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ABSTRACT

Cross-cutting concerns are pieces of functionality that have
not been captured into a separate module, thereby hinder-
ing program comprehension and maintainability. Solving
these problems requires first identifying these cross-cutting
concerns in pieces of software. Several methods for identifi-
cation have been proposed but the option of using software
repository mining has largely been left unexplored. That
technique can uncover relationships between modules that
may not be present in the source code and thereby provide
a different perspective on the cross-cutting concerns in a
software system. We perform software repository mining on
the repositories of two software systems for which the cross-
cutting concerns are known: JHotDraw and Tomcat. Based
on the results of the evaluation, we make some suggestions
for future directions in the area of identifying crosscutting
concerns using software repository mining*.

1. INTRODUCTION

In software development, programmers try to achieve a
separation of concerns: each piece of functionality should
be implemented in its own distinct module. Object-oriented
programming facilitates this separation by providing a sys-
tem of classes, but research has shown that even when design
principles are consciously applied, some concerns do not fit
in the existing modularization. These so-called cross-cutting
concerns [17] lead to two problems: (1) they hinder program
comprehension because programmers have to keep track of
various concerns while inspecting a piece of code and (2)
they decrease maintainability of software since modifying
one piece of functionality requires changing code in many
places [12,24]. Identifying cross-cutting concerns is a first
step towards solving these problems.

Many methods have been proposed for finding cross-cutting
concerns in software systems. Most of these involve finding
patterns in source code, while others use dynamic analysis.

*This work is described in more detail in the MSc thesis of
Frank Mulder [25].
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Another option, which has largely been left unexplored, is
to use software repository mining for this purpose.

Software repository mining deals with extracting implicit
information from software repositories, e.g. version control
systems (VCS) such as CVS and Subversion. Version control
systems are commonly used in software development to fa-
cilitate working in teams. While not originally designed for
mining purposes, we can exploit the (implicit) information
stored in those repositories to support software maintenance.
In particular, the fact that certain files are often changed to-
gether may provide a clue to where cross-cutting concerns
are present in the system. This is because developers have
to change many entities if the elements of a concern are scat-
tered throughout a system. This idea does rely on the notion
of self-contained commits, i.e. transactions in which all files
are related to one particular concern. While doing so is gen-
erally accepted as good practice and many developers do so,
not all projects have such an official commit policy!. This
should be taken into account when mining version control
systems.

Mining version control systems allows to uncover relations
that may not be present in the source code, thereby provid-
ing a new perspective on finding cross-cutting concerns in
a software system. In particular, mining a VCS allows to
reveal logical coupling: “implicit and evolutionary depen-
dencies between the artifacts of a software system which, al-
though potentially not structurally related, evolve together
and are therefore linked to each other from an evolutionary
point of view” [10]. This co-change information can be ex-
tracted using data mining techniques. As we are mining for
items that are frequently changed together, it seems natural
to use the technique called frequent itemset mining, which
is able to discover interesting relations in a database, e.g.,
relations of the type “customers who bought product x also
bought product y”. This leads us to the central research
question of this paper:

Can we apply frequent itemset mining on version
control system data to find cross-cutting concerns
in a software system?

Answering this question requires developing a tool that
outputs frequent itemsets for a given version control sys-
tem. Those itemsets are cross-cutting concern candidates

!The KDE project prescribes the following in its SVN com-
mit policy: “Please commit all related changes in mul-
tiple files [...] in the same commit” and “Every bug-
fix, feature, refactoring or reformatting should go into
an own commit”; see http://techbase.kde.org/Policies/
SVN_Commit_Policy#Commit_complete_changesets



and should be checked to see if they actually represent cross-
cutting concerns. A short literature survey that we per-
formed revealed that evaluation of aspect mining techniques
is a weak point of many studies; a conclusion shared by Mens
et al. [22]. Furthermore, many evaluations are of a subjec-
tive nature and there is a lack of quantitative information,
which makes comparing techniques difficult. Therefore, we
will pay particular attention to the evaluation of our results:
manual assessment is avoided in favour of automatic eval-
uation against known cross-cutting concerns in benchmark
systems.

Mining a version history can be done on various levels of
granularity: we can consider the names of the files which
have been changed in each transaction, or we can mine at
the finer-grained level of methods. Our research takes both
file-level and method-level mining into account and we will
describe how well both techniques perform in terms of speed
and result accuracy.

This paper is structured as follows: we start with an
overview of previous research related to the topic of this
paper in Section 2. Next, the design and implementation of
our tool-chain are described in Section 3. Section 4 then dis-
cusses the results of applying our tool-chain on two different
software systems. Finally, in Section 5 we draw conclusions
from these results and suggest directions for future work.

2. RELATED WORK

The act of finding cross-cutting concerns is often called
“aspect mining”. A detailed survey of aspect mining tech-
niques was performed by Kellens et al. [16] and we list some
notable techniques in this section.

Identifier analysis is based on the idea that cross-cutting
concerns are often implemented by the rigorous use of nam-
ing and coding conventions [23] and groups together iden-
tifiers that have similar names or meanings. Fan-in anal-
ysis identifies methods that are called from many different
places as cross-cutting concern candidates [21]. Clone detec-
tion exploits the fact that when it is not possible to restrict
a concern to one module, developers are forced to write the
same code over and over again [6]. Dynamic analysis uses
program traces to find recurring execution patterns, thereby
identifying cross-cutting concern candidates [3,26]. Finally,
history-based aspect mining uses information from version
control systems to find cross-cutting concern candidates.

