
Removing Redundant Statements in Amplified Test
Cases

Wessel Oosterbroek
Delft University of Technology
w.oosterbroek@student.tudelft.nl

Carolin Brandt
Delft University of Technology

c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology

a.e.zaidman@tudelft.nl

Abstract—Test amplification generates new tests by modifying
existing, manually written tests. Up until now, this process
preserves statements that were relevant for the original test case
but are no longer needed for the behavior of the new test case.
These unnecessary statements impact the readability of the tests
in question. As a part of the effort to make amplified test cases
more readable, we investigate dynamic slicing, taint analysis and
static analysis as approaches to remove redundant statements.
We design and evaluate a static analysis approach that we
implemented as part of the test amplification tool DSpot. Our
empirical evaluation on 274 amplified test cases shows that the
implemented approach works well: while being rudimentary, it is
able to remove a significant portion of the redundant statements
in the amplified test cases. While the removal of the statements
themselves is fast, verifying that the tests still work as intended
through mutation testing is still resource-intensive.

I. INTRODUCTION

An important aspect of software development is verifying
that the created software works as intended. One of the
ways to do this is through developer testing, an approach
where developers write tests that check parts of the code they
engineered [1]. Manually creating and maintaining test suites
can take a lot of time and effort [2]. One option to reduce
the time it takes to create these test suites is to automatically
generate tests, reducing the time developers spend on writing
tests. A tool designed to help accomplish this task is DSpot [3]:
it amplifies test cases by taking an existing test and returning a
set of new test cases that improve overall coverage [4]. While
the designers of DSpot envision a world where the tool can
generate pull requests with test cases ready for developers
to merge [5], the amplified test cases prove cumbersome to
use: use of vague identifiers, the inclusion of no longer used
statements, and assertions that are generally weak. As such, all
generated tests have to be thoroughly checked and refactored
before a developer can benefit from them [6].

In this paper, we aim to combat redundant statements in
amplified test cases. These statements are left over from the
existing test case used for amplification, but are not necessary
for the behavior of the new test cases. Overall, we investigate:

Main RQ: How can redundant statements be detected and
removed from amplified test cases created by DSpot?

This research was partially funded by the Dutch science foundation NWO
through the Vici “TestShift” grant (No. VI.C.182.032)

To answer this research question we raise two sub-questions:

RQ1: What redundant statements does DSpot include in
the amplified test cases it generates?

As a first step to identify and find suitable solutions for
deleting redundant statements, we conduct an analysis of
several test cases created by DSpot in Section II.

With our understanding of how redundant statements are
introduced in the amplified test cases, we set out to investigate
techniques to detect and remove these redundant statements.
In particular, we look into slicing, taint analysis, and static
analysis. For each of them, we discuss their advantages and
drawbacks, as well the feasibility of implementing them into
DSpot. Finally, we settle on a lightweight static analysis
approach, and investigate Section III:

RQ2: How does the implemented solution perform, i.e., how
many of the redundant statements are removed?

In a small-scale study on a variety of projects and tests,
we analyze our solution and compare it to the default DSpot
implementation. In Section IV we will analyze the results of
the conducted study, highlighting that the main concerns for
our proposed approach are accuracy and run-time.

II. REDUNDANT STATEMENTS

In the context of this paper, redundant statements are
statements whose removal does not affect the mutation
coverage of a particular test in any way. Important to highlight
is that our definition does not include all statements that
could be considered unnecessary, e.g., statements that could
potentially be combined with other statements for readability
are not considered in this paper.

Instead, our focus is on statements that are part of
the original test case that formed the input to the DSpot
amplification, but that are no longer relevant for the amplified
test case. By removing these statements we intend to improve
the readability of the test cases in question.

Contrary to redundant statements in the context of a normal
program, statements that do not change variables or objects
in a test case might still be interesting. Consider a test for
a function that when given as input an integer returns the
absolute value of that integer. The test might give as input



a positive integer, and then verifies that the function returns
the exact same integer. If that function call was made in the
context of a normal program one could consider calling the
function to be redundant, however in the context of this unit
test it is not as we are verifying the behavior of the function
in question even if the integer itself was not changed.

1 public void booleanAttributesEmptyStringValues2() {
2 Document doc = Jsoup.parse("<div hidden>");
3 Attributes as = doc.body().child(0).attributes();
4 as.get("hidden");
5 Attribute first = as.iterator().next();
6 first.getKey();
7 first.getValue();
8 first.hasDeclaredValue();
9 assertFalse(doc.getAllElements().isEmpty(); }

Listing 1: An amplified test case created with DSpot.

