiohFCA to software (re)engineering
problems in general, and remodularization in particulfr$df and Reps report on a method that uses
FCA to identify modules in legacy C code to improve the supetof the source code. Their eventual
aim is to migrate procedural code to object-oriented codeibning modules into classes [16].

Tilley et al. present an overview of academic papers thatntepe application of formal concept
analysis to support software engineering activities [6leyf conclude that the majority of work has
been in the areas of detailed design and software maintenanc

Hutchens and Basili identify potentianodules by clustering on data-bindings between
procedures [7]. Schwanke also identifies potential modhtgsclusters call dependencies between
procedures and shared features of procedures to come #ab#traction [8].

In a Cobol context, Van Deursen and Kuipers identify potdntibjects by clustering highly
dependent data records fields in Cobol. They apply clustalysis to the usage of record fields,
assuming that record fields that are related in the impleatient are also related in the application
domain and therefore should reside in an object [9].

Mancoridis et al., creators of the Bunch clustering tool wsedi during our experiments,
identify high-level system organizations by clusteringdules using the dependencies between these

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 25

modules [10, 11, 24]. Anquetil and Lethbridge on the othemchase file names for creating an
abstraction of the architecture using clustering [25].yTéleo provide an overview of a range of issues
to tackle when adopting cluster analysis, and illustratedfiects on several open source systems as
well as a system comprising two million lines of code [26].

Wierda et al. use clustering to group classes of an existajgrt-oriented system of significant size
into subsystems, based on structural relations betweecldabses. They show with a case study on a
system consisting of around 2,700 classes that clusteysinalas applicable in practice for the given
problem size using a hill-climbing algorithm combined wsimulated annealing [21].

Schwanke’s tool Arch implements a heuristic semi-autoerapiproach to software clustering [8].
Similar to Bunch, Schwanke’s heuristics try to maximizedbbesion of procedures placed in the same
module, while minimizing coupling between procedures tkatde in different modules.

Wu et al. offer a comparison of six clustering algorithmglirding the Bunch tool we used [23].
Their three primary criteria are stability (which indicatevhether a small change in the system
results in a small change in the clustering), authoritatgs (how close is the clustering result to
an authoritative result) and extremity of the cluster disttion (does the clustering algorithm avoid
many large and many small clusters). Bunch did not scoreavethe stability criterion, but it scored
the best in the extremity and authoritativeness test.

Magbool and Babri provide an assessment of the behavior wbus similarity and distance
measures that may be employed during software clusterihgzhwthey applied to legacy systems
comprising thirty to seventy thousand lines of code [27].

Andreopoulos et al. propose a (layered) clustering apjprtieat besides static properties makes use
of dynamic information, such as the number of function irateans during run time [28]. They applied
their approach to the Mozilla browser, which comprises foillion lines of code.

Recently, Adnan et al. used clustering to semi-autom#gicabroup the interface definitions of
a large scale industrial software system [29]. The aim oif thegrouping process is to increase the
coherence within an interface and to reduce the build timenshmodification to an interface is made.
While their dependencies are obtained from a multi-millgystem written in C, their regrouping is
done within particular subsystems, which is how they deti wie scalability problem. They also aim
at around seven clusters (interfaces) per subsystem. &ppnoach is to automatically cluster until
around 20 clusters appear, after which the remaining ctistee merged by hand. In this way they
have successfully approached remodularizations profgmsegstem experts entirely by hand.

From a broader perspective, remodularization can be ceresidas a software architecture
reconstruction activity [30]: remodularization search@sa view on the current module structure,
in which the actual (as implemented) dependencies are tedfleBesides concept and cluster analysis,
other techniques have been proposed, involving the asalysiesign decisions [31], the identification
of change coupling in different versions included in a réqoog [32], or the use of information retrieval
methods [33]. It remains future work to see whether and hal sechniques can be applied to systems
of similar size as our PMS case.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

26 M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

9. Conclusion

In this paper we have presented our experiences with usmgpiaconcept analysis (FCA) and cluster
analysis to remodularize a large software repository frameaical diagnostic imaging product from
Philips Medical Systems. In that context, we have made th@¥mg contributions:

e We discussed how FCA can be applied to a large-scale, naatiridustrial software repository.
In literature we could not find cases with comparable goatsszale.