Not much research has yet been done on history-based as-
pect mining. Actually, only one research group has done a
study in which they actually found cross-cutting concerns
using a software repository. That group consists of Breu,

Zimmermann and Lindig; they coined the term HAM: History-

based Aspect Mining [4,5]. Similar to fan-in analysis, they
consider the number of calls to certain methods (i.e. the fan-
in). In contrast to fan-in analysis, which considers the fan-
in values of the methods in a certain snapshot of the source
code, HAM looks at additions of methods calls (i.e. increases
in fan-in). It is unclear whether this historical perspective
adds anything to “plain” fan-in analysis. In fact, HAM fails
to exploit the logical coupling information that a software
repository provides. The technique we describe in this paper
does use this information, by considering frequent additions
and modifications of files and methods.

Another relevant study has been done by Canfora, Cerulo
and Di Penta, in which the evolution of cross-cutting con-

cerns in the JHotDraw application was investigated [8]. Their

technique relies on a known set of concerns and thus cannot
identify them on its own. However, their research provides
some nice insights into how cross-cutting concerns evolve
over time. It appears that cross-cutting concerns are often
introduced in one transaction and then extended in later
transactions (an observation also made by Breu et al. [4]).

A more recent contribution to the body of knowledge in
this area comes from Adams et al. [1]. They present COM-
MIT, a history-based cross-cutting concern mining approach
which uses a robust, statistical clustering mechanism to deal
with small and even large variations in the instances of a
concern throughout time. They applied COMMIT on Post-
greSQL and NetBSD and compare their results to CBFA
(Clustering-Based Fan-In analysis) [29] and HAM [4,5] and
obtained good results. They also show that COMMIT is
complementary to CBFA and HAM.

Research in the area of software repository mining has
been surveyed by Kagdi et al. in 2007 [15].

3. TOOL-CHAIN STRUCTURE AND IMPLE-
MENTATION

This section describes the tool-chain with which we iden-
tify cross-cutting concern candidates. As indicated in the
introduction, the tool should be able to mine frequent item-
sets from a version control system. It should also have the
ability to handle large systems with long histories and to
evaluate the resulting itemsets in a systematic way.

First, our technique is described in terms of a common
framework. Next, we discuss the various modules in our
tool-chain, including design decisions and implementation
details.

3.1 Fitting in a Common Framework

Marin et al. [20] propose a common framework for aspect
mining, which “allows for consistent assessment, compari-
son and combination of aspect mining techniques”. Their
framework requires various parts of a technique to be de-
fined in a consistent way. First of all, the search goal defines
what kinds of cross-cutting concerns the technique aims to
identify; a classification of 13 cross-cutting concern sorts? to
choose from has been made by the same authors [19]. Their
framework also prescribes that the format in which the re-
sults of the aspect mining process are presented should be
defined. Furthermore, we should define the relation between
the mining results and the targeted concerns; this mapping
also describes how we should understand and reason about
those results. Finally, we should define the metrics to as-
sess the mining technique’s results. Our technique can be
explained in the terms of that framework with the following
definitions:

Search goal Finding those concerns that exhibit frequent
co-change behaviour. One may think of concern sorts
such as Consistent Behaviour and Contract Enforce-
ment, but these will only be identified when the method
implementing the desired functionality is renamed (please
see Marin’s concern sort classification [19] for an ex-
planation of these sorts). Concerns of the Expose Con-
text and Exception Propagation sorts may very well be
identified by our technique, as both require changes of
every method in a call stack.

2Sorts are generic descriptions of crosscutting functionality
that can ease classification of cross-cutting concerns



Presentation Itemsets, consisting of the names of entities
(files or methods) that were frequently changed simul-
taneously.

Mapping The entities in the itemsets principally match
the cross-cut elements but entities implementing cross-
cutting functionality may show up in there as well.

Metrics Starting from a known set of cross-cutting con-
cerns for the subjects that we analyse, we use the so-
called F1 measure to determine how well an itemset
represents a cross-cutting concern (see Section 3.5.2
for details). For each itemset we determine the best
matching concern, i.e. the one with the maximal F1.

3.2 Tool-chain Structure

Our tool-chain follows the typical steps of software repos-
itory mining tools: data acquisition, processing and presen-
tation. More specifically, it acquires data from a Subversion
repository and transforms them into changesets (which con-
sist of the names of entities added or modified in each trans-
action). These are then processed using frequent itemset
mining and the resulting itemsets are analysed to get cross-
cutting concern candidates. Finally, the user is presented
with a list of itemsets, which can also be used to produce
graphs for visualising the results.

Our tool-chain is currently limited to analysing systems
written in Java but can easily be adapted to other object-
oriented languages.

Our approach is able to mine the version control system
for evidence of co-change at two levels of granularity, namely
file-level and method-level. We now discuss the pros and
cons of both:

File-level mining This level of mining deals with files that
were frequently changed together. Advantages are that
it requires little effort to extract the data, and the num-
ber of entities to analyse will be relatively small (com-
pared to method-level mining), with short execution
times as a result. Additionally, non-source code files
(e.g. configuration files) can also be identified as being
part of a concern. A disadvantage is formed by the
fact that file-level mining is not very precise (probably
leading to false positives in the result set).

