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Abstract—Code smells are symptoms of poor design solutions
applied by programmers during the development of software
systems. While the research community devoted a lot of effort
to studying and devising approaches for detecting the traditional
code smells defined by Fowler, little knowledge and support is
available for an emerging category of Mobile app code smells.
Recently, Reimann et al. proposed a new catalogue of Android-
specific code smells that may be a threat for the maintainability
and the efficiency of Android applications. However, current
tools working in the context of Mobile apps provide limited
support and, more importantly, are not available for developers
interested in monitoring the quality of their apps. To overcome
these limitations, we propose a fully automated tool, coined
ADOCTOR, able to identify 15 Android-specific code smells from
the catalogue by Reimann et al. An empirical study conducted
on the source code of 18 Android applications reveals that the
proposed tool reaches, on average, 98% of precision and 98% of
recall. We made ADOCTOR publicly available.

Index Terms—Android-specific Code Smells; Detection Tool;
Empirical Study;

I. INTRODUCTION

During software maintenance and evolution, a software sys-
tem undergoes several changes to be adapted to new contexts
or to be fixed with regard to urgent bugs [1]. In such a scenario,
developers need to manage the complexity of changes as soon
as possible in order to meet the unavoidable time constraints,
possibly adopting sub-optimal design choices leading to the
introduction of so-called technical debt [2], i.e., “not-quite-
right” code that programmers write to meet a deadline or to
deliver the software to the market in the shortest time possible.

One noticeable factor contributing to technical debts are
bad code smells (shortly “code smells” or simply “smells”)
originally defined by Fowler, i.e., symptoms of poor design or
implementation choices applied by programmers during the
development of a software system [3].

Researchers and practitioners widely recognized code
smells as a harmful source of maintenance issues [4], [5], [6],
[7], which result in a lower productivity [8], [9] and higher re-
work [10], [11] for developers. For these reasons, researchers
have been particularly active in the definition of techniques
for detecting code smells [12], [13], [14], [15], as well as in
the understanding of the effects of such code smells on non-
functional attributes of source code [4], [5], [10], [16].

While the main focus of previous research was on the
analysis of standard applications, little effort has been devoted
to mobile apps [17]. In this context, a set of new peculiar
bad programming practices of Android developers has been

defined by Reimann et al. [18]. These Android-specific smells
may threat several non-functional attributes of mobile apps,
such as security, data integrity, and source code quality [18].
As highlighted by Hetch et al. [19], these type of smells can
also lead to performance issues.

The aforementioned reasons highlight the need of having
specialized detectors that identify code smells in Mobile apps.
Hetch et al. [20] first faced the problem by devising PAPRIKA,
a code smell detector for Android apps. However, the tool is
able to detect a limited number of the Android-specific code
smells defined by Reimann et al. (just 4 out of the total 30),
and is not publicly available.

In this paper we introduce ADOCTOR (AnDrOid Code smell
detecTOR), a novel code smell detector that identifies 15
Android-specific code smells. The tool exploits the Abstract
Syntax Tree of the source code and navigates it by applying
detection rules based on the exact definitions of the smells
provided by Reimann et al. [18]. We also conducted an
empirical study to evaluate the overall ability of our tool in
recommending portions of code affected by a design flaw. In
particular, we ran ADOCTOR against the source code of 18
Android apps and compared the set of candidate code smells
given by the tool with a manually-built oracle. According to
the results, ADOCTOR is able to suggest code smells with an
average precision of 98% and an average recall of 98%. The
tool has been also employed in the evaluation of the impact
of a subset of Android-specific code smells (i.e., the ones
supposed to be related to energy efficiency) on the energy
consumption of Android apps [21].

Tool and Data Replication. Our detector, as well as the
executable file and all the data used in the experiment are
available on the ADOCTOR website [22].

Structure of the paper. Section II describes the detection rules
and the underlying architecture of the proposed tool, while
Section III reports the design and results of the empirical study
conducted to measure the performances of ADOCTOR. Finally,
Section IV concludes the paper.

II. THE ADOCTOR PROJECT

The ADOCTOR project is built on top of the Eclipse Java
Development Toolkit (JDT)1. While the catalogue by Reimann
et al. [18] proposes a set of 30 design flaws related to both

1http://www.eclipse.org/jdt/



implementation and UI design, in this demo we focus our
attention solely on the smells characterizing a problem in the
source code. Therefore, our tool supports the identification
of 15 Android-specific code smells. In the following, we
present the detection rules applied by ADOCTOR, as well as
the underlying architecture supporting the identification.

A. Detecting Android-specific Code Smells

This section reports, the definition of each smell supported
by ADOCTOR as well as the rule followed for its detection.

