
Evaluating the Lifespan of Code Smells using Software Repository Mining

Ralph Peters
Delft University of Technology

The Netherlands
Email: ralphpeters85@gmail.com

Andy Zaidman
Delft University of Technology

The Netherlands
Email: a.e.zaidman@tudelft.nl

Abstract—An anti-pattern is a commonly occurring solution
to a recurring problem that will typically negatively impact
code quality. Code smells are considered to be symptoms of
anti-patterns and occur at source code level. The lifespan of
code smells in a software system can be determined by mining
the software repository on which the system is stored. This
provides insight into the behaviour of software developers
with regard to resolving code smells and anti-patterns. In
a case study, we investigate the lifespan of code smells and
the refactoring behaviour of developers in seven open source
systems. The results of this study indicate that engineers are
aware of code smells, but are not very concerned with their
impact, given the low refactoring activity.

I. INTRODUCTION

Software evolution can be loosely defined as the study and
management of the process of repeatedly making changes to
software over time for various reasons [1]. In this context
Lehman [1] has observed that change is inevitable if a
software system wants to remain successful. Furthermore,
the successful evolution of software is becoming increasingly
critical, given the growing dependence on software at all
levels of society and economy [2].

Unfortunately, changes to a software system sometimes
introduce inconsistencies in its design, thereby invalidating
the original design [2] and causing the structure of the
software to degrade. This structural degradation makes sub-
sequent software evolution harder, thereby standing in the
way of a successful software product.

While many types of inconsistencies can possibly be
introduced into the design of a system (e.g., unforeseen
exception cases and conflicting naming conventions), this
study focuses on a particular type of inconsistency called
an anti-pattern. An anti-pattern is defined by Brown et
al. [3] as a commonly occurring solution that will always
generate negative consequences when it is applied to a
recurring problem. Detection of anti-patterns typically hap-
pens through code smells, which are symptoms of anti-
patterns [4]. Examples include god classes, large methods,
long parameter lists and code duplication [5].

In this study we investigate the lifespan of several code
smells. In order to do so, we follow a software repository
mining approach, i.e., we extract (implicit) information from
version control systems about how developers work on a

system [6]. In particular, for each code smell we determine
when the infection takes place, i.e., when the code smell is
introduced and when the underlying cause is refactored.

Having knowledge of the lifespans of code smells, and
thus which code smells tend to stay in the source code for a
long time, provides insight into the perspective and aware-
ness of software developers on code smells. Our research is
steered by the following research questions:
RQ1 Are some types of code smells refactored more and

quicker than other smell types?
RQ2 Are relatively more code smells being refactored at an

early or later stage of a system’s life cycle?
RQ3 Do some developers refactor more code smells than

others and to what extent?
RQ4 What refactoring rationales for code smells can be

identified?
The structure of this paper is as follows: Section II

provides some background, after which Section III provides
details of the implementation of our tooling. Section IV
presents our case study and its results. Section V discusses
threats to validity, while Section VI introduces related work.
Section VII concludes this paper.

II. BACKGROUND

This section provides theoretical background information
on the subjects related to this study.

A. Code Smells

There is no widely accepted definition of code smells. In
the introduction, we described code smells as symptoms of
a deeper problem, also known as an anti-pattern. In fact,
code smells can be considered anti-patterns at program-
ming level rather than design level. Smells such as large
classes and methods, poor information hiding and redundant
message passing are regarded as bad practices by many
software engineers. However, there is some subjectivity to
this determination. What developer A sees as a code smell
may be considered by developer B as a valuable solution
with acceptable negative side effects. Naturally, this also
depends on the context, the programming language and the
development methodology.

The interpretation most widely used in literature is the one
by Fowler [5]. He sees a code smell as a structure that needs

to be removed from the source code through refactoring to
improve the maintainability of the software. He also claims
that informed human intuition is the best tool to label a piece
of source code as a code smell and measure its intensity.
This is a plausible statement, but it does not render automatic
measurement impossible or redundant. Most code smells can
be measured by using software metrics.