Method-level mining On this level, a syntactic analysis
of the source files is performed, such that additions
and modifications of methods can be recorded. An ob-
vious disadvantage is that we need to download the
contents of files to analyse their contents. The syntac-
tic analysis that is needed to find out which methods
have been modified also takes time. As files typically
contain more than one method, the resulting data set
will be larger than the one we got at file-level mining.
The data mining algorithm that analyses these data
will therefore take longer to execute and will also have
larger memory requirements. However, the results of
method-level mining are probably more precise than
those found with file-level mining, making them more
useful as cross-cutting concern candidates.

We clearly have to make a trade-off between the time and
memory requirements of the technique and the result ac-
curacy. We will shed more light on this when discussing
the results of our case studies. But first, the next sections
discuss each module of the tool-chain in more detail.

3.3 Data Acquisition

As indicated in the previous section, our tool-chain oper-
ates on Subversion repositories. As CVS repositories can be
converted to a Subversion repository using cvs2svn®, we are
also able to deal with CVS repositories. We use SVNKit?, a
Java Subversion library, to fetch entries from a Subversion
repository. Similar to what Breu et al. [4] did, we reinforce
(combine) two changesets if they come from transactions
that have been committed by the same author within a cer-
tain period of time. This compensates for the behaviour of
some programmers to frequently commit small transactions
which are actually related.

Some of the changesets are filtered to avoid noise: for ex-
ample, a file may be committed both to a branch and to the
trunk, making it appear twice in the output. Filtering may
also help in avoiding irrelevant data at an early stage: we
can filter out changesets containing very few or very many
items if they produce itemsets that are not likely to be valid
cross-cutting concern candidates. In addition, we keep track
of files that have been renamed, moved or copied using Sub-
version’s copy command.

As indicated before, method-level mining additionally re-
quires a syntactic analysis of the source code files. This is
done using a modified version of DiffJ®, which is like the
Unix program diff, but specifically for Java code. The un-
modified version only reports changes in the highest node
in an abstract syntax tree. We modified the source code in
order to capture every method addition, even when this is
done as part of the addition of a class. We also modified it
in such a way that it outputs the changes in a format usable
by our tool-chain.

3.4 Frequent Itemset Mining

A common way to mine patterns in a database is fre-
quent itemset mining (FIM). Informally, this means that we
search for sets of items of which the number of occurrences
is above a certain threshold. Frequent itemsets are typically
used as the first step in association rule mining. Many peo-
ple are familiar with association rule mining in the context
of online stores, where recommendations such as “customers
who bought product x also bought product y” are given.
For example, the frequent itemset {Bread, PeanutButter}
may have been found (meaning that these products were
often bought together), and from this, the rule Bread =
PeanutButter is generated, generalising the previous state-
ment by not only noting that they are often bought together,
but also concluding that there is a relation between these
two.

For our purpose, we only need the frequent itemset mining
part: we are just looking for sets of entities that are com-
monly changed together, and we do not need to generate
rules, although we do assume that the frequent occurrence
of sets of entities implies that there is a relation between
those entities [30]. What follows is a formal definition of
frequent itemsets.

3.4.1 Definition

Let I = {I1,1I2,...,In} be a set of items and X C I an
itemset. Further, define database D as a set of transactions:

3http://cvs2svn.tigris.org
‘http://svnkit.com
Shttp://www.incava.org/projects/java/diffj/



D = {t1, ta,. .. ,tn}, where t; = {Iil, 17;2, e Izk} and Iij S
I. Also, let t(X) be the set of transactions that contain
itemset X, formally ¢(X) = {Y € D|Y D X}. Finally, the
support of an itemset X is the fraction of transactions in the
database that contain X: support(X) = % [2,11].

Then X is called a frequent itemset when its support
is higher than a given minimum support: support(X) >
minsupport. The set of all frequent itemsets is denoted by
FI; it is a subset of the power set of I, i.e. FI C 27.

3.4.2 Algorithm requirements

In association rule mining, the most relevant itemsets are
those with a large support and confidence. Support was
defined in the previous section and confidence is defined as
follows: conf(X = Y) = supp(XUY)/supp(X). In associa-
tion rule mining these values are used to determine whether
an association rule is valid or not. This means that if a
frequent itemset mining algorithm is used as part of associ-
ation rule mining, its running time can be reduced by setting
a high minimum support or confidence. However, confidence
cannot be used in our case, as frequent itemsets do not have
a direction (whereas association rules do have that: X =Y
is not the same as Y = X; hence the corresponding con-
fidence values will be different). And even while a higher
support also means a more relevant itemset in association
rule mining, this may not be the case for our technique. The
cardinality of itemsets could be at least as important when
identifying cross-cutting concerns, as changing one concern
can lead to changes in many files.

Therefore, we would like to analyse itemsets that do not
occur very frequently as well (even with a number of occur-
rences as low as 2). This means that an algorithm should be
able to complete within a reasonable amount of time even
when run with a low minimum support.

Also, it should be able to deal with the characteristics of
change history data. In a study of the nature of commits in
various software systems, it appeared that 80% of the com-
mits were tiny (which in this case means that less than 5 files
were changed in these commits) [14]. However, there were
also commits in which a relatively huge number of files were
changed. Thus, we notice a mix of dense and sparse input
data. In the most well-known FIM algorithm, Apriori, the
potential number of database scans is 2™ [11], where m is
the size of the largest transaction in the database, so the oc-
casional dense data tremendously hampers the performance
of this algorithm.

Before considering other FIM algorithms, we may wonder:
do we actually need all the output we got from performing
frequent itemset mining? For our purpose, we are not in-
terested in itemsets that are subsets of itemsets that have
the same support. It appears that generating only these rel-
evant itemsets can be done a lot faster than generating all
frequent itemsets. The itemsets we are looking for are called
frequent closed itemsets, and are discussed next.