1 public void booleanAttributesEmptyStringValues2() {
2 Document doc = Jsoup.parse("<div hidden>");
3 assertFalse(doc.getAllElements().isEmpty(); }

Listing 2: The test case from Listing 1 without redundant statements.

A. Types of Redundant Statements in Amplified Test Cases

To get a better understanding of the types of redundant
statements created by DSpot, we manually analyzed 30
amplified test cases from the JSoup Project [7], and found
that there are three main types of redundant statements:

a) Declarations of unnecessary variables: The first type
refers to variables that are either not used in any statement or
variables for which all statements, that involve the object, are
not relevant for the test case and are therefore redundant. These
statements and the variables themselves could be removed
from the test case, the first object declared on line 5 in
Listing 1 is an example of an unnecessary variable.

b) Elements from old assertions: By default DSpot
sometimes keeps elements in from assertions that were part of
the original test case. The assertion itself is removed but the
call to a method to retrieve a value within the assert statement
is not. An example can be found in Listing 1, on line 6 the
first.getKey() statement originates from an assertion in
the original test case. These statements are in our observation,
often redundant as they usually do not have any side effects
and are only retrieving a value, i.e., they are often getters.

c) Statements with side effects: Last are redundant
statements that have side effects, but are not relevant, e.g.,
changing the surname of a Person object while the assert
statements are only concerned with the age of the person.

Answer to RQ1: There are three main types of redundant
statements that appear most often in the tests created by
DSpot. Declarations of unnecessary variables, elements
from old assertions and statements with side effects. We
expect that both declarations of unnecessary variables and
elements from old assertions should be straightforward to
detect and remove, while removing statements that have
side effects will be more challenging.

III. DETECTING REDUNDANT STATEMENTS

In this section, we discuss three methods to detect the
redundant statements described in Section II. This section
will give insights into what the possible advantages and
disadvantages of each method are, in addition to explaining
the static analysis approach we contributed to DSpot.

It is important to note that when editing a test case we can
verify that the test still performs as expected, something that
would not be possible for a regular program. After minimizing,
the test case should still compile, run and catch the same
number of mutants as the original test case. Verifying that
the test case still compiles and catches the same mutants
as the original does nevertheless not fully guarantee that it
behaves the same way as the original amplified test. There
might be differences in the way it runs or even catches mutants.
However, DSpot uses PIT mutation testing to select amplified
test cases, meaning that if the minimized test still catches the
same mutants, they are seen as equally valuable by DSpot.

A. Dynamic Slicers

Slicing is a technique to simplify programs, removing
parts of a program that have no effect on the statements or
variables we are interested in [8]. It has been researched quite
extensively and finds main use-cases in debugging, program
analysis and re-engineering, and allows ignoring parts of the
program that are of no interest [8].

There is a difference between static slicing, with no
assumptions about the input a program will receive, and
dynamic slicing, in which only one execution path of the
program and a specific set of input variables is considered.
The result of a dynamic slicer solely concerns the execution
of the program, which results in dynamic slices often being
much smaller [8].

To our knowledge there is no prior work about removing
redundant statements from test cases using program slicing.
AlAbwaini et al. talk about removing redundant code using
program slicing in the context of a normal program [9]. Their
approach consists of using program analysis techniques to
find the effective variables, i.e., the variables that influence
the outcome of a program, followed by running a slicer on
each of these variables looking at which parts of the code
affected them. Combining these slices allows for the removal
of redundant code from the program. However, this becomes
more difficult on larger programs because it becomes harder
to find the effective variables [9].

As a test case defines the execution path and input values to
the program, we have the opportunity to use a dynamic slicer.
A dynamic slicer should be able to identify most statements
that do not affect the assert statements in a test case. However,
there are no dynamic Java slicers available that support Java
1.8 or above, which is necessary for integration into DSpot
and compatibility with modern Java programs. JavaSlicer
only supports JDK versions up to 1.7 [10]. An interesting
slicer, which was made public too late to be considered in
this project, is Slicer4J [11], [12]. Slicer4J is based on a
dynamic Android slicer called Mandoline and supports modern



Java applications, which makes it an interesting candidate for
potential integration into DSpot.

B. Dynamic Taint Analysis

The goal of dynamic taint analysis is to find out which
computations are affected by tainted sources such as user-
input [13]. It has a wide variety of use cases and can even be
used in test generation [13]. Taint analysis could also be an
option to detect redundant statements, by marking all inputs of
a test case and seeing which ones affect the assert statements.
Bell and Kaiser describe this use case as a method to detect
brittle assertions in their paper about Phosphor, a dynamic taint
analysis tool for Java [14]. To the best of our knowledge this
is the only dynamic taint analysis tool for Java that supports
general use cases as well as default JVMs [14]. However, while
this is useful to detect redundant input variables and objects, it
does not tell much about statements that have side-effects, as
we are only looking at which input variables affect the assert
statements, but not at how other statements, that use input
variables, affect the assert statements.