In this study we focus on the following code smells:
• God Class [7] — abbreviated as GC
• Feature Envy [8] — FEM
• Data Class [5] — DC
• Message Chain Class [5] — MCC
• Long Parameter List Class [5] — LPLC

B. Code Smell Detection Tools

Code smells can be detected manually, but this requires
the software engineer to have an experienced eye and usually
a deeper knowledge of the system. Extensive research has
been devoted to develop techniques to do this automatically.
Most code smell detection tools depend on the use of soft-
ware metrics and corresponding thresholds for these metrics.
Some important detection tools are JDeodorant, developed
by Tsantalis [9], and Ptidej, developed by Guéhéneuc and
his team [10].

C. Mining Software Repositories

The term Mining Software Repositories (MSR) has been
coined to describe a broad class of investigations into the
examination of software repositories. This includes sources
such as the information stored in source code version
control systems (e.g., SVN), requirements and bug-tracking
systems (e.g., Bugzilla) and communication archives (e.g., e-
mail) [6]. Such repositories contain a wealth of information
and provide a unique view of the actual evolutionary path
taken to realize a software system. It is this information that
we intend to use for determining the lifespan of code smells.

III. SACSEA IMPLEMENTATION

SACSEA, which is an acronym for Semi-Automatic Code
Smell Evolution Assistant, is our tool for studying code
smells. It follows a repository mining approach to determine
the lifespans of code smells and it reuses the aforementioned
code smell detectors JDeodorant and Ptidej to detect smells
in individual revisions of the software project. SACSEA
generates a textual report containing the lifespans of each
code smell instance. Also, metadata of their beginning and
end revisions are printed in text, such as the developer
responsible for the commit that introduced or removed the
code smell and the commit date. Figure 1 shows an overview
of the approach that we implemented in SACSEA.

The SACSEA approach can be seen as a 4-step process:

Step 1 – Initialization. The user specifies the URL of
the SVN repository and selects the code smell to be analysed
in the run (currently, SACSEA can only analyse one code

UI

SACSEA

SVNKit API

JDeodorant Module

user enters SVN repository URL ,
code smell and revision range

Ptidej Module

XML Database Revision #1

retrieves local
revision copies

uses

uses uses

retrieves
code smells

stores code smells XML Database Revision #2

XML Database Revision #n

CSV Database

stores changes
between XML-files

Visual Chart

outputs lifespans
and metadata

SVN Repository

Textual Report

Figure 1. Overview of the operation of SACSEA.

smell per run). The user should also specify a start and end
revision.

Step 2 – Detection. SACSEA checks out the first
revision (specified by the user) from the SVN repository
as a working copy. This copy is imported into Eclipse as
a Java project using the .classpath and .project files inside
the root directory. If these files are not present, then the
file pom.xml must be present. The project is then built by
Maven [11]. If the root directory does not contain a pom.xml
file or a combination of .classpath and .project files, then
the Eclipse instance cannot import this as a Java project
and the working copy is immediately deleted from the local
disk and not considered for code smell detection. SACSEA
will continue with the next revision. If the revision can be
built, then either JDeodorant or Ptidej will start to detect
code smells in the current revision. After the detection on
a single revision is complete, the results are stored in an
XML-database. The detection process now repeats itself by
checking out the subsequent revision (if available).

Step 3 – Difference Computation. When all revisions
have been examined, there exists an XML-database for each
of them, containing the code smells that were found. Sub-
sequently, every pair of consecutive revisions is compared
for differences in code smell instances, thus enabling to
determine the lifespans of code smell instances. The results
of this analysis are stored in a CSV-file that contains all the
introductions and removals of code smells in classes and
methods in certain revisions, which respectively correspond
with the beginning and end revisions of the lifespan of an
infected instance.

Step 4 – Output Generation. A textual report is made
that contains each smell instance and its lifespan, along with
metadata, such as the commit date and the developer who
made the commit. Optionally, a graphical representation of
the lifespans of code smells is generated (see [12, p. 33]).