3.4.3 Frequent Closed Itemsets

A frequent itemset is called closed when no supersets with
the same support exist (i.e. if its support is different from
the supports of its supersets) [13]. Formally, an itemset X
is closed if it satisfies I(t(X)) = X, where I(S) = Nypes T,
S C D (recall that ¢(X) means the transactions that contain
X, and D is the set of all transactions) [27]. Call the set
of frequent closed itemsets FCI, then it holds that FCI C

FI (in practice, |FCI| is orders of magnitude smaller than
IF1)) (7).

We tested the performance of several open source fre-
quent closed itemset mining implementations, by running
them on 1523 changesets of the repository of ArgoUML (on
file-level), with the minimum number of occurrences set to
2. While Apriori, the classical FIM algorithm could not
complete, even with a much higher minimum support, the
fastest Linear time Closed itemset Miner (LCM) implemen-
tation completed in 3 seconds.

In contrast to other algorithms, which basically enumer-
ate frequent itemsets and then prune away unnecessary sets,
LCM only generates frequent closed itemsets. This means
that the algorithm is linear in the number of frequent closed
itemsets. Also, several techniques are used to speed up com-
putation, in particular a technique which adjusts to parts of
the input being dense or sparse.

Apart from frequent closed itemset mining, one might also
consider mazimal frequent itemset mining. The set of max-
imal frequent itemsets is orders of magnitude smaller than
the set of frequent closed itemsets and can be generated
much faster. A set is called maximally frequent if it has no
frequent supersets (in contrast to closed sets, no restriction
is imposed on the support of those supersets). As we said
in the previous section, we are also interested in itemsets
with a large cardinality, even when their support is lower,
so maximal FIM does not do what we want. Thus, frequent
closed itemset mining appears to be the right choice.

3.5 Itemset Analysis

The goal of itemset analysis is to mark certain itemsets
(from the previous step) as cross-cutting concern candidates.
To this end, we need to specify parameters based on which
we can select those itemsets, and we should evaluate to what
degree a candidate represents a cross-cutting concern.

3.5.1 Selecting Cross-Cutting Concern Candidates

We have got the following criteria and parameters at our
disposal for selecting itemsets as cross-cutting concern can-
didates:

Support Itemsets that occur frequently may be more rele-
vant; if so, we can discard itemsets with a low support.

Cardinality Itemsets containing very few or very many
items may be irrelevant.

Lift Lift divides the actual support by the support that
would be expected by chance (i.e. if the files were
committed independently): lift(X UY) = supp(X U
Y)/(supp(X) - supp(Y')). This might give a more ac-
curate impression of how relevant an itemset is.

Changeset size We can discard very small and/or very
large changesets to limit the input of the mining mod-
ule, to limit the production of irrelevant itemsets.

Reinforcement interval The reinforcement interval influ-
ences how many changesets are combined and conse-
quently influences the resulting frequent itemsets.

To determine the constraints on the above criteria to get
as many relevant itemsets as possible (compared to the total
collection of itemsets found), we first establish what makes
an itemset relevant; this is what the next section is about.

3.5.2 Evaluation Criteria

In order to find out which candidates actually represent
cross-cutting concerns, we evaluate against known sets of



cross-cutting concerns. Those sets describe for each con-
cern which methods take part in it. For file-level mining,
we discard the method information, keeping only the names
of the files belonging to each concern. Using those data, we
can determine the precision and the recall for each itemset.
Maximising either one does not really make sense; for ex-
ample, we could always achieve a high precision by selecting
sets with very few items (as all items in the set will then
belong to a concern), but recall would be very low. There-
fore, we use a combination of precision and recall: the F1
measure, which is commonly used in information retrieval
and which is the harmonic mean of precision and recall [18]:

|Relevant N Retrieved|

precision =

|Retrieved|
|Relevant N Retrieved)|
recall =
|Relevant|
- 2 - (precision - recall)

(precision + recall)

Here ‘Relevant’ is the set of those items that appear in
the cross-cutting concern, and ‘Retrieved’ means those items
that appear in the itemset. The F'1 score is a value between
0 and 1, where 1 is the best score.

For each itemset we calculate the maximal F1, i.e. the
score for the cross-cutting concern that best matches this
itemset. This value then determines how relevant an itemset
is. It makes sense to use this value because this is also
how one would evaluate an itemset manually: one would try
and see which concern it matches best and then determine
how well it matches that concern. To get an overall score
for the itemsets, we take the average of these values: the
average maximal F1. This score can be seen as an alternative
precision measure for the set of itemsets.

3.6 Presentation

The presentation of the results is pretty straightforward: a
comma-separated value file is generated, which contains the
itemsets along with the transactions in which they occur.
This file can also be used to generate graphs to get various
views on the itemsets.

4. EMPIRICAL STUDY

This section describes the results of running our tool-chain
on two different case studies.

4.1 Choice of Subjects

Finding good subjects for testing our tool-chain is quite
a challenge: as we decided to do an automated evaluation,
there needs to be a known list of cross-cutting concerns for
the systems we are going to analyse. Developers usually do
not document the concerns in their system, so we have to
rely on results from existing aspect mining research, which
are not always publicly available. Marin et al. [21] have put
effort into “setting up a web forum® where aspect mining re-
searchers can exchange and discuss aspect candidates found
in (open source) software systems”. Unfortunately, only the
results from their own research (mainly from fan-in analysis)
are available there. Still, it seems logical to use the results
from that web site for evaluating our own technique, as it
is the only one on which a systematic overview of the con-
cerns in various software systems is given. Especially the

Shttp://swerl.tudelft.nl/amr/

results from JHotDraw, a program that is frequently used
as a benchmark in aspect mining research, are of interest.
On the same web site, the results for two other subjects are
given: Tomcat and PetStore. We considered PetStore to be
too small to get a relevant evaluation (only 7 concerns are
listed) but Tomcat does seem relevant as a test subject as
it is a ‘real’ application (as opposed to JHotDraw, which is
more of a design exercise) with a lot of concerns.

