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ABSTRACT
Test case generation tools that optimize code coverage have
been extensively investigated. Recently, researchers have
suggested to add other non-coverage criteria, such as mem-
ory consumption or readability, to increase the practical use-
fulness of generated tests. In this paper, we observe that
test code quality metrics, and test cohesion and coupling
in particular, are valuable candidates as additional criteria.
Indeed, tests with low cohesion and/or high coupling have
been shown to have a negative impact on future mainte-
nance activities. In an exploratory investigation we show
that most generated tests are indeed affected by poor test
code quality. For this reason, we incorporate cohesion and
coupling metrics into the main loop of search-based algo-
rithm for test case generation. Through an empirical study
we show that our approach is not only able to generate tests
that are more cohesive and less coupled, but can (i) increase
branch coverage up to 10% when enough time is given to
the search and (ii) result in statistically shorter tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing and Debugging]:

Keywords
Evolutionary testing, many-objective optimization, branch
coverage, test code quality

1. INTRODUCTION
Automated test case generation tools have been widely stud-
ied in literature in order to reduce the cost of software test-
ing. Generating unit tests via automated techniques helps
developers to maximize the percentage of code elements (e.g.,
statements) being exercised according to well-established code
coverage criteria [37]. Previous studies acknowledged addi-
tional important benefits, including but not limited to trig-
gering undeclared exceptions and failures [21], or achiev-
ing debugging effectiveness comparable to manually written
tests [11]. However, conventional approaches to test case

generation mainly focus on code coverage as a unique goal
to achieve, without taking into account other factors that
can be relevant for testers. For example, Afshan et al. [2]
highlighted that one such factor is the effort needed to man-
ually check test data input and test results (e.g., assertions)
in order to assess whether the software behaves as intended.
Therefore, they have incorporated language models into the
data generation process with the aim of generating natural
language like input strings to improve human readability.
Recently, Daka et al. [14] used a post-processing technique
to optimize readability by mutating generated tests lever-
aging a domain-specific model of unit test readability based
on human judgement. Other non coverage-based criteria
exploited in literature for test case generation include exe-
cution time [17, 34], memory consumption [25], test size [19,
31, 33], and ability to reveal faults [34].

In this paper, we focus on test code quality metrics to con-
sider in addition to code coverage. Poorly designed tests
are known to have a negative impact on test maintenance,
as they are more difficult to adjust when production code
changes [7, 30, 42]. Automated tests first need to be main-
tained when they are generated, since testers need to man-
ually validate each test case to check the assertions (oracle
cost) [2, 9]. In addition, tests also need to be maintained
and eventually updated according to the changes performed
in the production code during later development activities.
Therefore, we argue that achieving easily maintainable tests
is a desirable and important goal in test case generation.

The related literature provides a plethora of metrics to de-
tect poorly designed tests, such as rules for test smells de-
tection [22, 39, 40]. In the context of this paper, we con-
sider two simple, yet critical quality metrics for evaluating
test code maintainability, namely test cohesion and test cou-
pling. According to Meszaros [29], maintainable tests must
be as simple (cohesive) as possible, i.e., each test should
not verify too much functionality at the same time to avoid
test obfuscation. Furthermore, test overlap (or test cou-
pling) should be minimized so that only few tests are af-
fected by any future change [29], improving test readability
and simplifying future maintenance activities. For measur-
ing test cohesion and test coupling we rely on Information
Retrieval (IR) methods, similarly to previous papers for as-
sessing the quality of production code [26, 36, 38]. Specif-
ically, we define two novel metrics, namely Coupling Be-
tween Test Methods (CBTM) and Lack of Cohesion of a
Test Method (LCTM) inspired by conceptual coupling and
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conceptual cohesion, which are two well-known metrics to
assess code quality [38]. We choose IR methods since previ-
ous studies [26, 36, 38] demonstrated how textual analysis
often outperforms structural metrics in its ability to describe
cohesion and coupling phenomena.

To evaluate to what extent automatically generated test
cases present design problems, we conducted a large scale
preliminary study on the SF110 dataset [20] and using Evo-
suite [19] as test case generation tool. This analysis revealed
that most automatically generated tests suffer from high
coupling with other tests in the same test suite. Moreover,
up to 28% of test cases (test methods in JUnit) suffer from
low cohesion. Given the results of this exploratory analysis,
we propose to incorporate our quality metrics LCTM and
CBTM into the main loop of Evosuite to guide the search
toward more cohesive and less coupled tests. For this, we ex-
tended the MOSA algorithm, a novel many-objective genetic
algorithm recently proposed by Panichella et al. [33], by in-
corporating our quality metrics within the selection mecha-
nism. To evaluate our quality-based variant of MOSA, we
conducted a second empirical study on 43 randomly sampled
classes from the SF110 dataset. The results indicate that,
besides improving both LCTM and CBTM scores with re-
spect to the original MOSA and Evosuite’s default search
strategy (Whole Suite), our quality-based MOSA approach
leads to other valuable positive effects: (i) when giving more
time to the search, incorporating test code quality metrics
may reduce the probability of early convergence increasing
the final branch coverage; and (ii) the generated tests tend
to be shorter, suggesting the possibility to complement ex-
isting post-search minimization strategies.

2. COMPUTING TEST CODE QUALITY
METRICS

Designing test code for maintainability is a key principle of
Test Driven Development (TDD) [10]. Specifically, writing
highly cohesive and poorly coupled test cases ensures that
each test method provides a specific responsibility, making
it easily understandable and maintainable [10]. Even if in
the context of automatic unit test generation the problem
of maintainability could be relaxed (test cases can be re-
generated when something changes in production code), it
is still important to remark that automated tests need to
be maintained once they are generated, since testers must
manually validate each test case to check the assertions [9].
It is worth noting that in this paper we look for coupling
among test methods (representing single test cases in the
JUnit framework) of the same JUnit class (i.e., a test suite in
JUnit). Unlike other strategies for computing coupling (e.g.,
looking for coupling between test and production code [7]),
our goal is to measure to what extent a test method has
relationships with the other test methods of the same class,
in order to evaluate the quality of the decomposition of the
methods in the JUnit class. To compute the quality of test
methods, in this paper we define two metrics exploiting tex-
tual information, able to measure the degree of cohesion and
coupling of a test method. It is worth noting that, as pointed
out in previous work (e.g., [36, 38]), textual analysis can be
successfully used for measuring source code quality. More-
over, textual analysis often outperforms structural metrics
in its ability to describe the phenomenon [26, 36, 38]. In
the following subsections, we report the process we follow to

compute these metrics.