Data Transmission Without Compression (DTWC). The
smell arises when a method transmits a file over a network
infrastructure without compressing it, causing an overhead of
communication [18]. ADOCTOR detects the smell if a method
performs an Http request involving an instance of the class
File without using a compression library such as ZLIB2 or
the APACHE HTTP CLIENT3.

Debuggable Release (DR). In Android, the attribute
android:debuggable of the AndroidManifest file
is set during the development for debugging an app. Leav-
ing the attribute true when the app is released is a ma-
jor security threat since every external app can have full
access to the source code. In this case, the detector sim-
ply parses the AndroidManifest file looking for the
android:debuggable properties. If it is explicitly set to
true, the smell is detected.

Durable Wakelock (DW). A Wakelock is the mechanism
allowing an app to keep the device on in order to complete a
task. However, when such task is completed, the lock should
be released to reduce battery drain [18]. In Android, the
class PowerManager.WakeLock is in charge to define the
methods to acquire and release the lock. If a method using
an instance of the class WakeLock acquires the lock without
calling the release, a smell is identified.

Inefficient Data Format and Parser (IDFP). When analyzing
XML or JSON files, the use of TreeParser slows down
the app, and thus it should be avoided and replaced with other
more efficient parsers (e.g., StreamParser) [18]. In this
case, ADOCTOR identifies the smell by evaluating whether a
method uses the TreeParser class.

Inefficient Data Structure (IDS). The mapping from an inte-
ger to an object through the use of a HashMap<Integer,
Object> is slow, and should be replaced by other efficient
data structures, such as the SparseArray [18]. There-
fore, methods using an instance of HashMap<Integer,
Object> are identified by ADOCTOR as smelly.

Inefficient SQL Query (ISQLQ). In Android, the use of a
SQL query is discouraged as it introduces overhead, while
other solutions should be preferred (e.g., using webservices)
[18]. If a method defines a JDBC connection and sends an
SQL query to a remote server, the smell is identified.

2http://www.zlib.net
3https://hc.apache.org

Internal Getter and Setter (IGS). In Android development,
the use of accessors methods (i.e., getters and setters) are
expensive and, thus, internal fields should be accessed directly
[18]. All the methods accessing other objects using getters
and/or setters are identified by ADOCTOR as affected by this
smell.

Leaking Inner Class (LIC). Reimann et al. defined this smell
as a “non-static nested class holding a reference to the outer
class” [18]. This could lead to a memory leak. Analyzing the
files having nested classes, ADOCTOR identifies this smell by
counting the relationships that the outer class has with the
nested classes. If the counter is higher than 1, a Leaking Inner
Class is detected.

Leaking Thread (LT). In Android programming a thread is a
garbage collector (GC) root. The GC does not collect the root
objects and, therefore, if a thread is not adequately stopped it
can remain in memory for all the execution of the application,
causing an abuse of the memory of the app. If an Activity
starts a thread and does not stop it this is considered a design
flaw [18]. ADOCTOR detects this smell if a method of an
Activity class starts a thread without stopping it through
the stop method.

Member Ignoring Method (MIM). Non-static methods that
do not access any internal properties of the class should be
made static in order to increase their efficiency [18]. In this
case, our detector exploits the references of a method, and if
it does not reference any internal fields, a smell is identified.

No Low Memory Resolver (NLMR). An Android developer
can define the behavior of the app when it runs in back-
ground overriding the method Activity.onLowMemory
[18]. This method should be used to clean caches or unneces-
sary resources. If it is not defined, the app can lead to abnormal
memory use. Consequently, if a mobile app does not contain
the method onLowMemory, ADOCTOR detects a smell.

Public Data (PD). This smell arises when private data is kept
in a store that is publicly accessible by other applications,
possibly threatening the security of the app [18]. In Android,
this is done by setting the context of the class as private, using
the Context.MODE_PRIVATE command. Classes that do
not define the context or define the context as non-private are
detected by ADOCTOR as smelly.

Rigid Alarm Manager (RAM). The AlarmManager
class allows to execute operations at specific moments.
Obviously, an Alarm Manager-triggered operation wakes-
up the phone, possibly threatening the energy and mem-
ory efficiency of the app. It is recommended to use
the AlarmManager.setInexactRepeating method,
which ensures that the system is able to bundle several updates
together [18]. Therefore, a code smell is identified by our
detector if a class using an instance of AlarmManager does
not define the method setInexactRepeating.

Slow Loop (SL). The standard version of the for loop is
slower than the for-each loop [18]. Therefore, Android
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Fig. 1: ADOCTOR Architecture

developers should always use an enhanced version of the loop
to improve the efficiency of the app. Our detector identifies
smelly instances as all the methods using the for loop.