Therefore, we have chosen to run our technique on the
repositories of JHotDraw and Tomcat. The next sections
will discuss the results for each application in detail.

4.2 Case Study: JHotDraw

4.2.1 Application Overview

JHotDraw is a Java GUI framework for technical and
structural graphics’. It has been developed as a design ex-
ercise, showing good use of design patterns. For this reason,
JHotDraw has frequently been used in aspect mining re-
search: if some part of the system has not been separated
in a module but is somehow scattered over the system or
tangled with other code, we can safely assume that this is
not because of sloppy programming and that it forms a valid
cross-cutting concern. On the other hand, this makes it a
somewhat “artificial” subject. JHotDraw’s history started
on 8 August 2002 and is currently at revision 544. 11 differ-
ent developers have committed transactions and the appli-
cation is still being actively developed.

4.2.2 Evaluation Set

Canfora et al. [8] kindly provided us with the list of cross-
cutting concerns for JHotDraw, which, though identical to
the list given on the aforementioned web site, did not only
contain the names of the method implementing the cross-
cutting behaviour but also the names of the cross-cut ele-
ments. As we want to know the complete scope of a concern,
this is very useful for us.

Because JHotDraw is often mentioned as a benchmark in
aspect mining literature, we started searching for publicly
available aspect mining results for JHotDraw. The results
for the dynamic analysis experiment with the Dynamo tool
by Tonella and Ceccato [26] were publicly available®. Cec-
cato et al. also mention identifier analysis as one of the tech-
niques tested on JHotDraw [9] and they kindly provided us
with the results of this experiment. Zhang’s PRISM Aspect
Miner results [28] are publicly available® but they were not
usable as the actual cross-cutting concerns were not reported
(only separate entities that may be part of a concern).

Although we would want to have one list of cross-cutting
concerns in JHotDraw, with the results of the various ex-
periments merged together, such a list does not exist as yet.
Therefore, some concerns that actually belong together are
reported as separate concerns (for example, all three result
sets contain a concern called “Undo”). In total, we have a
list of 72 concerns for JHotDraw, available in [25].

The studies from which we use the results were all done on
JHotDraw version 5.4bl. In the meantime, JHotDraw has
progressed to version 7.0.8 and the package structure has
changed, so we decided to only mine JHotDraw’s history

"http://www. jhotdraw.org
Shttp://star.itc.it/dynamo/
jhotdraw-detailed-results.html
“http://www.eecg.utoronto.ca/~czhang/mining/j6.txt



until version 6, which has the same package structure as
version 5.4bl. This part consists of 172 revisions.

4.2.3  Results for File-Level Mining

When running our tool on the repository of JHotDraw
while considering file names, we get 828 itemsets, with an
average maximal F1 of 0.36 (running time: 3 seconds'?).
Subsequently, we tried to improve this score by tweaking
the reinforcement interval and the minimum and maximum
values for support, cardinality, lift and changeset size: 9 pa-
rameters in total. As these parameters are probably not
independent, it would be best to test all possible combina-
tions of all possible values for each constraint. This seems
not feasible, however, as we are dealing with 9 parameters,
each of which can have many different values. We will there-
fore change these parameters separately and try to get good
outcomes that way.

We start with the reinforcement interval, as it influences
all other criteria: combining changesets will lead to different
changeset sizes and different itemsets. We ran our tool with
reinforcement intervals between 0 and 10000 seconds, with
steps of 100 seconds. An interval of 1700 seconds yielded 682
reinforced changesets and gave the best result: the average
maximal F1 became 0.40, which is a bit more than without
reinforcement. The results we got with reinforcement were
always better than without, so it seems indeed worthwhile
to combine changesets if they have been committed close in
time by the same author.

With the reinforcement interval fixed to 1700, we started
investigating the effects of putting constraints on the change-
set size. We set the minimum changeset size between 0 and
40 and the maximum size between 40 and 500, and tried all
different combinations (with steps of 1 for the minimum and
steps of 10 for the maximum because there are fewer large
changesets than small ones). By constraining the changeset
size between 9 and 40 we reached the highest score: 0.53.
This would suggest that discarding both the smallest and
the largest changesets improves the final score. However, it
is interesting to see that setting 40 as the minimum or max-
imum changeset size both give the same result. This sug-
gests that the size of a changeset is not very much related to
the question whether it contributes to a concern. Another
thing is that constraining the changeset size too much will
leave very few itemsets. For example, the aforementioned
constraints of 9 and 40 lead to 11 changesets, eventually re-
sulting in 18 itemsets. Although having few itemsets could
be a good thing (as it will take less time for a user to analyse
them) it can also mean that much relevant information has
been discarded. Not only do we risk throwing away relevant
itemsets, the itemsets that do appear in the outcome are
significantly smaller, consisting of only a few items. As we
want to cover as many elements of a concern as possible, this
is not a desirable result. To make sure we do not lose any
useful data, we continue our parameter investigation with
the changeset size unconstrained.