2.1 Textual Information Extraction
and Processing

Starting from the set of test artifacts composing the software
project under analysis, during the first step we extract the
textual content characterizing each test method by selecting
only the textual elements actually needed for the textual
analysis process, i.e., source code identifiers and comments.
The textual elements are then normalized by using a typical
Information Retrieval (IR) normalization process. Thus, the
terms contained in the source code are transformed by ap-
plying the following steps [8]: (i) separating composite iden-
tifiers using camel case splitting, which splits words based on
underscores, capital letters and numerical digits; (ii) putting
extracted words in lower case; (iii) removing special char-
acters, programming keywords and common English stop
words; and (iv) stemming words to their original roots via
Porter’s stemmer [35]. Finally, the normalized words are
weighted using the term frequency - inverse document fre-
quency (tf-idf ) schema [8], which reduces the relevance of
too generic words that are contained in most source com-
ponents. Therefore, the resulting textual content is indi-
vidually analyzed in order to apply cohesion and coupling
metrics. To compute them, we rely on Latent Semantic In-
dexing (LSI) [16], namely an extension of the Vector Space
Model (VSM) [8], which models code components as vec-
tors of terms occurring in a given software system. LSI uses
Singular Value Decomposition (SVD) [13] to cluster code
components according to the relationships among words and
among code components (co-occurrences). Then, the origi-
nal vectors (code components) are projected into a reduced k
space of concepts to limit the effect of textual noise. For the
choice of size of the reduced space (k) we used the heuristic
proposed by Kuhn et al. [24] that provided good results in
many software engineering applications, i.e., k = (m× n)0.2

where m denotes the vocabulary size and n denotes the num-
ber of documents (code components in our case). Finally,
the textual similarity among software components is mea-
sured as the cosine of the angle between the corresponding
vectors.

2.2 Computing Test Method Coupling
To measure the degree of coupling of a test method, our
conjecture is that methods having high coupling have high
textual similarity with the other methods contained in the
test suite. Following this conjecture, we compute the cou-
pling metric by applying the average of the textual similarity
between the test method under analysis and the other test
methods contained in the JUnit test class. Formally, let ta
be the test method under analysis and let T = {t1, . . . , tn}
be the set of the test methods contained in the test suite,
we compute the Coupling Between Test Methods (CBTM)
as follows:

CBTM(ta) = mean

n∑
k=0

sim(ta, tk), ta 6= tk (1)

where n is the number of test methods in T (excluding ta) ,
and sim(ta, tk) denotes the cosine similarity between ta, the
test method under analysis, and another test method tk in
T . The resulting value of CBTM(ta) ∈ [0, 1]. The higher
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the CBTM(ta), the higher the coupling between ta and the
other test methods in the JUnit test class.

2.3 Computing Test Method Cohesion
When computing test method cohesion, our conjecture is
that methods having high cohesion are characterized by low
textual similarity among the tested methods. It is important
to note that test methods generally have few lines of code,
and therefore have a limited number of terms for setting
up a similarity technique. This is the reason why we firstly
expand the test method calls with the actual source code
called by the test method, and then we start the textual-
based computation. More formally, let t = {c1, . . . cn} be
the JUnit test method under analysis where ci is the i-th
method call in t. We first modify the test method by re-
placing all its method calls with the corresponding body of
the called production methods. Note that in this opera-
tion we only replace the test method calls with the source
code of the corresponding production method, without re-
placing the calls done by the production method, i.e., we do
not recursively replace all the method calls. Formally, the
modified test method is t′ = {c′1, . . . c′n} where the generic
method call ci is replaced by the corresponding production
code body c′i. Starting from t′ we compute the Lack of Co-
hesion of a Test Method (LCTM) as the average similarity
between its constituent methods c′i as follows:

LCTM(t) = 1−mean
i6=j

sim(c′i, c
′
j) (2)

where n is the number of method calls in t, and sim(c′i, c
′
j)

denotes the cosine similarity between two modified method
calls c′i and c′j in t′. Based on the above definition, LCTM(t)
∈ [0, 1]. If a test method is cohesive, then the LCTM(t) is
close to zero.

3. INVESTIGATING THE QUALITY OF
AUTOMATICALLY GENERATED TESTS

The goal of this study is to apply the previously defined cou-
pling and cohesion test code metrics in order to investigate
the quality of JUnit classes automatically generated using
EvoSuite [18]. Thus, we formulate the following RQ:

RQ0: To what extent do automatically generated
test cases present design problems?

Specifically, we aim at analyzing to what extent automati-
cally generated test cases are affected by design problems.
The purpose is to investigate possible gains (if any) from the
application of quality metrics in the context of automatic
test case generation.

3.1 Experimental Procedure
The context of this study is SF110, the open dataset1 pro-
duced by Fraser and Arcuri [20], which contains 110 open
source projects from SourceForge2, for a total of 23,886
testable classes. We choose to analyze this dataset, and
therefore the behavior of the EvoSuite tool, because of the
need to have a dataset able to generalize the results of our
study. Table 1 provides a summary of the statistics of the
SF110 dataset. To address RQ0, we developed a tool im-
plementing the quality metrics described in Section 2. More

1http://www.evosuite.org/experimental-data/sf110/
2http://sourceforge.net

Table 1: RQp: Characteristics of the SF110 dataset
Characteristic Value
Number of Projects 110
Number of Testable Classes 23,886
Lines of Code 6,628,619
Number of Java Files 27,997

Figure 1: Distribution of LCTM and CBTM metrics
over the SF110 dataset.
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precisely, our tool mines the source code of each project in
order to extract EvoSuite’s automatically generated JUnit
classes. It is worth noting that the SF110 dataset already
contains, for each project, a set of automatically generated
test suites. Thus, we did not need to run EvoSuite, but we
rely on the test classes present in the dataset, taking them as
representative of the quality of test code produced by Evo-
Suite. Then, we analyzed all the test methods contained
in the extracted JUnit classes in order to assign to each of
them a value of cohesion and coupling. The output of the
tool consists of two distributions: the first one concerning a
coupling value for each test method, the second one having
a cohesion value for each test method. The analysis of the
results has been done by discussing the descriptive statistics
of such distributions.

Listing 1: Example of test method with low cohe-
sion.

1 pub l i c void t e s t 12 ( ) throws Throwable {
2 JSTerm jSTerm0 = new JSTerm ( ) ;
3 jSTerm0 . makeVariable ( ) ;
4 jSTerm0 . add ( ( Object ) ””) ;
5 jSTerm0 . matches ( jSTerm0 ) ;
6 a s s e r tEqua l s ( f a l s e , jSTerm0 . isGround ( ) ) ;
7 a s s e r tEqua l s ( true , jSTerm0 . i sVa r i a b l e ( ) ) ;
8 }

3.2 Analysis of the Results
Figure 1 shows the distributions of the two quality metrics
defined in Section 2 over the the test methods in our dataset.
Moreover, the red dots represent the mean values of such dis-
tributions. Analyzing the CBTM distribution, we observed
that, over the total of 83,408 test methods, the median value
is 0.67, i.e., half of the test methods (i.e., 41,704) have a high
value for CBTM and thus likely have high coupling. This
result highlights how most of the test methods suffer of high
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coupling with the other methods of a test suite. On aver-
age, a test method has a value of coupling of 0.55. On the
other hand, it is interesting to notice how the results for the
cohesion distribution are completely different compared to
the coupling one. In this case, we found that most of the
test methods are in fact cohesive. This is not unexpected,
as EvoSuite applies a minimization process to the generated
test methods, i.e. it minimizes the number of statements
of the test method by removing the statements that do not
contribute to the coverage of the method under test [23].
However, even with this minimization process in place, there
are 23,188 out of the total 83,408 (i.e., 28%) test methods
having a lack of cohesion higher than 0.35. As an example,
Listing 1 presents a JUnit test method from the JSTermEvo-

SuiteTest class originating from the Shop project. We can
observe that the test method checks the return value of two
different methods of the production code, i.e., isGround and
isVariable. This method has a value of LCTM of 0.83,
clearly indicating the lack of cohesion of the test case.