IV. CASE STUDY

In order to answer the research questions that we in-
troduced in Section I, we use SACSEA to examining the
lifespans of five types of code smells in seven projects.

Sy
st

em

St
re

ng
th

D
ev

el
op

m
en

t
pr

oc
es

s

R
ev

is
io

ns
an

al
ys

ed

A
ct

iv
e

de
ve

lo
pe

rs

#
cl

as
se

s

In
ve

st
ig

at
io

n
pe

ri
od

CalDAV4j Industrial Strict 318 5 125 10/2007–03/2011
Evolution Chamber OS Strict 282 11 481 10/2010–03/2011
JDiveLog OS Loose 872 13 331 03/2005–03/2011
jGnash OS Loose 1493 1 466 12/2007–02/2011
Saros Industrial Strict 2482 26 821 09/2006–09/2010
VLCJ Industrial Loose 1502 1 241 05/2009–04/2011
Vrapper (Base) OS Loose 115 2 119 12/2008–04/2009
Vrapper (Core branch) OS Loose 231 2 229 04/2009–04/2010

Table I
OVERVIEW OF THE SYSTEMS UNDER INVESTIGATION.

A. Experimental Setup

The seven software projects that we used in our case study
are listed in Table I. The selection of these projects was
subject to multiple criteria. First, the systems need to be
written in Java, because the detection modules of SACSEA
cannot process other programming languages. Moreover,
they should allow free access to their repository on Sub-
version. A project also has to be in a mature development
stage, meaning that it has to contain enough analysable
revisions from which code smell lifespans of significant size
can be determined. Furthermore, we made sure that they
were sufficiently diverse in terms of domain, strength and
strictness of the development process1.

SACSEA determines the lifespans of any code smell
instances found in each of these software systems. Subse-
quently, we derive statistics from these data, which are then
used to help answer the research questions.

B. Results

Based on the results that we obtained from running
SACSEA on the seven software systems, we are now in
a position to answer the research questions.

RQ1 Are some types of code smells refactored more and
quicker than other smell types?

In order to answer this question, we compare the average
lifespans of different code smell types found in the subject
systems. Table II shows the average lifespan, or the sum
of the lifespans of all code smell instances detected in
each system divided by the total number of these instances,
in italic. All values are expressed in number of revisions
and have been rounded to the nearest integer. Because the
analysis of some smell types included a different number of
revisions than other types in the same subject system, we
also present this average lifespan expressed as a percentage.
This discrepancy in the number of revisions analysed is
due to the use of multiple detection tools, some of which
were unable to process all revisions. This percentage is the

1Strictness of the development process relates to whether developers have
to abide by development rules, such as guidelines for programming and
committing. Usually, this is reflected by development manuals.

average lifespan in revisions divided by the total number of
analysed revisions per smell type, multiplied by 100.

GC FEM DC MCC LPLC

CalDAV4j 42.38% 22.39% 54.55% 52.52% 66.52%
135 71 173 167 212

Evolution Chamber 51.40% 30.27% 27.52% 29.68% 46.08%
145 85 78 84 130

JDiveLog 54.37% 36.71% 51.28% 35.91% 42.67%
419 320 447 313 372

jGnash 67.81% 60.83% 81.97% 70.78% 68.66%
883 792 810 669 1025

Saros 32.56% 24.31% 24.24% 26% 34.29%
680 566 602 643 851

VLCJ 35.46% 29.11% 67.03% 31.58% 35.98%
533 421 1007 474 541

Vrapper (Base) 60.82% 47.58% 72.92% 72.73% 53.48%
70 55 84 84 62

Vrapper (Core branch) 48.79% 71.90% 66.02% 57.14% 47.62%
113 160 153 132 110

Total average 49.20% 40.39% 55.69% 47.04% 49.41%
Standard deviation 12.10% 18.08% 20.79% 18.76% 12.81%

Table II
AVERAGE LIFESPANS IN PERCENTAGE.