e We discussed how cluster analysis can be applied to that Eageescale software repository.
Again, we did not find any papers describing cases with coaipaigoals and scale.

e We presented thieveled approachwhich makes use of the existing hierarchy in the software
repository, in order to cope with scalability issues théear

e We presented theoncept qualitya measure that aids in choosing the optimal concepts ofd set
conceptsto consider in a next analysis round when appliimeiveled approach in combination
with formal concept analysis.

FCA provides ways to identify sensible groupings of objebtt have common attributes. In the
context of our case study, we used building blocks as obggadsfor the attributes we combined two
sets: a set of attributes indicating that building bloclestaghly dependent on each other (information
extracted from source code) and a set of attributes thagsept certain features of the building blocks
(information obtained from documentation and domain etgder

We furthermore used a leveled approach that allows to aealyme parts of the software at a higher
level. Results from previous analyses are used for sueeeasialysis rounds, where more parts are
analyzed in detail. The leveled approach is supported bgdmeept quality measure, which selects
what parts should ideally be analyzed in detail in a suceessialysis round.

When evaluating the results together with the domain egpartPMS, we see that the idea of
applying the leveled approach in combination with the cphcgiality works reasonably well, as we
are able to decrease the number of concepts significantlyei#er, the resulting number of concept
subpartitions (CSPs) and by extension the possible nunfbrenmmdularizations remains enormous.
Therefore, we have to conclude that applying FCA for remaxdzihg within our industrial is not
feasible in practice.

Based on our findings, it is our our opinion that FCA is veryrayppiate for recognizing patterns in
or groupings of objects based on attributes, but FCA is not well suited for an analysis that should
result in a precise non-overlapping partitioning of theeabpet.

We have also investigated an alternative approach for ratadding the PMS software repository,
namely through cluster analysis. For this analysis, weebagding blocks as the entities to cluster, the
strength of static dependencies as similarity measure gedetic algorithm to evaluate the clustering
quality. We again used a leveled approach, similar to thevamnased for the formal concept analysis
approach. As a basis for our approach, we used the Bunch tool.

During the evaluation of (intermediate) results with them@in experts however, a number of
shortcomings to the clustering approach were identifiecreMpecifically, the fact that the proposed
clusters differed significantly in terms of size was seen agtumbling point, i.e., the so-called

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 27

extremity of the proposed clustering. The domain expertevadso not convinced by some of the
proposed clusterings as the proposed clusters containttingublocks that are unrelated in their

experience. This is directly related to the authoritategsof the clustering approach. Finally, applying
the clustering algorithm multiple times resulted in di#fat clustering results, which was due to the
genetic algorithm that we used. Unfortunately, this alsatiébuted to the fact that the domain experts
found it hard to start using our cluster analysis approadtad remodularizing the current software
repository.

When we come back to our initial research question of whdtreral concept analysis and cluster
analysis are suited for splitting a large-scale softwaposéory, we have to conclude that for the
approach and the experimental setup that we chose, neittmealfconcept analysis nor cluster analysis
seems to be able to cope with the scale of the system undstsanal the constraints of the domain
experts. Nevertheless, we are still convinced that bothnigcies have their merit for solving similar,
yet smaller-scale challenges.

Lessons learned. Our study has given us insight into a number of issues whemgty remodularize
a large-scale software system with the help of formal cohaeplysis or cluster analysis. The most
important issues are discussed below.

e When domain knowledge is available and you want to use thaiaffoknowledge to define a
rough initial clustering, make sure that your clusteringl (i) supports a pre-defined starting
solution and (2) does not tear this initial clustering ap8rifortunately, Bunch failed for the
second criterion.

e When considering the use of formal concept analysis, aml@issessment of the feasibility of
the approach can be made, by evaluating the degree of owditlag@ objects in the concept set. If
this overlap is minimal, the number of CSPs — and possibleutaosizations — grows quickly.