For investigating the relation between the number of oc-
currences and cardinality of an itemset and the resulting
maximal F1 values, please take a look at Figure 1. That
graph shows for each number of occurrences and size the
maximal F1 score for the itemset that best matched a con-
cern (we have chosen to limit the “cardinality” axis to only

10A]1l experiments were run on dual quad core Intel Xeon
E5345 2.33 GHz processors with 16GB of RAM.
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Figure 1: Itemsets with maximal F1 for the given
cardinality and number of occurrences (JHotDraw,
file-level). Colour intensity and size represent the
F1. Itemsets with F1 > 0.5 are annotated with the
corresponding concern identifier.

show values under 100 as itemsets with a larger cardinal-
ity have low F1 scores and showing more values would make
the graph unreadable; the same holds for the “#occurrences”
axis). The F1 is represented by both the colour intensity and
the size of the dot. An extended version of this graph, in
which the itemsets are annotated with an abbreviation of the
corresponding best-matching concern, can be found in [25],
along with the complete list of concern abbreviations and
their meanings. We notice the following things in Figure 1:

1. No itemsets that occur less than 2 times or that consist
of less than 2 items appear.

2. Itemsets with a large cardinality are relatively less fre-
quent than those with a small cardinality; itemsets
that occur frequently usually have a small cardinality.

3. “Sweeps” of similar concerns occur in various places'’.
For example, the same concern can be found at (#oc-
currences, cardinality) coordinates (2,20), (3,18), (3,16),
(4,15), etc.

4. “Relevant” concerns are not concentrated in one area.

Especially point 4 is relevant for our research, but let us
first discuss the other three observations. The first point is

111 the original version of Figure 1 each dot is accompanied
by an identifier which indicates the concern. This makes it
possible to see the sweeps. We removed the identifiers in the
paper in order not to clutter the image.



related to the parameters of the mining algorithm: itemsets
with less than 2 items are not relevant because we want to
see files that have been committed together.

The second point is not surprising, albeit a bit disappoint-
ing. If we had found large groups of files that were changed
together very frequently, those itemsets would be really in-
teresting. In practice, however, commits consisting of large
files are apparently not frequent, and groups of files that are
frequently committed together are usually small (a similar
observation was made by Hattori and Lanza [14]).

To understand the third point, we looked at (1) the num-
ber of occurrences of the changesets, (2) the cardinality of
the itemsets, (3) the best-matching concern for each itemset
and the corresponding F1 value and (4) in which changesets
the items in the itemsets occurred (see Table 1). From these
data, we observed that the DOD (Manage figures outside
drawing) concern is matched by multiple itemsets and that
these itemsets have a common core of items in them. Also,
the transactions where the items in these sets occur are simi-
lar. The reason for this is that we have chosen to do frequent
closed itemset mining (as discussed in Section 3.4.3): it will
output an itemset even if it has frequent supersets, leading
to many similar itemsets. It turns out that it was a good
decision not to use maximal frequent itemset mining, as that
technique would not output the best-matching itemset for
the DOD concern (because it has frequent supersets).

One might suggest to discard the supersets of an itemset
if they have a lower F1 score anyway, but how would one
know which itemset is the “best” one of a group of similar
itemsets? In this case we could pick the itemset with the
highest number of occurrences, but this will not always work.
For example, the itemsets at (2,12) and (3,10) in Figure 1
both match the same concern, but the itemset at (2,12) has
the highest F1.

This leads us to the fourth point, as we would like to find
a relation between the input parameters and the resulting
relevance. However, such a relation does not seem to exist.
Although most relevant itemsets seem to have a low cardi-
nality, this holds for the itemsets in general. Consequently,
restricting the cardinality to low values does not help in im-
proving the score. We tested this again by trying different
constraints for the cardinality, and we got the best result for
a minimum of 4 and a maximum of 20, leading to a slightly
improved final score of 0.42.

Finally, restricting the support can help a little bit, but
this gives the same problem as we had when restricting the
changeset size: if we want to achieve a higher score than
before, we have to restrict the support so much that we
throw away a lot of relevant itemsets. For example, we can
achieve a score of 0.5 by setting both the minimum and
maximum to 14 but this leaves only 9 itemsets.

There is still one parameter left to explore: the ‘lift’, which
is the support divided by the support that would be expected
by chance. If some files were committed much more often
together than we would expect, they might form a likely
cross-cutting concern candidate (in other words, if the lift of
an itemset is high, it should be more relevant). However, an
investigation of this matter reveals that in fact the opposite
is true: the more relevant itemsets (with a high F1) have a
relatively low lift.

It follows that using this measure instead of the support
is not really an improvement. However, if we could find a
better model for the chance that several files are committed

together (instead of assuming that all files are independent),
we might be able to create a measure that is more suitable
for discriminating relevant itemsets. This is something that
should still be investigated.

We have tried to achieve a high maximal F'1 for the given
input: with reinforcement enabled, we reached a score of
0.40. Restricting the other parameters, we could slightly
improve this, but we found that many itemsets were dis-
carded this way. We also found that there was no immediate
relation between the parameters (in particular support and
cardinality) and the final score. This means that we cannot
rank the itemsets to put the more relevant ones on top.