The differences between the average lifespans over all
subject systems are small. Nevertheless, something can still
be said about the results. The Feature Envy Method smell
instances have the shortest lifespan on average. The highest
lifespan can be found in the core branch of Vrapper, however
it has only three Feature Envy Methods. Looking a bit
deeper, we also see that most infected methods start suffering
from this smell after several revisions. Also, the majority of
the instances are removed relatively quickly.

RQ2 Are relatively more code smells being refactored at
an early or later stage of a system’s life cycle?

Here, the same approach as mentioned for RQ1 applies.
The only difference is that just the first 20% and the last
20% of the examined revisions of the software projects are
considered. Thus, each system will have two percentages
per smell type, representing the average lifespan of smell
instances in the earliest and latest investigated revisions.
The average of the percentages of all systems is calculated,
resulting in two percentages per smell type: the average
lifespan of the earliest revisions and the average lifespan
of the latest revisions over all subject systems.

Youngest 20% Latest 20%
GC FEM DC MCC LPLC GC FEM DC MCC LPLC

CalDAV4j 52 0 0 0 0 56 45 64 64 64
Evolution Chamber 49 32 1 25 26 54 51 55 57 52
JDiveLog 102 94 73 73 99 132 151 165 154 166
jGnash 134 138 72 60 173 250 249 197 176 280
Saros 226 208 246 192 298 274 343 401 417 414
VLCJ 107 115 194 173 0 230 205 301 203 301
Vrapper (Base) 18 14 20 19 12 20 23 21 23 23
Vrapper 27 0 40 38 47 35 45 46 46 39(Core branch)

Table III
AVERAGE LIFESPANS WITHIN THE YOUNGEST/LATEST 20% IN TERMS

OF REVISIONS.

According to Table III, CalDAV4j seems to have no smell
instances for almost all smell types in its early revisions.
This is due to the fact that those revisions were unexpectedly
not analysable. Nevertheless, the overall results show a clear
pattern for all smell types. In particular, for all subject
systems and smell types, the first 20% of the examined
revisions reveal a substantially lower average lifespan than
the last 20%. Closer inspection revealed that (1) infected
instances at the beginning of a system’s life cycle are bound
to be refactored within a few revisions and (2) the number
of long-living code smell instances increases over time. This
can be explained by the fact that as a system expands, it
will contain more classes and methods that may or may not
get infected. The results hint towards the lack of concern
or awareness of the developers regarding code smells in
general. A more thorough investigation is needed in order
to strengthen the validity of this presumption.

RQ3 Do some developers refactor more code smells than
others and to what extent?

The goal is to count the number of times a code smell
instance of a certain smell type is resolved. The name of
the responsible developer is stored whenever he or she
performs a corresponding activity. This will result in a list of
developers and per smell type the number of instances they
removed. However, there are various reasons for removing
a smell. Intentional refactorings must be distinguished from
removals that were the side effect of bug fixes or the
renaming or deletion of entire classes or methods.

The approach here is to count the number of removed code
smell instances per developer. Table IV shows the names of
the developers participating in the subject systems with the
number of infected instances that they removed according
to SACSEA. Note that one commit can contain multiple
removed smell instances, which can be the consequence of
moving functionality across classes and methods.

However, not all removals are the result of intentional,
dedicated refactoring activities. The number of resolved
instances in the left side of Table IV must be reduced by the
number of times a coincidental removal occurred. For this,
the log messages of all commits responsible for a smell re-
moval have been manually examined and categorized based
on the cause of the removal. Signal words like “Refactored”,
“Extracted class” and “Clean-up” are usually indications
of true refactoring activities. Naturally, these words are no
guarantee and a developer’s perspective on the manifestation
of code smells may differ from the ones assumed by the
detection tools we used in our study. The right side of
Table IV shows the names of the developers with the amount
of resolved instances that were the consequence of deliberate
refactoring per code smell. Also, the last column in both
tables shows the total number of commits per developer
within the range of analysed revisions.