In Summary. From the results achieved after the analysis
of the quality metrics on the SF110 dataset, we can conclude
that even though measures have been taken to keep test
code quality under control during the process of automatic
test case generation (e.g., the minimization process), the
design of the automatically generated test cases can still be
improved in terms of coupling and cohesion.

4. PUTTING QUALITY METRICS INTO
THE LOOP

Results from our preliminary study revealed that automat-
ically generated tests can be affected by high coupling as
well as by low cohesion. Therefore, we would like to investi-
gate whether incorporating quality metrics in the main loop
of an evolutionary unit test generation tool will guide the
search toward better tests, i.e, test with lower coupling and
higher cohesion. Given the nature of evolutionary search
algorithms used in test data generation tools, one theoret-
ically simple strategy would be to consider both cohesion,
and coupling as further objectives to consider in addition to
code coverage which is the traditional main objective, within
a multi-objective paradigm. This apparently simple strat-
egy lead to the usage of Pareto efficient algorithms, such
as NSGA-II, which by definition generate optimal trade-
offs between cohesion, coupling and code coverage. How-
ever, working with such trade-offs is not particular useful
for practitioners: imagine tests that have high cohesion and
low coupling, but that do not exercise/test any additional
code element (e.g., branch) compared to previously executed
tests. Moreover, previous work that applies multi-objective
approaches to combine code coverage (traditional objective)
with non-coverage based objectives have reported a detri-
mental effect on the final code coverage [17, 25, 32, 34]. For
example, Ferrer et al. [17] combined two conflicting goals,
i.e., the coverage (to maximize) and the oracle cost (to min-
imize), using several multi-objective algorithms, including
NSGA-II [15] and SPEA2 [43]. Results of their empiri-
cal study reported lower coverage scores for multi-objective
algorithms if compared to algorithms focused on coverage
only [17]. In our case, test code quality metrics can be con-
sidered only as secondary objectives if compared to code
coverage. Indeed, two test cases can be compared in terms
of cohesion and coupling if and only if they cover the same

code elements, such as statements or branches. Vice versa,
if two tests cover and exercise two different portions of code,
they should be incomparable in terms of test code quality
(i.e., cohesion and coupling) because preferring one test over
the other one will lead to a decrease in code coverage.

Another important aspect to deal with is the proper en-
coding schema to use. The default situation in EvoSuite
is that a chromosome (individual) is a test suite composed
of a number of test cases, where each test is a random se-
quence of statements (e.g., method calls). Thus, individuals
have a variable number of test cases with a variable number
of statements each. Suites are, then, evolved using genetic
algorithms (GAs) targeted at maximizing a code coverage
metric, e.g., branch coverage. However, in such encoding
schema GAs select, evaluate and evolve test suites while our
quality metrics (CBTM, and LCTM) are designed to detect
cohesion and coupling issues at the test case level. Evalu-
ating cohesion and coupling at the test suite level is not so
trivial: it implies aggregating CBTM and LCTM scores of
all test cases in each test suite. Using such an aggregation,
test cases with good levels of cohesion (low LCTM) but con-
tained in a test suite with an average to bad level of cohesion
(high LCTM) may be not selected. Finally, coupling (i.e.,
CBTM) may vary when tests are inserted into different test
suites: a test case may be highly coupled with test cases
within a given test suite, while the same test case may have
a low coupling if inserted in a different suite.

For the reasons reported above, we incorporate our test code
quality metrics into MOSA (Many-Objective Sorting Algo-
rithm) [33], a novel many-objective algorithm proposed by
Panichella et al. [33] for branch coverage3. We selected such
an algorithm because (i) it evolves test cases and not suites,
making it easier to incorporate CBTM and LCTM; (ii) it
targets branch coverage as main goal to maximize plus a
secondary non-coverage based metric, i.e., test case size to
minimize; (iii) it leads to higher or competitive branch cov-
erage compared to existing search algorithms for test case
generation [1, 33]. MOSA targets all branches in the class
under test at once, which are considered as distinct and dif-
ferent objectives to be optimized [33]. Each objective mea-
sures the closeness of a test case t to cover the corresponding
uncovered branch bi according to the normalized branch dis-
tance, and the approach level [28], i.e., the minimum number
of control dependencies between the executed traces and the
branch. In a nutshell, MOSA starts the search by generating
random tests (chromosomes) with variable length and state-
ments. Such tests are then evolved by applying a crossover
operator and a mutation operator to generate new tests,
as usual in GAs. Selection of tests for either reproduction
and survival is based on a novel many-objective sorting al-
gorithm, which extends the notion of dominance and gives
higher probability of being selected to those test cases that
are closest to at least one of the uncovered branches [33]. In
the case of more tests having the same branch distance +
approach level scores, MOSA uses a secondary non-coverage
based criterion which is the test case size (number of state-
ments) such that the test case with the lowest number of
statements is preferred. Finally, the final test suite is built
using an archive that keeps track of test cases as soon as

3After acceptance, we will release the quality-based MOSA
through GitHub.
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they cover yet uncovered branches of the program under
test. The archive is updated at the end of each generation
by considering both main (branch closeness) and secondary
(test size) objectives [33].

In order to incorporate CBTM and LCTM into MOSA,
we suggest to replace the secondary objective proposed by
Panichella et al., i.e., the test case size, with a new sec-
ondary objective which takes into account both cohesion
(LCTM) and coupling (CBTM) among test cases within
a specific generation. More specifically, let us consider a
generic population (set of test cases) T = {t1, . . . , tn} gen-
erated by MOSA at the end of a given generation. For each
test ti ∈ T we can compute the corresponding lack of cohe-
sion LCTM(ti) as the average textual dissimilarity between
its constituent method calls (to minimize) as proposed in
Section 2. We can also compute the coupling CBTM(ti) for
each test ti ∈ T as the average textual similarity between
ti and all other test cases tj 6= ti, tj ∈ T in the current
population (to miminize). Once we computed LCTM and
CBTM for all tests in the current population, we use a sum-
aggregation approach to have only one final quality score for
each test ti as follows:

quality score(ti) = α× LCTM(ti) + β × CBTM(ti) (3)

where α and β are linear combination coefficients taking val-
ues within the interval [0; 1]. An optimal quality score value
for ti would be closer to zero, since it implies that ti is highly
cohesive (low lack of cohesion LCTM) and poorly coupled
(low coupling CBTM) to other tests in the same population.
Different α and β coefficients assign different weights to the
constituent metrics. However, in this paper we set α = 0.5
and β = 0.5 in order to give the same importance to LCTM
(cohesion) and CBTM (coupling).

Our quality score is incorporated into MOSA by replacing
the original secondary criterion (i.e., test case size). There-
fore, at the end of each generation MOSA still uses the pref-
erence criterion to increase the selection pressure by giv-
ing higher priority to those tests that are closer to cover
at least one of the uncovered branches (closeness based on
the approach level and branch distance). However, when
there are multiple test cases equally close to cover an un-
covered branch bi, among them we select the one with the
lowest quality score. Finally, we also modify the procedure
to update the archive using the algorithm reported for com-
pleteness in Algorithm 1. The archive is the data structure
used to store test cases as soon as they cover yet uncov-
ered branches. In [33] the archive is updated at the end
of each generation to keep track of new tests (covering pre-
viously uncovered branches) and again using the test case
size as secondary criterion. In our case, when updating the
archive, we re-compute the quality score but this time com-
puting the CBTM metric (coupling) with respect to all tests
stored in the archive (line 10 in Algorithm 1). Indeed, when
updating the archive new additional tests may worsen then
overall coupling among tests in the archive, which is the final
test suite. Therefore, Algorithm 1 selects among the set of
all test covering a specific branch bi the one presenting the
best internal cohesion (LCTM) and with the lowest coupling
(CBTM) with the whole archive.