Unclosed Closable (UC). A class that implements the
java.io.Closeable interface is supposed to invoke the
close method to release resources that an object is holding
[18]. If the class does not call such a method, ADOCTOR
identifies a smell.

B. aDoctor Architecture and Its Inner-Working

Figure 1 depicts the architecture of ADOCTOR. The Pre-
sentation Layer is composed of the classes implementing two
types of user interfaces, i.e., command line and graphical user
interfaces. The tool is executable via command line through
the following command:

java -cp aDoctor.jar
RunAndroidSmellDetection <project-path>

<output-path> <smells>

where <project-path> is a string representing the path
to the directory containing the source code of the Android app
to analyze, <output-path> is the path to the file where
the code smell candidates will be printed, and <smells>
is a string defining the code smells to analyze. This type of
interface allows our tool to be run programmatically and be
employed in mining software repository studies. In addition,
we provide a graphical user interface.

The configuration view in Figure 2 allows the software
engineer to set the parameters needed for running the analysis,
i.e., folder where the project is located and CSV file where
to save the candidate smells. Moreover, the software engineer
can select the smells that she is interested in. Once the start
button is pressed, the computation starts. When completed, the

Fig. 2: ADOCTOR: Configuration View

Fig. 3: ADOCTOR: Results View

results are shown in a second view, depicted in Figure 3. The
candidate smells can be filtered by class name, and in every
case the results are saved in the <output-path>.

The Application Logic Layer is the core of the ADOCTOR
project and it contains all the subsystems implementing the
detection rules of the Android-specific smells described in
the previous section, as well as the classes that output the
candidate smells. The layer relies on the Eclipse JDT APIs
in order to (i) extract the Abstract Syntax Tree of the source
classes contained in the app under analysis, and (ii) navigate
the Abstract Syntax Tree and compute the detection rules.
The single smell detection rules are implemented as separate
classes of the Android-specific Smells Detector
subsystem. As for the Output generator subsystem, it
is responsible for executing the detection process calling the
classes of the Android-specific Smells Detector
subsystem (see the dependence between the two subsystems
in Figure 1), and output of the candidate code smells found.
Specifically, the output is represented by a CSV file where:



• each line of the CSV file represents a code element of
the analyzed app;

• the first column of each line specifies the granularity of
the code element (i.e., class or method);

• columns from #2 to #n in each line report a boolean
value indicating the presence/absence of the 15 Android-
specific code smells (e.g., column #2 will be true
if a Data Transmission Without Compression has been
detected, false otherwise).

III. EVALUATION

The empirical study has the goal to quantify the ability of
ADOCTOR in recommending portions of source code affected
by a design flaw, with the purpose of investigating its effec-
tiveness during the detection of Android-specific code smells
in Android applications. Specifically, our research question is
the following:

RQ1 : What are the precision and recall scores
of ADOCTOR in detecting Android-specific code
smells?

The context of the study consists of a set of 18 Android apps
belonging to different categories, and having different scope
and size. Due to space limitations, the complete list of apps
considered in the study is available on the ADOCTOR website
[22].

A. Empirical Study Design

To answer RQ1 we ran ADOCTOR on the apps in our
context. To evaluate its precision and recall, we needed an
oracle reporting the actual code smell instances contained in
the considered Android apps. Since there is not an annotated
set of Android-specific code smells available in literature, we
built our own oracle. To this aim, we asked a Master’s student
from the University of Salerno to manually analyze the apps
taken into account in order to extract the methods affected
by each of considered smells. Starting from the definition
of the 15 smells, the student manually analyzed the source
code of the latest version of the apps, looking for instances
of those smells. This process took approximately 180 man-
hours of work. Then, a second Master’s student (still from
the University of Salerno) validated the produced oracle, to
verify that all affected code components identified by the first
student were correct. Just 14 of the instances classified as
smelly by the first student were classified as false positives
by the second student. After a discussion performed between
the two students, 8 of these 14 instances were definitively
classified as false positives (and, therefore, removed from the
oracle). Note that we cannot ensure about the completeness of
the oracle. Moreover, to avoid bias the students were not aware
of the experimental goals and of specific algorithms used by
ADOCTOR to identify smells. The oracle defined is available
on the ADOCTOR website.

Once the set of actual smells was ready and the set of
candidate smells identified by ADOCTOR was available, we

TABLE I: Performance of ADOCTOR on the apps object of
the empirical study

Code Smell Precision Recall F-Measure
DTWC 87% 89% 88%
DR 100% 100% 100%
DW 100% 100% 100%
IDFP 100% 100% 100%
IDS 100% 100% 100%
ISQLQ 85% 88% 86%
IGS 100% 100% 100%
LIC 100% 100% 100%
LT 100% 100% 100%
MIM 100% 100% 100%
NLMR 100% 100% 100%
PD 100% 100% 100%
RAM 100% 100% 100%
SL 100% 100% 100%
UC 100% 100% 100%
Average 98% 98% 98%

compared the two sets using two widely adopted Information
Retrieval (IR) metrics, i.e., precision and recall [23].