All Intentional

Developer G
C

FE
M

D
C

M
C

C

L
PL

C

G
C

FE
M

D
C

M
C

C
L

PL
C

C
om

m
its

CalDAV4j bobbyrullo 7 1 1 1 78
robipolli 18 17 2 1 1 2 1 111

Evolution
Chamber

nafets.st 8 61 6 1 15
bdurrer 2 8 2 1 2 7 2 15
domagala.lukas 1 4 1 52 4 1 36
mike.angstadt 3 41
fritley 3 3 1 1 70
brendan.speer 1 1 1 4
netprobe 1 16

JDiveLog

onlinervolker 13 49 2 93
andre schenk 5 8 4 1 107
vkorecky 12 37 3 48
sjomik 1 2
szdavid1 3 1 1 52
pellmont 46 53 3 3 1 456
Levtraru 2 3

jGnash ccavanaugh 196 246 2 26 17 1 1355

Saros

sotitas 6 4 1 1 1 7
chris fu 13 15 3 4 7 1 141
coezbek 108 128 4 19 13 3 1 1 784
Arbosh 1 6
k beecher 2 7 1 2 7 1 31
wojtus 1 13 6 1
hstaib 1 9
marrin 33 58 3 25 4 1 130
orieger 19 20 2 7 3 119
ahaferburg 10 55 1 69
s-ziller 8 5 1 63
starkmann 1 3
testvogel 1 4
szuecs 5 2 1 1 14
ldohrmann 7 2 15
djemili 1 1 43
marcus-fu 1 3
ornis 2 1 27

VLCJ wm.mark.lee 39 15 13 4 2 3 3 1 878
Vrapper
(Base)

weissi 2 6
waweee 9 2 3 5 1 1 2 102

Vrapper
(Core)

kgoj 6 4 1 1 1 75
waweee 15 2 7 81

Table IV
NUMBER OF CODE SMELL REMOVALS, AS FOUND BY SACSEA.

RQ4 What refactoring rationales for code smells can be
identified?

To answer this question, the log messages of all commits
responsible for the removal of a smell are examined. Similar
to the approach for RQ3, deliberate refactoring activities
must be identified. Ideally, the log messages are clear and
representative for the actual changes. Unfortunately, this is
not always the case. Furthermore, due to the scarcity of in-
tentional refactoring activities in the subject systems, finding
rationales is difficult. Therefore, code styling rationales are
also considered here, such as dead code elimination. The
most common rationales for resolving the smells considered
in this case study are listed below and have been derived
from the log messages and source code inspection.

• Cleaning up dead or obsolete code: Many subject
systems contain a few revisions in which duplicate,
unused or old classes and methods are removed. Occa-
sionally, this results in the removal of a smell instance,
albeit accidental. Some of these activities may not be
considered as true refactorings.

• Dedicated refactoring: Similar to dead code elimina-
tion, there are some cases in which developers refactor
for the sole purpose of refactoring. This often comes
down to restructuring libraries (Data Classes) or gener-
alizing large classes through the use of interfaces. The
question arises whether the developers are aware of the
specific code smell that infects a certain software entity.

• Maintenance activities: The majority of the refactorings
are coincidental, as a side effect of intentional bug
fixes or implementing new functionality. This causes
many classes and methods to be removed, including
the infected instances.

V. THREATS TO VALIDITY

This section describes the aspects that may threaten the
validity of this study.

Internal Validity. The two code smell detection tools
that we incorporated in SACSEA may identify code smell
instances that are not considered as such by a human expert.
As a result, code smells may not be subject to a refactoring.
False negatives may also occur for similar reasons, in which
case the code smell instance is not shown in the results at
all. This threat is slightly reduced by using two tools with
different detection approaches.

JDeodorant, one of the code smell detectors that we used,
uses an AST-based approach, which needs parsable Java
source files. There are some revisions in the subject systems
that do not compile. Depending on the responsible detection
utility, the source file or the entire revision is skipped for
detection. Consequently, there is no useful data available for
some revisions of four case study systems. The percentage
of unparsable revisions varies from 1% to 25%. This affects
the results and in order to keep the effect to a minimum we
carefully selected software systems with the smallest number
of unparsable revisions.