C. Static Code Analysis

Another option is to use static analysis to look at a test case
and try to infer which statements are redundant and which
are not. For example, all declarations of variables directly
or indirectly used by the assert statement are guaranteed to
be needed for the test to still compile and thus can not be
redundant. On the other hand, variables that do not get used
at all, even not indirectly, by the assert statements are likely to
be redundant. An advantage of this approach is that it is fast,
taking almost no time to remove the redundant statements.

To detect redundant statements from amplified test cases,
we investigate dynamic slicers, taint analysis and static
analysis. While this selection is non-exhaustive, it should
give an idea of options to detect redundant statements.

D. Algorithm

Our contribution to DSpot consists of a static analysis
algorithm that tries to remove as many of the redundant
statements as possible. The actual implementation uses some
parts from the PitMutantMinimizer by Danglot found in
DSpot [3], which tries to remove assertions that do not
improve the mutation score of an amplified test.

Our algorithm to delete redundant statements consists of
three separate steps, which all take the original amplified
test case as input. In each step, the algorithm tries
to delete statements from the test case while becoming
more conservative in which statements are deleted in each
subsequent step. After each step, the resulting test case is
syntactically compared to the original amplified test case, if
there is no difference between the two, the algorithm returns
the original test case. If there is a difference, PIT [15] will be
used to verify that the test case still catches the same mutants
as before. In the case that it does, the algorithm returns the
minimized test case, if it does not, the algorithm continues

Fig. 1: Overview of our approach described in Section III-D

with the next step. If all steps fail the algorithm will return
the original amplified test.

Figure 1 presents a flow chart of this process. The individual
steps consist of the following:

• Step one: Delete all statements, except for the assertions
and statements that are needed to compile.

• Step two: Remove all statements that do not interact
with the assert statements, where an interaction refers to
the statements containing variables that are needed by
the assert statements directly or indirectly. Additionally,
remove loops and variables that only interact with the
assert statements when they are declared. The rationale
behind this comes from the fact that a lot of the
unnecessary variables use needed variables when being
declared, e.g., a string is set equal to the name of
an object. Listing 3 shows an example on line 4. The
String name is declared using the doc object that is
relevant for the test case, however the string name itself
is not. The same logic applies to loops, which we will
only consider if relevant objects are used inside the body
of said loop, thus the for loop on line 5 in Listing 3
is removed.

• Step three: Remove all the statements that do not directly
or indirectly interact with variables used in the assert
statements.

1 public void exampleTest() {
2 Document doc = Jsoup.parse(in, "UTF-8");
3 Elements templates = doc.body().getElementsByTag(

"template");
4 String name = doc.nodeName();
5 for (Element template : templates) {
6 boolean equals = name.equals(""); }
7 assertFalse(templates.equals(null)); }

Listing 3: An example test containing a for loop and object that only
interacts when the assert statement when they are declared.

An example of this process is shown in Listings 4
through 7. Listing 4 presents an amplified test case, which
was slightly modified for the purposes of this explanation.
In step one, all variables and statements that are not
needed for compilation are removed, the resulting test
case is shown in Listing 5. However this test case fails
as we removed the a2.setValue(characters) and
a2.setKey("three") statements which were needed for
the assertions to pass. Listing 6 shows the result of step
two, this test case still fails due to the String key =
a2.setKey("three") statement being removed, as it falls
under a variable that only interacts with assertions when
declared. Listing 7 shows the final passing test case after



step three, only removing the statement Attribute a1
= new Attribute("one", ""), this test case compiles
and covers the same mutants as the original.

1 public void hasValue2() {
2 String characters = "#{>%";
3 Attribute a1 = new Attribute("one", "");
4 Attribute a2 = new Attribute("two", null);
5 String key = a2.setKey("three");
6 a2.setValue(characters);
7 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 4: A (modified) amplified test case created with DSpot.

1 public void hasValue2() {
2 Attribute a2 = new Attribute("two", null);
3 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 5: The result after applying step one on the amplified test.

1 public void hasValue2() {
2 String characters = "#{>%";
3 Attribute a2 = new Attribute("two", null);
4 a2.setValue(characters);
5 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 6: The result after applying step two on the amplified test.

1 public void hasValue2() {
2 String characters = "#{>%";
3 Attribute a2 = new Attribute("two", null);
4 String key = a2.setKey("three");
5 a2.setValue(characters);
6 assertEquals("three=\"#{>%\"", a2.toString(); }

Listing 7: The result after applying step three on the amplified test.