5. STUDY II: EMPIRICAL EVALUATION

Algorithm 1: Quality-based Update Archive

Input:
A population T
An archive A
Result: The updated archive A

1 begin
2 for each branch bi do
3 tbest ←− ∅
4 best quality ←− ∞
5 if bi already covered then
6 tbest ←− test case in A covering bi
7 best quality ←− 0.5×LCTM(tj) + 0.5×CBTM(tj , A)

8 for tj ∈ T do
9 score←− objective score of tj for branch bi

10 quality ←− 0.5× LCTM(tj) + 0.5× CBTM(tj , A)
11 if score == 0 and quality ≤ best quality then
12 tbest ←− {tj}
13 best quality ←− quality

14 if tbest 6= ∅ then
15 A←− tbest

In this section we describe an empirical study aimed at eval-
uating the effect of cohesion and coupling on the perfor-
mance of search algorithms for test case generation. In par-
ticular, our second study is steered by the following research
questions:

RQ1: Does quality optimization produce more
cohesive and less coupled tests?

RQ2: Does quality optimization affect the achieved
branch coverage?

RQ3: Does quality optimization affect the size of
produced tests?

The usage of cohesion and cohesion metrics as part of the
selection procedure in search algorithms is expected to im-
prove cohesion and coupling of the produced tests. How-
ever, with RQ1 we want to verify whether this is true and
whether such (eventual) improvements are statistically sig-
nificant. One potential drawback of combining coverage cri-
teria with non-coverage criteria is that such combination
may have detrimental effects on the final code coverage since
part of the search effort is not devoted to maximize coverage.
Hence, RQ2 is aimed at verifying whether branch coverage
increases or decreases when incorporating cohesion and cou-
pling metrics using our proposed strategy. More cohesive
and less coupled tests should imply that they do not contain
unnecessary statements, i.e., statements that cover branches
already covered by other tests in the final test suite. For
this reason, RQ3 addresses whether the usage of quality op-
timization results in shorter tests if compared to a standard
strategy targeting branch coverage only.

5.1 Experimental Procedure
For our second study we randomly selected 43 classes from
the SF110 corpus, instead of considering all 23,886 classes
used in our first study. This selection is due to the high
computational cost required for the comparison of different
randomized algorithms. Details of the selected classes can
be found in Table 2. The size of the selected classes varies
from 3 branches for the class RIFClassLoader up to 7,938
branches for the class JavaParser. For each class in our sam-
ple we ran EvoSuite using (i) MOSA enriched with our test
code quality metrics; (ii) MOSA without test code quality
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Table 2: Classes in Our Dataset
No Subject Class Branches

1 newzgrabber Newzgrabber.Base64Decoder 59
2 falselight Services 15
3 htf-bomberman client.network.ClientMsgReceiver 15
4 openhre com.browsersoft.openhre.hl7.impl.regular.ExpressionMatrixImpl 58
5 rif com.densebrain.rif.client.RIFClassLoader 3
6 sweethome3d com.eteks.sweethome3d.model.HomeEnvironment 80
7 tullibee com.ib.client.EWrapperMsgGenerator 67
8 caloriecount com.lts.application.international.MessageFormatter 52
9 caloriecount com.lts.io.ArchiveScanner 45
10 jmca com.soops.CEN4010.JMCA.JParser.JavaParser 7938
11 jmca com.soops.CEN4010.JMCA.JParser.JavaParserTokenManager 1707
12 jmca com.soops.CEN4010.JMCA.JParser.SimpleNode 67
13 freeminf freemind.controller.Controller 410
14 lhamacaw macaw.businessLayer.SupportingDocument 38
15 lhamacaw macaw.businessLayer.Variable 153
16 xbus net.sf.xbus.protocol.records.RecordTypeMessage 52
17 schemaspy net.sourceforge.schemaspy.model.ForeignKeyConstraint 72
18 squirrelSQL net.sourceforge.squirrelsql.client.session.Session 204
19 squirrelSQL net.sourceforge.squirrelsql.plugins.dbcopy.util.DBUtil 463
20 lagoon nu.staldal.lagoon.LagoonCLI 65
21 dom4j org.dom4j.io.OutputFormat 67
22 dom4j org.dom4j.io.SAXReader 101
23 openjms org.exolab.jms.config.ConnectionFactories 114
24 firebird org.firebirdsql.jdbc.FBCachedFetcher 118
25 jcvi-javacommon org.jcvi.jillion.assembly.consed.phd.PhdBuilder 27
26 jcvi-javacommon org.jcvi.jillion.core.Range 426
27 jcvi-javacommon org.jcvi.jillion.core.residue.nt.DefaultNucleotideCodec 74
28 jcvi-javacommon org.jcvi.jillion.core.util.FileIterator 67
29 jsecurity org.jsecurity.authc.UsernamePasswordToken 29
30 pdfsam org.pdfsam.guiclient.commons.models.VisualListModel 143
31 quickserver org.quickserver.net.server.TheClient 43
32 quickserver org.quickserver.util.xmlreader.AdvancedSettings 52
33 gangup state.Player 44
34 weka weka.classifiers.Evaluation 809
35 weka weka.classifiers.bayes.NaiveBayesMultinomialText 194
36 weka weka.classifiers.rules.JRip 416
37 weka weka.core.Optimization 448
38 weka weka.core.stemmers.LovinsStemmer 428
39 weka weka.experiment.ResultMatrix 441
40 weka weka.filters.unsupervised.attribute.Discretize 242
41 wheelwebtool wheel.asm.Frame 687
42 wheelwebtool wheel.components.Component 480
43 wheelwebtool wheel.json.JSONObject 294

metrics; and (ii) the whole suite strategy, which is the de-
fault strategy in EvoSuite. We decided to consider a second
baseline in order to have higher confidence of the generaliz-
ability of our results with respect to other well-established
search algorithms for test case generation. All three algo-
rithms were executed by targeting branch coverage as crite-
rion to maximize. For each execution we collected (i) cohe-
sion (LCTM) and coupling (CBTM) scores, branch coverage
scores, and the final test suite length. We use a search bud-
get of two minutes, thus, the search terminated when two
minutes are reached or when maximum (100%) branch cov-
erage was achieved. To take into account the randomness
of the algorithms used in the study, we run each algorithm
on each selected classes 30 times, for a total of 3 (search al-
gorithms) ×43 (classes) ×30 (repetitions) = 3, 870 different
executions.