Future work. Currently, the Software Architecture Team (SWAT) at PMS isdertaking a
remodularization of the PMS application using both streadtunformation from the source code
and domain knowledge from the software architects, witlemyt specific tool support for proposing
clusterings. However, they do see the fact that domain kexgé of some parts of the system is not
complete as a major hurdle and, as such, automated tool$ stillplay an important role in the future
as well. In this light, we have established a number of futesearch directions that we would like to
investigate:

e Using the results of formal concept analysis as a startihgiea for the clustering analysis.

e Switch clustering tools, because Bunch has difficultiessta dith pre-defined starting solutions.
More specifically, we have experienced that clusters thatpart of the pre-defined starting
solution are subdivided and reclustered, a situation thaftén undesirable.

e Using other approaches such as information retrieval nosththe identification of change
coupling over different versions and the analysis of pregidesign decisions.

ACKNOWLEDGEMENTS

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

28

M. GLORIE, A. ZAIDMAN, A. VAN DEURSEN, L. HOFLAND

(il

This work could not have been carried out without the suppbrhany colleagues at Philips Medical Systems.
This work is sponsored by the NWO Jacquard Reconstructearel project.

REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

. Glorie M, Zaidman A, Hofland L, van Deursen A. Splitting &g software archive for easing future software evolution

an industrial experience report using formal concept aigliProceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMIEEE Computer Society: Los Alamitos, CA, USA, 2008; 153216

. Arévalo G, Ducasse S, NierstraszRormal Concept Analysjd NCS vol. 3403/2005, chap. Lessons Learned in Applying

Formal Concept Analysis to Reverse Engineering. Sprirgeringer Berlin / Heidelberg, 2005; 95-112.

. Tonella P. Concept analysis for module restructurB&E Transactions on Software Engineerid@01;27(4):351-363.
. Antoniol G, Di Penta M, Casazza G, Merlo E. A method to rganize legacy systems via concept analyRisceedings of

the International Workshop on Program Comprehension (IWREEE Computer Society: Washington, DC, USA, 2001,
281-292.

. Snelting G. Software reengineering based on conceftdatProceedings of the Conference Software Maintenance and

Reengineering (CSMRIEEE Computer Society: Washington, DC, USA, 2000; 3-10.

. Tilley T, Cole R, Becker P, Eklund P. A survey of formal cept analysis support for software engineering activities.

Formal Concept AnalysjsLNCS vol. 3626/2005, Ganter B, Stumme G, Wille R (eds.), Sprin@pringer Berlin /
Heidelberg, 2005; 250-271.

. Hutchens DH, Basili VR. System structure analysis: eliisyy with data bindingslEEE Transactions on Software

Engineeringl985;11(8):749-757.

. Schwanke RW. An intelligent tool for re-engineering s@fte modularityProceedings of the International Conference on

Software engineering (ICSHEEE Computer Society: Los Alamitos, CA, USA, 1991; 83-92.

. van Deursen A, Kuipers T. Identifying objects using ausand concept analysi®roceedings of the International

Conference on Software Engineering (ICSEEEE Computer Society: Los Alamitos, CA, USA, 1999; 246525
Mancoridis S, Mitchell B, Rorres C, Chen Y, Gansner E.ngsautomatic clustering to produce high-level system
organizations of source codProceedings of the International Workshop on Program Cahension (IWPG)IEEE
Computer Society: Washington, DC, USA, 1998; 45-52.

Mancoridis S, Mitchell B, Chen Y, Gansner E. Bunch: A tusg tool for the recovery and maintenance of software
system structuresroceedings of the International Conference on SoftwarenMaance (ICSM)IEEE: Washington, DC,
USA, 1999; 50-59.

Sotograph. http://www.hello2morrow.com/produasigraph. Last visisted on: January 14th, 2009.

Wille R. Restructuring lattice theory: an approach Hase hierarchies of concept®rdered setsRival | (ed.), Reidel:
Dordrecht, The Netherlands, 1982; 445-470.

Ganter B, Wille RFormal Concept Analysis: Mathematical FoundatioBgringer-Verlag: Berlin, 1997.