This minimizer was implemented into the DSpot prettifier
module, which does not allow for easy removal of elements
that were in the assert statements of the original test case
without modifying its structure to a larger extent than adding
a new minimizer. To remove these statements it is necessary
to either provide the original test case using a parameter or
to edit the amplification process of DSpot itself to no longer
include these statements. Moreover, we are using DSpot to run
PIT, meaning that the exact same parameters are used as when
amplifying using mutation testing.

Our solution consists of a lightweight static analysis
algorithm, which has the advantage of being straightforward
to implement compared to dynamic slicing and taint
analysis. We expect that it should be able to remove a
significant number of redundant statements. We verify the
removal through mutation analysis.

IV. EMPIRICAL EVALUATION

In this section, we will answer research question RQ2 by
evaluating the performance of the implemented algorithm,
described in Section III-D. To that end we performed a
qualitative as well as a quantitative study. In the qualitative
study we focus on what statements get removed or not
by manually inspecting 46 minimized test cases. In the
quantitative study we investigate the overall performance
by measuring the difference in statements before and after

minimization. We created 274 amplified tests, which originate
from and improve the coverage of 15 test classes from the
JSoup, Stream-Lib and Twilio-Java projects [7], [16], [17].
Three of these classes containing 46 tests, from the JSoup
project, were manually checked for redundant statements
before and after running the minimizer.

To reproduce the results discussed in this paper we have
created a replication package [18].

A. Qualitative Analysis

We analyzed 46 test cases and found that our approach is
able to remove 28% (32 out of 113) of all redundant statements
in these tests. Note that these test cases still include elements
from old assertions (see Section II-A), as 65 out of the 81 not-
removed statements were of this type, we expect removing
those statements would significantly increase the number of
statements removed. Listing 8 shows a test case where lines 5-
7, which are all elements from old assertions, are redundant as
they only retrieve values and have no side-effects. Manually
analyzing the minimized test cases shows that there are quite a
few test cases in which only a few of the redundant statements
get removed, while others are minimized as much as possible.
This is caused by the algorithm removing all but necessary
statements in step one, meaning that if this first minimization
step succeeds the test case is likely to be fully minimized.

All redundant statements of the type unnecessary variable
were removed, however they represent a small part of all
removed redundant statements. While the majority of removed
statements consist of the other two types, described in Section
II, their removal is not guaranteed and depends on the test
structure and usage of declared variables.
1 public void html5() {
2 Attributes a = new Attributes();
3 a.put("Tot", "a&p");
4 a.put("Hello", "There");
5 a.size();
6 a.hasKey("Tot");
7 a.hasKey("Hello");
8 assertEquals(-758045610, a.hashCode(); }

Listing 8: Minimized test case with elements from old assertions.

B. Quantitative Analysis

Figure 2 shows the results of minimizing 274 amplified
tests from 4 projects, showing a reduction in the number
of statements in each test case after minimizing. In these
results the assert statements themselves are included, thus
making the minimum number of statements in each test one.
An interesting observation that can be made when looking
at Figure 2 is that by far the largest number of statements
is removed in step one, in step two a couple statements
are removed, while in step three almost no statements are
removed. Step three removing few statements is the result of
those statements already being removed in either steps one
or two. There were a few test cases where the first two steps
failed and there were statements that could be removed in step
three. While it did not result in any statements being removed
in the test cases selected for this study, one might see slightly
different results when minimizing other test cases.



Fig. 2: Box plots showing the number of statements in 274 tests
before and after minimizing with each step.

C. Run-time

An important thing to note is that removing these redundant
statements takes a significant amount of time due to the
mutation coverage that has to be determined after changing
a test using PIT. While the median number of PIT runs
is two and the average lower than two per test, the time
spent on calculating mutation coverage accounts for the
overwhelming majority of the time spent on minimizing these
test cases. Removing the statements themselves only takes a
few milliseconds, while it can take up to five minutes to run
our complete approach, including the mutation analysis.

Answer to RQ2: Our results show that the implemented
approach works well: while being rudimentary it is able to
remove a significant portion of the redundant statements in
the amplified test cases. Unnecessary variables are always
removed, while the removal of statements with side-effects
and elements of old assertions depends on the structure
of the test case. A problem with removing redundant
statements is that using mutation coverage to verify that
the tests still work takes a significant amount of time.