Let us take 0.40 as the final score for this particular case
study. Now what does this value actually mean? As the
score can take on values between 0 and 1, we can say that
this value is at the low end of the spectrum. For one item-
set, an F1 of 0.4 could for example mean that both the
recall and precision are 0.4, meaning that 40% of the items
in the matching concern was retrieved and that 40% of the
retrieved items was relevant. Someone who takes these re-
sults as a starting point for finding cross-cutting concerns
would thus have to weed through 60% of irrelevant items,
and still only 40% of the concern as we know it would be
reported. Although this suggests that the score is relatively
low, it does not really say anything until we have some refer-
ence point. As other techniques do not report similar values
to compare ours with, we decided to perform tests with ran-
domly generated itemsets, to provide a kind of lower bound
for the final score. We generated as many itemsets as our
tool-chain produced based on the changesets of JHotDraw,
with a similar average itemset cardinality and with the same
set of entities (files, in this case). From these itemsets we
again calculated the average maximal F1. We ran this pro-
cedure 1000 times and took the average of all scores. This
led to the value of 0.13, which means that the score of 0.40
is about 3 times better than the random case.

4.2.4  Results for Method-Level Mining

Performing method-level analysis of JHotDraw’s reposi-
tory yields 403 itemsets with an average maximal F1 of 0.15
(running time: 45 seconds). We can again try to improve
this value by using the parameters we also used when per-
forming file-level mining. Please note that we did not include
a graph similar to Figure 1 for reasons of space, but that it
is available in [25].

For the reinforcement interval we did a similar test as
with file-level mining, but this time the results were quite
different: applying reinforcement gave an identical score of
0.15. Moreover, the results with reinforcement were almost
always lower than without. This suggests that combining
changesets is actually not really a good idea; apparently the
changesets are already quite self-contained. The higher score
in the file-level case may have been caused by false positives.

Likewise, constraining the changeset size did not help at
all, as the scores were always lower than without doing so.

Restricting the itemset cardinality helps somewhat, just
like in the case of file-level mining, but the best scores were
achieved by setting the minimum cardinality to 20, which
again means that some relevant itemsets were discarded.

Setting the minimum number of occurrences to 8 increases
the average maximal F1 to 0.18, but it does not make sense
to do so as this score is then based on only 1 itemset. Lower
choices for this value result in a final score that is no signifi-



#Occurrences

F1 | Concern | Changesets

Itemset

ro| Cardinality

11 1 | DOD [1,2,3,7,8, 12, 21, 22, 37, 39, 76] | [standard/CompositeFigure.java,
standard /StandardDrawing.java]
8| 3 0.8 | DOD 1,3, 7,8, 12, 21, 22, 76] [figures/TextFigure.java,

standard/CompositeFigure.java,
standard/StandardDrawing.javal

91 3 0.8 | DOD

[T, 3,7, 8, 12, 22, 37, 39, 76]

[samples/javadraw /JavaDrawApp.java,
standard/CompositeFigure.java,
standard/StandardDrawing.javal

8| 3 0.8 | DOD

[3,7, 12, 21, 22, 37, 39, 70]

[contrib/GraphicalCompositeFigure.java,
standard/CompositeFigure.java,
standard/StandardDrawing.javal

8| 6| 0.77 | IB23

[T, 3, 7,8, 10, 11, 12, 76

lapplet/DrawApplet.java,
application/DrawApplication.java,
samples/javadraw /JavaDrawApp.java,
standard/CreationTool.java,
standard/Select AreaTracker.java,
standard/Standard DrawingView.java)

Table 1: Example itemsets for JHotDraw on file-level

cant improvement over the score we get without a restriction
on the number of occurrences.

Experimenting with the lift again showed that this mea-
sure does not help us in discriminating relevant itemsets.

Again, we compared the result with the random case, fol-
lowing the same procedure as with file-level mining. The
result for the random case was 0.06, which means that the
result we got for the changesets of JHotDraw is about 3
times better than that.

4.3 Case Study: Tomcat

4.3.1 Application Overview

Apache Tomcat is an open source software implementa-

tion of the Java Servlet and JavaServer Pages technologies'?.

4.3.2 Evaluation Set

For Tomcat we only have one list of concerns, i.e. the
results from fan-in analysis, consisting of 48 concerns. That
analysis was performed on Tomcat version 5.5, so we decided
to mine the part of the Tomcat repository that eventually
ended up in the 5.5.x branches (taking account of copied
paths, as recorded by both CVS and Subversion); this part
consists of 13490 changesets.

4.3.3 Results for File-Level Mining

Mining Tomcat’s repository on file-level resulted in 7261
itemsets with an average maximal F1 of 0.11 (running time:
65 seconds). This score is significantly lower than the score
we got for JHotDraw but it should be noted that we only
have one source of known cross-cutting concerns for Tom-
cat. Using only fan-in analysis information for evaluating
JHotDraw also leads to a lower score: we get a score of 0.24
as opposed to 0.40 which we got with the complete concern
set.

As for reinforcing changesets, we got a similar result to
what we got when mining JHotDraw on file-level: the re-
sults with reinforcement were always better than without.

2http://tomcat .apache.org/

However, the gains were pretty low: after rounding we still
got 0.11 as the final score.

The results for limiting the changeset size were not much
different, as the best score we could get by doing this was
again 0.11. The same holds for limiting the itemset size.

Setting a high minimum support led to higher F1 values,
just like in the previous cases, but again this means that we
have to discard many relevant itemsets.

The result for the random case was 0.05, which means
that the performance of the tool-chain based on Tomcat’s
changesets (on file-level) was about 2 times better.

4.3.4  Results for Method-Level Mining

Mining Tomcat’s repository on file-level resulted in 5062
itemsets with an average maximal F1 of 0.03 (running time:
11 minutes).