To address RQ1 we compare cohesion and coupling scores
for the tests produced by the three search algorithms at the
end of the search. More precisely, we combine LCTM (cohe-
sion) and CBTM (coupling) into a unique scalar value, de-
fined as Quality Metric= LCTM+CBTM , in order to have
only one scalar value to simplify the comparison. The two
metrics LCTM and CBTM are computed using the equa-
tions reported in Section 2. Lower quality metric scores indi-
cate that the obtained tests are highly cohesive (low LCTM)
and poorly coupled (low CBTM). To verify whether the dif-
ferences (if any) are statistical significant, we use the non-
parametric Wilcoxon Rank Sum test [12] with p-value = 0.05
as threshold for significance. Besides testing the statical sig-
nificance, we measure the effect size of the differences using
the Varga-Delaney measure (Â12) [41] following the guide-
lines in [4] for assessing randomized algorithms. To address
RQ2, we compare branch coverage scores achieved by the
three search algorithms. Also for this research question we

use both the Wilcoxon test and the Varga-Delaney measure
to provide statistical support to our findings. For RQ3, we
compare the size of the resulting test suites, where the size
of a test suite is measured as the sum of the lengths (num-
ber of statements) of each composing test case. Note that
we analyze the test suite size only for classes where we do
not observe a significant improvement in terms of coverage.
This is because test suites achieving higher branch coverage
are expected to have more test cases (and more statements)
than other suites with lower branch coverage for the same
class under test. In other words, the test size metric comes
into play for comparison if and only if two test suites under
analysis achieve the same coverage score.

It is important to notice that EvoSuite already applies post-
processing steps in order to reduce the size of the final test
suites improving readability and tests conciseness. Indeed,
at the end of the search process a generated test suite and
its constituent test cases are post-processed for mimimiza-
tion. During this step, statements that do not contribute to
satisfying each individual covered branch are removed from
the tests. In the context of our study, such post-processing
steps are applied to all three search algorithms under study.
Therefore, any difference in test suite size obtained upon
post-process minimization can be interpreted as the effect of
incorporating cohesion and coupling metrics into the main
loop of the search algorithm (RQ3).

5.2 Parameters Setting
We apply encoding schema and genetic operators for test
cases available in EvoSuite. Specifically, we use a dynamic
encoding schema, where each test case is a random sequence
of statements (e.g., method calls) with variable length. Test
cases are combined using the single-point crossover which
randomly exchanges statements between two selected tests.
Finally, each test is randomly modified by a mutation oper-
ator, which can add, delete or change statements with uni-
form probability. Therefore, the length of test cases can vary
during the search. As parameter values we use the default
parameters setting in EvoSuite since a previous study [5]
demonstrated that parameter tuning does have impact on
the performance of test case generation tools, which provide
comparable results with default settings widely used in liter-
ature. For completeness, the main parameter values are [20]:

• Population size: we used the default population size
of 50 chromosomes.

• Search budget: we restrict the search budget to two
minutes for each independent run.

• Crossover: two selected test cases are combined using
the single-point crossover with probability Pc = 0.75.

• Mutation: we use a uniform mutation function with
probability Pm = 1/k where k is the number of state-
ments in the test to mutate.

• Selection function: tournament selection is used with
tournament size = 10, which is the default setting in
EvoSuite.

5.3 Analysis of the Results
Table 3 reports the results for RQ1. Specifically, the table
reports the average quality metric (LCTM + CBTM) ob-
tained over 30 independents runs as well as the results of
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the Wilcoxon test and the Vargha-Delaney measure. Values
Â12 < 0.5 indicate that the quality-based MOSA leads to
higher cohesion and lower coupling than other algorithms
considered in the comparison. In general, we can notice
that tests generated by the quality-based MOSA have bet-
ter quality metric scores as we would have expected. Indeed,
for 33 out of 43 classes the quality-based MOSA produces
tests with a statistically significant better (lower) quality

metric when compared to MOSA. The Â12 measure shows
that for classes with statistical significant differences, the
effect size is mostly large (76%) or medium (18%). Sur-
prisingly, for three classes the quality-based MOSA obtains
(statistically significant) worse scores than MOSA alone.
One of these three classes is AdvancedSettings for which
the quality-based MOSA produces slightly higher (+0.03)
LCTM (lack of cohesion) and CBTM (coupling) when com-
pared to MOSA (see line number 32 in Table 3 — cross-
compare with Table 2 to find index). However, we notice
that all algorithms quickly reach 100% of branch coverage
after a few generations for such a class, which contains only
52 trivial branches (see Table 4 for coverage results). Hence,
the quality-based MOSA ended the search after few genera-
tions without giving enough time (generations) for optimiz-
ing cohesion and coupling.

The comparison with the Whole Suite strategy also reveals
positive results for our quality-based algorithm. Indeed, for
32 classes (out of 43) the quality-based MOSA generates
tests that are statistically more cohesive and less coupled
with respect to those generated by Whole Suite, showing
a large effect size in most of cases (78%). For only four
classes, Whole Suite produces statistically better results (see
lines 11, 18, 32, and 41 in Table 3). After manual investi-
gation, we found that this happens only for those classes
where all search algorithms perform only a few generations,
thus, giving limited search time to optimize test quality (as
for example for the class AdvancedSettings).

In order to investigate the quality metrics scores of tests
generated during the search, Figure 2 depicts the average
quality metric scores (i.e., cohesion + coupling) achieved by
the three experimented algorithms over time (5 minutes) for
the class LovinsStemmer from the weka library. As we can
see, the average quality score for our quality-based MOSA
is always lower than those achieved by MOSA and Whole
Suite. In particular, the average quality for Whole Suite
does not vary over the time, while for MOSA either with or
without quality optimization, we observe a general decreas-
ing trend. However, for the quality-based MOSA the over-
all cohesion+coupling score always remains lower or equal
to 1.30 while for MOSA it ranges between 1.55 and 1.30.
We obtained consistent results also for all other non-trivial
classes in our second empirical study.

For branch coverage (RQ2), the results are reported in Ta-
ble 4. Specifically, the table reports the average branch cov-
erage ([0,1]) obtained over 30 independents runs as well as
the results of the Wilcoxon test and the Vargha-Delaney
measure. Values Â12 > 0.5 indicate that the quality-based
MOSA leads to higher branch coverage than the alternative
algorithm considered in the comparison. The obtained re-
sults show that in the majority of the cases (30 out of 43
classes) there is no difference in terms of branch coverage

Table 3: Quality score achieved by Quality-based
MOSA, MOSA and Whole Suite, together with p-
values resulting from the Wilcoxon test and Vargha-
Delaney Â12 effect size. We use S, M, and L to in-
dicate small, medium and large effect sizes respec-
tively. Significantly p-values are reported in bold-
face.