D. Threats to Validity

1) External validity: The variety of projects and tests
selected to evaluate our minimizer on is limited. For one they
are all open source projects, with most tests coming from the
JSoup project. While we do not expect major differences in
the number of removed statements for other projects given that
they are likely to have a similar style of unit tests. Moreover,
we suspect that the performance of our approach will suffer
with more complicated tests. Since step one of the removal
process relies on removing all statements in a test case, except
for those that are needed to compile, this step might work less
well on longer and more complicated test cases. We expect the
types of redundant statements to be closely linked to the test
amplification of DSpot, which is to our knowledge the only
tool for Java JUnit test amplification. Future replications of our
study are needed to reinforce our findings and to determine
whether they generalize to other test amplification approaches.

2) Internal validity: We use mutation analysis to establish
that the redundant statement reduction keeps the behavior of
the minimized test cases. While we have run PIT with all

mutation operators enabled, it might still be that equivalent
mutants disturb our behavior checking process. Future work
should investigate this further.

V. CONCLUSION & FUTURE WORK

In this paper, we looked at redundant statements in amplified
test cases created by DSpot, as well as possible options for
removing them from these test cases. While taint analysis
or a (dynamic) slicer would be powerful, we opted for a
more lightweight approach using static analysis of the test
case. In a 3-step process we remove redundant statements
from amplified test cases while maintaining their mutation
score. Running the minimizer significantly reduced the average
number of statements in the analyzed amplified test cases. We
hypothesize that this makes them easier to understand.

Further research could focus on implementing a more
fine-grained approach to remove redundant statements, such
as the discussed slicers or taint analysis. Alternatively, a more
fine-grained static analysis approach could be considered.
Another consideration is the run-time of these algorithms, if
one verifies the run-time of approaches using mutation testing
one will always suffer heavy performance impact.

REFERENCES

[1] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Pearson
Education, 2007.

[2] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[3] “Dspot,” https://github.com/STAMP-project/dspot, 2021.
[4] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and

B. Baudry, “A snowballing literature study on test amplification,” J.
Syst. Softw., vol. 157, 2019.

[5] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: a study with ten mature open-source
projects,” Empirical Software Engineering, vol. 24, no. 4, pp. 2603–
2635, 2019.

[6] C. Brandt and A. Zaidman, “Developer-centric test amplification: The
interplay between automatic generation and human exploration.”

[7] “Jsoup,” https://github.com/jhy/jsoup, 2021.
[8] M. Harman and R. Hierons, “An overview of program slicing,” software

focus, vol. 2, no. 3, pp. 85–92, 2001.
[9] N. AlAbwaini, A. Aldaaje, T. Jaber, M. Abdallah, and A. Tamimi,

“Using program slicing to detect the dead code,” in Int’l Conf on
Computer Science and Information Technology. IEEE, 2018, pp. 230–
233.

[10] “Javaslicer,” https://github.com/backes/javaslicer, 2016.
[11] K. Ahmed, M. Lis, and J. Rubin, “Mandoline: Dynamic slicing of

android applications with trace-based alias analysis,” in Proc. Int’l Conf
on Software Testing, Verification and Validation (ICST). IEEE, 2021,
pp. 105–115.

[12] “Slicer4j,” https://github.com/resess/Mandoline, 2021.
[13] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in IEEE Symposium on Security and
Privacy, 2010, pp. 317–331.

[14] J. Bell and G. Kaiser, “Dynamic taint tracking for java with phosphor,”
in Proc. Int’l Symposium on Software Testing and Analysis (ISSTA).
ACM, 2015, pp. 409–413.

[15] “Pit,” https://pitest.org.
[16] “stream-lib,” https://github.com/addthis/stream-lib, 2019.
[17] “twilio-java,” https://github.com/twilio/twilio-java, 2021.
[18] W. Oosterbroek, C. Brandt, and A. Zaidman, “Replication package for

“removing redundant statements in amplified test cases”,” https://doi.
org/10.6084/m9.figshare.14910486, 2021.

https://github.com/STAMP-project/dspot
https://github.com/jhy/jsoup
https://github.com/backes/javaslicer
https://github.com/resess/Mandoline
https://pitest.org
https://github.com/addthis/stream-lib
https://github.com/twilio/twilio-java
https://doi.org/10.6084/m9.figshare.14910486
https://doi.org/10.6084/m9.figshare.14910486

	Introduction
	Redundant Statements
	Types of Redundant Statements in Amplified Test Cases

	Detecting Redundant Statements
	Dynamic Slicers
	Dynamic Taint Analysis
	Static Code Analysis
	Algorithm

	Empirical Evaluation
	Qualitative Analysis
	Quantitative Analysis
	Run-time
	Threats to Validity
	External validity
	Internal validity


	Conclusion & Future work
	References