For analysing the results of reinforcing changesets, we de-
cided to test the intervals that gave the highest results in
the previous cases because testing as many intervals as we
did before would take a very long time. For these intervals
we did not get higher F1 scores than without reinforcement.

This time, however, constraining the changeset size did
improve the final score significantly: from 0.03 to 0.07, for
a minimum of 40 and a maximum of 400. Just like in the
file-level mining experiment on JHotDraw, this means that
we get less itemsets with less items in it.

Setting the minimum cardinality to 50, we managed to
increase the final score up to 0.10. When we combine this
with the previously mentioned constraints on the changeset
size, which leaves almost only itemsets matching one specific
concern (concern B9 to be precise, see [25] for details), we
can even get a score of 0.40. However, we should keep in
mind that having many itemsets that all match one concern
is only of limited use.

The result for the random case was 0.01, which means
that the performance of the tool-chain based on Tomcat’s
changesets with the default parameter values was about 3
times better, and the result with various constraints set was
even much better.



4.4 Threats to Validity

Some factors may threaten the validity of our results.
First of all, we cannot be 100% sure that the cross-cutting
concern information we used for evaluating the results is
good enough to be conclusive about the applicability of fre-
quent itemset mining for identifying cross-cutting concerns.
It is probably not complete in the sense that it will not
contain all cross-cutting concerns, but it is based on ear-
lier research done on cross-cutting concerns in those sys-
tems so for the moment it is the best we can get. It may
also be insufficient because as we said earlier, our method
looks for logical coupling between entities, whereas the given
information documents relations which are present in the
source code. Therefore, some itemsets may incorrectly be
marked as non-relevant, reducing the overall precision. An-
other thing to notice is that we could not take advantage of
the fact that file-level mining can also identify non-source-
code files as being part of a concern, as all items in the
evaluation sets refer to source code entities.

Second, the selection criteria we used may not be right:
we used the F1 score to determine whether an itemset is
relevant, but this may not be the right measure. We could
have used a parametrised version of this score instead (F3),
which weighs recall more than precision or vice versa. How-
ever, weighing recall more than precision will simply give
a bias to larger itemsets, and weighing precision more will
give a bias to smaller itemsets. It is doubtful whether this
really makes for a more accurate selection criterion.

Third, we used only two test subjects to evaluate our re-
sults. It would be nice to use other test cases for this as
well, but then we should also have cross-cutting concern in-
formation on those subjects. Currently, no such information
is available (except for some small case studies that did not
have enough concerns to be relevant test subjects).

5. CONCLUSIONS AND FUTURE WORK

The central research question of this thesis was “Can we
apply frequent itemset mining on version control system
data to find cross-cutting concerns in a software system?”.
In order to answer this question, we developed a tool-chain
that can mine a version control system on two different lev-
els of granularity: file-level and method-level. This gave
us a list of so-called changesets: entities (files or methods)
that were committed simultaneously. By running a frequent
itemset mining algorithm on these, we got itemsets consist-
ing of the names of entities (files or methods) that were fre-
quently committed simultaneously. In order to see whether
these itemsets can be used to identify cross-cutting concerns,
we ran our tool-chain on two different systems (JHotDraw
and Tomcat) and compared the results with known sets of
cross-cutting concerns. We gave a score to each itemset to
indicate how well it represented a concern; we used a score
that is commonly used in data mining: the ‘F1’ metric.

As we cannot be completely sure that the sets of cross-
cutting concerns we used for evaluating our approach are
correct (in the sense that they describe all concerns in the
systems and that they do not contain false positives), we
cannot answer the research question with a simple ‘yes’ or
‘no’. Nevertheless, we made the following observations:

e The itemsets we found exhibited low average F1 scores,
but the results were always about 3 times better than
the scores for randomly generated itemsets.

e Reinforcing changesets improved the F1 scores for file-
level mining but not for method-level mining.

e Tweaking the other parameters did not improve the
final score most of the time.

e There is no direct relation between the input param-
eters and the resulting final score. This means that
ranking the itemsets is not possible.

The above observations show that while our frequent item-
set mining approach is promising, we are also aware of the
need to improve our results (and that we should be able to
rank the itemsets in order to make the results easier to in-
terpret). In order to do so, we believe that our approach
should both be refined and combined with other approaches
(see future work below).

Contributions. We made the following contributions:
e We have developed a tool'® to mine frequent itemsets
from VCS data on both file and method level.
e We have performed two case studies and did a thor-
ough evaluation to assess the merits of our approach.

Future work. While we have tested our approach with two
systems for which several cross-cutting concerns are known,
mining the repositories of more software systems would allow
us to be more conclusive about the results.

As we could not predict well what concerns would be iden-
tified by our technique, we did not focus on specific concern
types. However, making the analysis more specific may im-
prove the results we get. One way to do this would be to
use the extra information that method-level mining gives us
with respect to the types of changes that were done. For
example, we can detect when the throws clause of a method
has been changed and use this information to focus on the
Exception Propagation concern sort [20].

Some of the itemsets we found may have been relevant
as cross-cutting concern candidates whereas they were not
identified as such. A manual analysis of the itemsets would
allow to find out whether our technique has found cross-
cutting concerns that have previously not been identified.

Some itemsets contained more items than the itemset it
matched best. Although this meant a decrease in precision
in our evaluation, it might be that these items were actu-
ally relevant. If so, it will be worthwhile to combine our
technique with other aspect mining techniques: incomplete
concern candidates from another technique can then be ex-
panded automatically by applying our technique.
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