N.
LCTM+CBTM Quality-based MOSA Quality-based MOSA

Q-based
MOSA

Whole vs. MOSA vs. EvoSuite
MOSA Suite p-value A12 p-value A12

1 1.15 1.26 1.21 0.01 0.30 M 0.09 0.37 S
2 0.68 0.79 0.76 <0.01 0.20 L <0.01 0.27 M
3 1.28 - 1.31 <0.01 0.20 L <0.01 0.26 L
4 1.31 1.32 1.32 0.21 0.41 S 0.20 0.40 S
5 0.85 1.01 1.01 <0.01 0.19 L <0.01 L
6 1.13 1.17 1.15 <0.01 0.16 L 0.04 S
7 0.76 0.88 0.86 <0.01 0.00 L <0.01 0.01 L
8 0.94 1.12 1.12 <0.01 0.00 L <0.01 0.00 L
9 1.01 1.23 1.25 <0.01 0.08 L <0.01 0.05 L
10 1.05 1.01 1.02 <0.01 0.86 L 0.32 0.58 S
11 1.35 1.37 1.28 0.01 0.32 M <0.01 0.88 L
12 1.10 1.22 1.18 <0.01 0.05 L <0.01 0.13 L
13 0.52 0.53 0.54 0.05 0.35 S <0.01 0.25 L
14 1.28 1.30 1.30 0.55 0.45 S 0.47 0.44 -
15 1.20 1.27 1.27 <0.01 0.04 L <0.01 0.04 L
16 0.95 1.17 1.18 <0.01 0.00 L <0.01 0.00 L
17 0.90 1.12 1.12 <0.01 0.00 L <0.01 0.00 L
18 0.20 0.00 0.00 <0.01 0.70 M <0.01 0.70 M
19 0.71 0.76 0.74 <0.01 0.16 L <0.01 0.23 L
20 1.04 1.11 1.09 <0.01 0.25 L 0.03 0.34 S
21 1.12 1.22 1.21 <0.01 0.02 L <0.01 0.04 L
22 0.96 1.05 1.05 <0.01 0.02 L <0.01 0.01 L
23 1.20 1.20 1.20 0.23 0.59 S 0.92 0.49 -
24 1.28 1.30 1.28 <0.01 0.20 L 0.01 0.32 M
25 0.96 1.04 1.04 <0.01 0.22 L <0.01 0.24 L
26 1.12 1.16 1.14 <0.01 0.11 L 0.87 0.49 -
27 0.73 0.77 0.76 <0.01 0.00 L <0.01 0.00 L
28 1.22 1.31 1.30 <0.01 0.02 L <0.01 0.07 L
29 0.92 1.08 1.04 <0.01 0.00 L <0.01 0.03 L
30 1.18 1.21 1.21 <0.01 0.12 L <0.01 0.11 L
31 1.18 1.20 1.20 0.01 0.30 M 0.02 0.32 M
32 1.30 1.27 1.27 <0.01 0.84 L 0.01 0.85 L
33 1.10 1.12 1.11 0.12 0.38 S 0.37 0.43 -
34 1.14 1.18 1.21 0.02 0.32 M <0.01 0.18 L
35 1.11 1.26 1.25 <0.01 0.00 L <0.01 0.00 L
36 0.99 1.03 1.04 <0.01 0.23 L <0.01 0.21 L
37 1.30 1.33 1.35 <0.01 0.27 M <0.01 0.22 L
38 1.14 1.21 1.21 <0.01 0.10 L <0.01 0.10 L
39 1.10 0.99 1.00 <0.01 1.00 L <0.01 1.00 L
40 0.99 1.23 1.23 <0.01 0.00 L <0.01 0.00 L
41 1.27 1.31 1.25 <0.01 0.28 M 0.02 0.67 M
42 1.10 1.10 1.18 0.84 0.48 S <0.01 0.02 L
43 1.01 1.04 1.06 0.03 0.34 S <0.01 0.25 L
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Figure 2: Cohesion and coupling over time for the
class LovinsStemmer with a search budget of fivse
minutes.

achieved by MOSA with and without quality optimization.
This is an important result when compared to previous at-
tempts reported in literature to combine coverage and non-
coverage based criteria in test case generation, for which neg-
ative effects are reported for the final coverage [17]. From
Table 4 we also observe that the quality-based MOSA out-
performs Whole Suite in 17 out of 43 cases, inheriting its
effectiveness from the standard MOSA algorithm [33]. Fi-
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Table 4: Branch coverage achieved by Quality-based
MOSA, MOSA and Whole Suite, together with p-
values resulting from the Wilcoxon test and Vargha-
Delaney Â12 effect size. We use S, M, and L to in-
dicate small, medium and large effect sizes respec-
tively. Significantly p-values are reported in bold-
face.

N.
Branch Coverage Quality-based MOSA Quality-based MOSA

Q-based
MOSA

Whole vs. MOSA vs. EvoSuite
MOSA Suite p-value A12 p-value A12

1 0.64 0.72 0.62 0.69 0.47 - 0.48 0.55 -
2 0.68 0.72 0.73 0.01 0.37 S <0.01 0.33 M
3 0.47 0.44 0.46 0.33 0.53 - 0.97 0.50 -
4 0.94 0.94 0.93 0.96 0.50 - 0.18 0.60 S
5 1.00 1.00 1.00 - 0.50 - - 0.50 -
6 0.94 0.94 0.94 1.00 0.50 - 1.00 0.50 -
7 0.82 0.80 0.79 0.01 0.69 M <0.01 0.73 M
8 0.84 0.82 0.83 <0.01 0.72 M 0.02 0.67 M
9 0.60 0.63 0.67 0.43 0.44 - <0.01 0.26 L
10 0.21 0.22 0.14 0.28 0.42 S <0.01 0.93 L
11 0.47 0.47 0.36 0.34 0.43 - <0.01 0.82 L
12 0.81 0.85 0.81 0.01 0.31 M 0.83 0.52 -
13 0.04 0.04 0.04 <0.01 0.73 M <0.01 0.71 M
14 1.00 1.00 1.00 - 0.50 - - 0.50 -
15 0.94 0.96 0.97 <0.01 0.20 L <0.01 0.16 L
16 0.52 0.51 0.53 0.34 0.56 - 0.25 0.43 -
17 0.81 0.81 0.79 0.33 0.48 - 0.01 0.62 S
18 0.00 0.00 0.00 - 0.50 - - 0.50 -
19 0.21 0.22 0.19 <0.01 0.29 M <0.01 0.73 M
20 0.31 0.32 0.33 0.12 0.39 S <0.01 0.14 L
21 1.00 1.00 1.00 - 0.50 - - 0.50 -
22 0.90 0.92 0.91 <0.01 0.27 M 0.09 0.37 S
23 0.89 0.87 0.33 0.34 0.57 - <0.01 1.00 L
24 0.43 0.43 0.44 1.00 0.50 - 0.17 0.45 -
25 0.96 0.91 0.97 0.49 0.54 - 0.29 0.57 -
26 0.69 0.73 0.57 <0.01 0.21 L <0.01 0.97 L
27 0.97 0.97 0.96 0.74 0.52 - <0.01 0.74 L
28 1.00 1.00 0.99 0.06 0.40 S 0.02 0.66 S
29 0.72 0.72 0.72 - 0.50 - - 0.50 -
30 0.74 0.76 0.73 0.03 0.34 S 0.10 0.63 S
31 1.00 1.00 1.00 - 0.50 - - 0.50 -
32 1.00 1.00 1.00 - 0.50 - - 0.50 -
33 0.95 0.97 0.97 0.04 0.40 S 0.21 0.43 -
34 0.31 0.31 0.30 0.46 0.44 - 0.06 0.64 S
35 0.65 0.68 0.59 0.11 0.38 S <0.01 0.77 L
36 0.21 0.22 0.23 0.24 0.41 S <0.01 0.27 M
37 0.06 0.06 0.06 0.04 0.57 - <0.01 0.85 L
38 0.66 0.66 0.62 0.33 0.57 S <0.01 0.95 L
39 0.81 0.81 0.78 0.78 0.46 - 0.09 0.67 M
40 0.29 0.29 0.30 0.43 0.56 - 0.09 0.37 S
41 0.75 0.75 0.52 0.25 0.41 S <0.01 1.00 L
42 0.64 0.54 0.53 <0.01 0.76 L <0.01 0.92 L
43 0.84 0.85 0.85 0.68 0.47 - 0.79 0.48 -

nally, no statistically significant difference is observed for
other 22 classes.