Arévalo G, Ducasse S, Nierstrasz O. Discovering uoigatied dependency schemas in class hierarcRieseedings of
the Conference on Software Maintenance and ReengineetiByIR) IEEE Computer Society: Washington, DC, USA,
2005; 62-71.

Siff M, Reps T. Identifying modules via concept analystsoceedings of the International Conference on Software
Maintenance (ICSM)EEE Computer Society: Washington, DC, USA, 1997; 170-179

Glorie M. Philips medical archive splitting. Master's&sis, Software Engineering Research Group, Delft Urityeos
Technology 2007.

ConExp. http://sourceforge.net/projects/conexst kesited on: January 14th, 2009.

Mitchell BS, Mancoridis S. On the evaluation of the bursgarch-based software modularization algorittBoft
Computing - A Fusion of Foundations, Methodologies and idppbns2008;12(1):77-93.

Mitchell BS, Mancoridis S. On the automatic modulai@abf software systems using the bunch tdBEE Trans. Softw.
Eng.2006;32(3):193-208, doi:http://dx.doi.org/10.1109/TSE.2(16.

Wierda A, Dortmans E, Somers LL. Using version inform@iin architectural clustering - a case studsoceedings of the
Conference on Software Maintenance and Reengineering R§.SREE Computer Society: Washington, DC, USA, 2006;
214-228.

North SC, Koutsofios E. Application of graph visualizatiProceedings of Graphics Interface '9€anadian Information
Processing Society: Banff, Alberta, Canada, 1994; 235-245

Wu J, Hassan AE, Holt RC. Comparison of clustering aljors in the context of software evolutioRroceedings of
the International Conference on Software Maintenance MESEEE Computer Society: Washington, DC, USA, 2005;
525-535.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

Il

SPLITTING A LARGE SOFTWARE REPOSITORY FOR EASING FUTURE SDWARE EVOLUTION 29

24. Mitchell BS, Mancoridis S. Comparing the decomposgignoduced by software clustering algorithms using siritylar
measurementdnternational Conference on Software Maintenance (ICSHEE Computer Society: Washington, DC,
USA, 2001; 744-753.

25. Anquetil N, Lethbridge TC. Recovering software arattitee from the names of source filedournal of Software
Maintenance: Research and Practit899;11(3):201-221.

26. Anquetil N, Lethbridge TC. Experiments with clustering a software remodularization methd¥oceedings of the
Working Conference on Reverse Engineering (WCHHE Computer Society: Washington, DC, USA, 1999; 235-255

27. Magbool O, Babri HA. Hierarchical clustering for softwaarchitecture recoveryEEE Transactions on Software
EngineeringNovember 200733(11):759-780.

28. Andreopoulos B, An A, Tzerpos V, Wang X. Clustering lasgéware systems at multiple layetsf. Softw. TechnoR007;
49(3):244-254.

29. Adnan R, Graaf B, van Deursen A, Zonneveld J. Using alustalysis to improve the design of component interfaces.
Proceedings International Conference on Automated SoétEagineering (ASE)JEEE Computer Society: Washington,
DC, USA, 2008; 383-386.

30. van Deursen A, Hofmeister C, Koschke R, Moonen L, Riva @mghony: View-driven software architecture
reconstructionProceedings of the IEEE/IFIP Conference on Software Aechitre (WICSA)IEEE Computer Society:
Washington, DC, USA, 2004; 122-132.

31. Jansen A, Bosch J, Avgeriou P. Documenting after the Reatovering architectural design decisiodsurnal of Systems
and Software2008;81(4):536-557.

32. Zhou Y, Wirsch M, Giger E, Gall H, Lu J. A bayesian netkvbased approach for change coupling predictRnoceedings
of the Working Conference on Reverse Engineering (WCIREE Computer Society: Washington, DC, USA, 2008; 27—
36.

33. Kuhn A, Ducasse S, Girba T. Semantic clustering: Iéieng topics in source codénformation & Software Technology
2007;49(3):230-243.

Copyright(©) 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@008;00:1-7
Prepared usingmrauth.cls