SACSEA is unable to determine if an entity in revision
n has been renamed in revision n+1. This will usually be
shown in the output as a smell instance ceasing to exist in
one revision and another smell instance being introduced
in the subsequent revision. This phenomenon has to be
recognized manually and not mistaken for a refactoring.

External Validity. The most obvious threats are in
this case the number of subject systems and their scope.
A great amount of effort has been spent on achieving
diversity among the subject systems. Still, the case study was
performed with seven open source projects written in Java.
Therefore, it is possible that the results will not fully hold
for other similar projects, industrial systems or applications
developed in other programming languages or paradigms.
The investigation of this issue is proposed as future work.

Construct Validity. Threats to construct validity concern
the relation between theory and observation. A serious threat

lies in the identification of refactorings, which is based on
the commit logs of the VCS. Indeed, the commit log of the
revision in which a smell disappears can be retrieved. How-
ever, they may not accurately reflect the commits related to a
smell removal, because developers show different behaviour
for committing their changes, e.g., periodically or task-
based. Also, deliberate refactorings must be distinguished
from other coding activities that coincidentally result in the
removal of a code smell. Log messages have to be inspected
manually to make this distinction, which is usually clear,
taking the aforementioned threat into account.

VI. RELATED WORK

This section highlights some important contributions in
the area of code smells and software evolution.

Several studies, among them the work of Fowler [5], show
that code smells and anti-patterns have a negative influence
on software quality. If no action is taken in a timely manner,
then a software system will deteriorate over time. There are
numerous examples available of the study and development
of code smell detection techniques (e.g., [8]). There are also
contributions in the area of the evolution of code smells and
anti-patterns [13], [14].

Zazworka and Ackerman developed a framework called
CodeVizard [15], which can mine data from source code
repositories at source file level. The tool focuses on areas
of risk, such as increasing software complexity, degrading
architectures, process violations and also code smells.

Khomh et al. performed a study [16] that investigated
whether classes with code smells are more change-prone
than classes without smells. They provided empirical ev-
idence that classes with code smells are more subject to
change than others and that specific smells are more corre-
lated than others to change-proneness.

VII. CONCLUSIONS

In this study we created a tool called SACSEA that
computes the lifespans of code smell instances in software
projects. As a case study, SACSEA has been applied to seven
software projects in order to answer four research questions
regarding the lifespan of code smells and the refactoring
behaviour of software engineers.

RQ1 Are some types of code smells refactored more and
quicker than other smell types? During our investigation we
noticed that, on average, code smell instances seem to have
a lifespan of approximately 50% of the examined revisions.
However, there were some small differences per code smell
type, where Feature Envy Methods seem to be refactored
more than God Classes, Data Classes and Long Parameter
List Classes. On first sight, the cause of this phenomenon
seems to lie in the fact that Feature Envy Methods are easier
to refactor, either by accident or intentionally. Also, God
Classes are proven to be difficult refactoring candidates [8],
while Data Classes and Long Parameter List Classes do

not form a big threat in the eyes of many developers.
Overall, this implies that software engineers are not very
much interested in refactoring code smells most of the time.

RQ2 Are relatively more code smells being refactored at
an early or later stage of a system’s life cycle? The results
show that the majority of the smell instances in the early
revisions subset of any subject system are resolved within a
few revisions. However, their numbers do not outweigh the
increasing number of infected instances that exist for a long
period of time. Relative to the first 20% of the revisions
of a system, the latest revisions do not contain many smell
removals.

RQ3 Do some developers refactor more code smells than
others and to what extent? This research question deals
with the behaviour of developers regarding code smells.
Within each subject system, usually one or two developers
refactor more than their colleagues. The differences are not
large: most of the time they are either the only ones who
resolve smell instances or either refactor just a few more in-
fected instances than other developers. Most smell instances
found in the case study were removed as a side effect of
other maintenance activities or the implementation of new
functionality. These results hint towards low awareness or
concern among developers regarding code smells.