There are some cases where the Wilcoxon test reveals statis-
tically significant differences, that deserve a more detailed
analysis. For five classes in our sample (lines 7, 8, 13, 37,
and 42 in Table 4), the usage of quality metrics has a signif-
icant positive effect on branch coverage, with an improve-
ment up to 10% for the class Component. To have a better
understanding of such effects, Figure 3 depicts the variation
of branch coverage achieved by the three algorithms (i.e.,
MOSA, quality-based MOSA and Whole Suite) over time
for the class Component. To have a broader view, we con-
sider a larger time window of five minutes as search budget.
From Figure 3, we can observe that for the first 60 seconds
MOSA is particularly effective compared to the other alter-
natives. However, after the first 90 seconds it is not able
to cover any additional branches. On the other hand, the
quality-based MOSA is less effective in the first 90 seconds.
We conjecture that this is due to the overhead required for
computing cohesion and coupling for tests in each genera-
tion. However, after consuming 30% of search budget our
quality-based MOSA becomes more effective leading to a fi-
nal higher branch coverage (+10%) at the end. Hence, the
usage of cohesion and quality metrics seems to avoid the pre-
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Figure 3: Branch coverage over time for the class
Component with a search budget of five minutes.

mature convergence of MOSA for this particular class: with-
out quality metrics the same algorithm is not able to cover
further branches. According to Figure 3, Whole Suite is less
effective at reaching high coverage with respect to MOSA
(either with or without cohesion and coupling) for most of
the search time, confirming the high effectiveness of cus-
tomized many-objective search in test case generation [33].
However, after 60% of the time simple MOSA and Whole
Suite reached the same coverage score and both are not able
to cover further branches for the rest of the search budget.

For branch coverage we also observe that there are eight
classes (lines 2, 12, 15, 19, 22, 26, 30, and 33 in Table 4)
for which cohesion and coupling have a negative effect on
MOSA with a coverage decrease ranging between -1% and
-4%. One such class is SimpleNode from jmca, for which
MOSA achieves 85% branch coverage against 81% for the
quality-based MOSA. One possible explanation for this re-
sults is that computing quality metrics requires further over-
head in addition to the computational complexity of genetic
operators, e.g., the computational cost required to compute
the textual similarity between tests (chromosomes) in each
population. To provide a more in depth analysis, Figure 4
depicts the branch coverage scores achieved by the three ex-
perimented algorithms over time on SimpleNode but using
a larger search budget of five minutes instead of 2 minutes
used in our original study. We can notice that at the be-
ginning of the search (up to 2 minutes) MOSA is, indeed,
faster in reaching higher coverage as also reported in line 12
of Table 4. However, when increasing the search budget to
over 2 minutes, MOSA and the quality-based MOSA are in-
distinguishable. At the end of the search (five minutes) our
quality-based MOSA is able to cover more branches leading
to an average increase of coverage of +2%. Therefore, the
usage of quality metrics can help in improving branch cover-
age by avoiding premature convergence but only when giving
more time to the search. On the other hand, when limited
search budget is given, not including quality metrics is more
effective because it will not increase the overall overhead
for each generation. Potentially, better performance may be
achieved by developing an adaptive strategy to incorporate
cohesion and quality into MOSA’s main loop according to
the time assigned for the search, e.g., by disabling the com-
putation of our metrics when the search budget is lower than
a specific threshold. This is part of our future agenda.
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Figure 4: Branch coverage over time for the class
SimpleNode with a search budget of five minutes.

Table 5: Suite sizes achieved by Quality-based
MOSA, MOSA and Whole Suite, together with p-
values resulting from the Wilcoxon test and Vargha-
Delaney Â12 effect size. We use S, M, and L to in-
dicate small, medium and large effect sizes respec-
tively. Significantly p-values are reported in bold-
face.

N.
Suite Size Quality-based MOSA Quality-based MOSA

Q-based
MOSA

Whole vs. MOSA vs. EvoSuite
MOSA Suite p-value A12 p-value A12

1 15 14 14 0.05 0.54 S 0.01 0.58 M
3 12 12 12 0.06 0.59 S 0.21 0.46 -
4 21 20 20 <0.01 0.27 M 0.02 0.33 M
5 5 5 5 0.73 0.52 - 0.73 0.52 -
6 114 141 139 <0.01 0.01 L <0.01 0.03 L
12 70 68 - L 0.22 0.51 -
14 41 44 44 <0.01 0.17 L <0.01 0.17 L
16 185 202 204 0.03 0.34 S <0.01 0.26 L
17 70 75 <0.01 0.21 L
18 3 3 3 0.50 - - 0.50 -
20 27 27 0.74 0.52 -
21 98 90 89 <0.01 0.86 L <0.01 0.97 L
22 148 160 0.01 0.31 M
23 168 176 <0.01 0.97 L
24 73 73 73 0.73 0.52 - 0.89 0.49 -
25 102 110 114 0.13 0.38 S 0.15 0.39 S
27 94 96 0.42 0.56 -
28 65 65 0.94 0.49 S
29 31 35 35 <0.01 0.03 L <0.01 0.17 L
30 165 172 <0.01 0.94 L
31 74 87 86 <0.01 1.00 L <0.01 0.04 L
32 49 53 53 <0.01 0.13 L <0.01 0.13 L
33 58 62 <0.01 0.29 M
34 214 203 127 0.77 0.52 - <0.01 0.06 L
35 108 105 0.53 - S
36 172 185 <0.01 0.04 L
38 127 128 0.38 0.57 -
39 165 186 162 0.04 0.16 L 0.12 0.56 S
40 81 75 79 <0.01 0.64 S 0.61 0.54 -
41 845 860 0.02 0.33 M
42 383 479 0.70 0.54 -
43 221 234 219 0.03 0.34 M 0.18 0.60 S

Finally, Table 5 reports the average test suite size obtained
over 30 independents runs (RQ3) as well as the statistical
significance according to the Wilcoxon test and the Vargha-
Delaney measure. In this case, values of Â12 < 0.5 indicate
that our quality-based MOSA leads to shorter test suites
(with less statements) than other algorithms. Comparisons
in terms of test suite size are reported only for those cases
where we do not observe a significant improvement in terms
of branch coverage (RQ2). The Wilcoxon test reveals that
our quality-based MOSA produces significantly shorter test
suites with respect to both MOSA and Whole Suite. In-
deed, in 11 classes out of 30, the test suite generated by
the quality-based MOSA are statistically shorter then those
generated by MOSA, with an average size reduction rag-
ing between 1% and 19%. Vice versa, MOSA provides test

suites significantly shorter than its quality-based version in
only four cases. Similar results are also obtained from the
comparison with the Whole Suite: for ten classes the gener-
ated test suites are statically shorter when using the quality-
based MOSA. These results are quite surprising if we con-
sider that for all three algorithms —i.e., MOSA, quality-
based MOSA, and Whole Suite— the generated test suites
are post-processed for minimization. Indeed, despite this
minimization, the usage of cohesion and coupling seems to
provide a complementary support toward the generation of
shorter tests likely improving readability.

In Summary. The incorporation of cohesion and coupling
into the main loop of test case generation tools help in im-
proving the overall quality of generated tests, which are sta-
tistically more cohesive and less coupled (RQ1). We also
discover that such quality metrics have positive effects both
on branch coverage and test suite size. Indeed, when giving
more time to the search test quality metrics may reduce the
probability of early convergence increasing the final branch
coverage (RQ2). Finally, the generated tests tend to be
shorter, suggesting the possibility to complement existing
post-search minimization strategies (RQ3).