To have an aggregate indicator of precision and recall, we
also report the F-measure, defined as the harmonic mean of
precision and recall.

Due to space limitations, we report the overall precision
and recall obtained analyzing each smell type on the 18 apps.
The results achieved on the single apps are available on the
ADOCTOR website [22].

B. Analysis of the Results

Over all the 18 apps considered, ADOCTOR detects 1,444
code smell instances (on average, 80 per app). The most fre-
quent ones are the Member Ignoring Method (467 instances),
Slow Loop (378 instances), and Data Transmission With-
out Compression (266 instances) smells. Since the analyzed
apps contain on average 121 classes, our results reveal that
the Android-specific smells are quite diffused and, thus, the
phenomenon is worth investigating. Note that the complete
results on the distribution of code smells are available on the
ADOCTOR website [22].

Table I reports, for each Android-specific smell, the results
achieved over the set of 18 apps taken into account. The results
clearly show that ADOCTOR is able to correctly identify almost
all the code smell instances present in the Android apps.
Only in two cases the results do not reach 100% precision
and recall, i.e., Data Transmission Without Compression and
Inefficient SQL Query. We manually analyzed these cases in
order to understand the reasons behind the results, finding
that the detector missed some instances because the classes
affected by such smells used different compression libraries
with respect to the ones considered in the detection rules.
Indeed, both smells are related to the communication with
remote servers. To do so, Android apps usually rely on some
widely spread libraries such as ZLIB or the APACHE HTTP
CLIENT. However, there are some cases where other libraries
are employed and, therefore, the detector is not able to cor-
rectly identify the design flaws. For instance, ADOCTORS iden-



tifies a false positive Data Transmission Without Compression
instance in the class AndroidomaticKeyerActivity,
belonging to the package com.templaro.opsiz.aka of
the ANDROIDOMATIC KEYER app. This class relies on the
SILICOMPRESSOR library4 to compress files before sending
them, but ADOCTOR does not recognize the compression
because the method calls done by the class do not refer to
the libraries it consider.

While in this case ADOCTOR fails in the identification of
the smell, it is worth noting that we configured our detector
in order to work with the most common libraries used by
Android developers. Moreover, the issue reveals a potential
way to improve the detection accuracy of the tool. Indeed,
as the support to other libraries will be implemented, the
performances of the tool will be higher.

The discussion is different for the other smells, since
ADOCTOR always reaches 100% of F-Measure. This is due
to the fact that the detection rules described in Section II
are effective in capturing all the small programming issues
applied by Mobile developers. In conclusion, we can affirm
that the proposed tool is efficient in terms of accuracy of the
recommendations.

IV. DEMO REMARKS

In this demo we presented ADOCTOR, a tool supporting
the detection of 15 Android-specific code smells from the
catalogue by Reimann et al. [18]. To identify design flaws, the
tool navigates the Abstract Syntax Tree of a class and applies
detection rules implementing the exact definitions provided by
Reimann et al.

We conducted an empirical study involving 18 Android apps
to validate the proposed tool. The results showed an average
precision and recall of 98%, clearly highlighting the ability
of our tool to correctly identify design flaws in the source
code. For two of the considered smells, i.e., Data Transmission
Without Compression and Inefficient SQL Query, the average
F-Measure is slightly lower than the others, but this is due
to the fact that sometimes the apps use compression libraries
different from the most popular ones.

We plan to integrate the code smell detector in the most
common Integrated Development Environment (IDE) used by
Android developers, i.e., Android Studio. Moreover, we plan
to extend the functionalities of ADOCTOR in order to allow
the extraction and the automation of meaningful refactoring
operations aimed at removing code smells from the source
code.
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exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[6] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014, pp. 101–110.

[7] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Proceedings of the International Conference on Software Engineering
(ICSE) - Volume 1. IEEE, 2015, pp. 403–414.

[8] D. Sjoberg, A. Yamashita, B. Anda, A. Mockus, and T. Dyba, “Quan-
tifying the effect of code smells on maintenance effort,” Software
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1144–1156, Aug
2013.

[9] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi,
“Balancing agility and formalism in software engineering,” B. Meyer,
J. R. Nawrocki, and B. Walter, Eds. Berlin, Heidelberg: Springer-Verlag,
2008, ch. A Case Study on the Impact of Refactoring on Quality and
Productivity in an Agile Team, pp. 252–266.
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