RQ4 What refactoring rationales for code smells can
be identified? In order to answer this question, we have
taken a closer look at the log messages left behind by
the developers in order to find refactoring motives. Finding
such motives in the case study was one of the expectations,
but was eventually not fulfilled. Some of the rationales
that were mentioned by the developers are cleaning up
dead or redundant code and refactoring for the purpose of
code smell resolution. More rationales were found regarding
performance and readability improvement. However, these
motives were derived from commits that were not marked
by SACSEA as responsible for smell removals and therefore
fall outside the scope of the experiments. This implies
that developers are most certainly aware of code smells in
their software projects, although they seem to resolve them
for opportunistic reasons, which explains the relatively low
refactoring effort in most subject systems.

Contributions. This study makes these contributions:
• SACSEA. An application that can analyse multiple

versions of Java systems stored on SVN repositories
in order to find different types of code smells.

• Experiment results. The study of seven open source
Java projects showing that developers are aware of code
smells, but do not consider them to be a high priority.

Future work. This study provides a small step in the
field of code smell evolution and more research is required
to strengthen or validate the claims made in this study or

broaden the knowledge by performing more studies using
different variables. These are our intentions for future work:

• The investigation of more code smells.
• Analysing industrial software systems.
• Establishing correlation between smells and developers

using statistics.

REFERENCES

[1] M. Lehman and J. Ramil, “Towards a Theory of Software
Evolution - And its Practical Impact,” in Proc. Int’l Sympo-
sium on Principles of Software Evolution (IWPSE). IEEE,
2000, pp. 2–11.

[2] D. Parnas, “Software Aging,” in Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE, 1994, pp. 279–287.

[3] W. Brown, R. Malveau, H. McCormick III, and T. Mow-
bray, AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. John Wiley & Sons, Inc., 1998.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A. L. Meur,
“DECOR: A Method for the Specification and Detection of
Code and Design Smells,” IEEE Transactions on Software
Engineering, vol. 36, no. 1, pp. 20–36, 2010.

[5] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[6] H. Kagdi, M. L. Collard, and J. I. Maletic, “A Survey and
Taxonomy of Approaches for Mining Software Repositories
in the Context of Software Evolution,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 19,
no. 2, pp. 77–131, 2007.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[8] M. Lanza and R. Marinescu, Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evaluate,
and Improve the Design of Object-Oriented Systems. Ger-
many: Springer-Verlag, 2006.

[9] N. Tsantalis, “Evaluation and Improvement of Software
Architecture: Identification of Design Problems in Object-
Oriented Systems and Resolution through Refactorings,”
Ph.D. dissertation, University of Macedonia, 2010.

[10] “Ptidej,” http://www.ptidej.net/, Last visited: June 2011.
[11] “Maven,” http://maven.apache.org/, Last visited: June 2011.
[12] R. Peters, “Evaluating the lifespan of code smells

in a software system using software repository
mining,” Master’s thesis, Delft University of Technology,
2011. [Online]. Available: http://resolver.tudelft.nl/uuid:
6e02be89-3d5a-4207-a449-ca14eff30231

[13] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the
Impact of Bad Smells using Historical Information,” in Proc.
of the Int’l Workshop on Principles of Software Evolution
(IWPSE). ACM, 2007, pp. 31–34.

[14] S. Olbrich, D. Cruzes, and D. Sjøberg, “Are all Code Smells
Harmful? A Study of God Classes and Brain Classes in the
Evolution of Three Open Source Systems,” in Proc. Int’l
Conf. on Softw. Maintenance (ICSM). IEEE, 2010, pp. 1–10.

[15] N. Zazworka and C. Ackermann, “CodeVizard: A Tool to
Aid the Analysis of Software Evolution,” in Proc. Int’l Sym-
posium on Empirical Software Engineering and Measurement
(ESEM). ACM, 2010, p. 63:1.

[16] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Ex-
ploratory Study of the Impact of Code Smells on Software
Change-proneness,” in Proc. Working Conf. on Reverse En-
gineering (WCRE). IEEE, 2009, pp. 75–84.