6. THREATS TO VALIDITY
This section describes the threats that can affect the validity
of our empirical study.

Construct Validity. An important threat related to the
relationship between theory and observation is due to impre-
cisions/errors in the measurements we performed. For the
first study, we defined two software quality metrics based on
textual analysis. Although we are aware that these metrics
might not be the best ones for measuring test code quality,
several previous studies demonstrated, on the one hand, the
usefulness of textual analysis for measuring code quality [36,
38] and, on the other hand, the ability of textual-based tech-
niques to measure code quality with higher accuracy with
respect to structural metrics [26, 36, 38]. However, the anal-
ysis of different quality metrics, including structural ones, is
part of our future agenda. As for the evaluation of the per-
formances of the GA, we adopted widely used metrics. In-
deed, we used branch coverage and size of the resulting test
suite. In the context of test data generation, such metrics
gave a good measure of the efficiency and the effectiveness of
the test data generation techniques. Finally, for measuring
the post-process quality of the test suites, we used the same
textual metrics defined in Section 2.

Internal Validity. Considering the way the test code qual-
ity metrics are computed, the main threat is represented
by the settings used for the IR process. During the pre-
processing, we filtered the textual corpus by using well known
standard procedures: stop word list, identifiers splitting,
stemmer and the tf-idf weighting schema [8]. As for LSI,
we used the heuristics defined by Kuhn et al. [24] for choos-
ing the number of concepts (k). Regarding the second study,
a potential threat that might affect our results is represented
by the inherent randomness of GA. To limit such threat, we
repeated each execution 30 times. Moreover, another fac-
tor could be represented by the parameters used for setting
up the GA. We are aware that different configurations might
result in different results, however finding the best configura-
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tion is an extremely difficult task. Furthermore, in practice
the gains to be made do not always pay off compared to us-
ing default configurations widely used in literature [6]. Thus,
we rely on a basic setting using default values as suggested
in literature.

Conclusion Validity. As for threats related to the re-
lationship between the treatment and the outcome, in the
analysis of the results we used appropriate statistical tests
coupled with enough repetitions of the experiments to enable
the statistical tests. In particular, we used the Wilcoxon test
for testing significance in the differences, while the Vargha-
Delaney effect size statistic for estimating the magnitude of
the observed difference. Moreover, we tried to draw conclu-
sions only when statistically significant results were avail-
able.

External Validity. Threats to the external validity regard
the generalization of our findings. During the first study,
we carried out a large-scale empirical study, involving 110
different software projects in order to evaluate the quality
of test cases automatically generated. Instead, our second
study involves 43 Java classes from different projects, hav-
ing different size and different number of branches (ranging
between 3 and 7,938). Thus, the selected classes exhibit
a reasonable degree of diversity. However, the replication
of the study on a larger number of classes is desirable and
therefore part of our research agenda.

7. RELATED WORK
Over the last years, the research community has spent a lot
of effort on the definition of search based tools aimed at auto-
matically generating test data by targeting branch coverage
as the primary goal to achieve [27]. However, researchers
have noticed that there are further goals that testers would
like to achieve in addition to code coverage, such as memory
consumption [25], etc. Most of approaches in this research
thread have considered coverage and non-coverage criteria as
equally important objectives to reach and, thus, they have
used explicit multi-objective algorithms to optimize them.
For example, Ferrer et al. [17] proposed a multi-objective
search based algorithm that tries to balance coverage and
oracle cost. Specifically, their approach target one branch
at time, trying to maximize the coverage and minimize the
cost. Pinto and Vergilio [34] also used the single target ap-
proach —i.e., targeting only one branch at time— as well as
execution time and ability of tests to reveal faults as three
distinct objectives to optimize using three-objective search
algorithms. Similarly, Oster and Saglietti [31] applied bi-
objective optimization for maximizing branch coverage and
minimizing the number of test cases. Instead, Lakhotia et
al. [25] considering dynamic memory consumption as sec-
ond objective to consider in addition to branch coverage.
However, all previous work that applies multi-objective ap-
proaches to combine code coverage with non-coverage based
objectives reported no effect or even harmful effects on the
final code coverage [17]. More recently, Afshan et al. [2]
have noticed that readability is a critical non-coverage crite-
ria to take into account since testers are required to manu-
ally check test data input and test results (e.g., assertions)
in order to assess whether the software behaves as intended.
Indeed, unreadable tests imply a substantial increase of hu-
man effort involved in manually checking the inputs pro-

duced [2]. Therefore, they propose to use natural language
models to generate tests with readable string input data
that are easy to comprehend for humans. Daka et al. [14]
proposed a post-processing technique to optimize readabil-
ity by mutating generated tests leveraging a domain-specific
model of unit test readability based on human judgement.
Other strategies to improve test readability also include the
usage of mutation analysis in order to reduce the number of
assertions [19].

In this paper, we observe that test code quality is a desirable
and important goal in test case generation, since poorly de-
signed tests have been proven to negatively impact future
maintenance activities [7, 30, 42]. Specifically, we incorpo-
rate two test code quality metrics into the loop of MOSA
(Many-Objective Sorting Algorithm) [33], a novel many-
objective algorithm that targets all branches in the code
at once. As explained in Section 4, we added the quality of
test code as secondary non-coverage criterion for selection,
instead of the test case size used in the original implemen-
tation. Our empirical results show that, unlike previous at-
tempts to combine coverage and non coverage-criteria into
the search loop, code quality metrics have positive effect on
code coverage reducing the probability of premature conver-
gence. Furthermore, the generated tests tend to be shorter.

8. CONCLUSION
In this paper, we defined two textual-based test code met-
rics, i.e., the Coupling Between Test Methods (CBTM) and
the Lack of Cohesion of a Test Method (LCTM), able to
measure the degree of quality of a test case. In this first
study we empirically investigated the quality of test cases
automatically generated by EvoSuite on the SF110 dataset,
a set of 110 open source projects from SourceForge. Our
findings demonstrate that, even though measures have been
taken to keep test code quality under control during the pro-
cess of automatic test case generation (e.g., minimization),
the design of the generated test cases can still be improved.
For this reason, we incorporate the defined test code quality
metrics into MOSA, a many-objective algorithm for auto-
matic unit test generation [33]. In our approach, we put the
quality indicator based on coupling and cohesion metrics as
a secondary objective to be optimized by the search based
algorithm implemented by MOSA. This contrasts the work
of Afshan et al. [3] and Daka et al. [14], who address the
problem of test code readability by applying linguistic mod-
els as a set of post-processing steps. In the second study,
we randomly selected 43 classes from the SF110 dataset in
order to evaluate the benefits provided by the quality-based
automatic generation process. First of all, we observed that
the generated test cases are statistically more cohesive and
less coupled (RQ1). Moreover, the quality-based automatic
generation process actually has a positive impact on branch
coverage and test suite size (RQ2). Finally, the size of the
generated test cases tends to decrease, suggesting that our
process can nicely complement existing post-search mini-
mization strategies (RQ3). Our future work includes the
evaluation of the impact of our quality-based algorithm on
the effectiveness of test cases, as well as the evaluation of
the effects on other maintainability factors, (e.g., readabil-
ity). Moreover, we plan to assess possible gains (if any)
from the application of other test code quality metrics in
the automatic test case generation process.
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