
Change-Based Test Selection in the Presence of Developer Tests

Quinten David Soetens
University of Antwerp

Antwerp, Belgium
quinten.soetens@ua.ac.be

Serge Demeyer
University of Antwerp

Antwerp, Belgium
3 serge.demeyer@ua.ac.be

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
a.e.zaidman@tudelft.nl

Abstract—Regression test selection (i.e., selecting a subset of
a given regression test suite) is a problem that has been studied
intensely over the last decade. However, with the increasing
popularity of developer tests as the driver of the test process,
more fine-grained solutions are in order. In this paper we
investigate how method-level changes in the base-code can
serve as a reliable indicator for identifying which tests need
to be rerun. We validate the approach on two cases — PMD
and CruiseControl — using mutation testing as a means to
compare the selected subset against a “retest all” approach.
Our results show that we are able to reach a sizable reduction
of the complete test suite, yet with a comparable number of
mutants killed by the reduced test suite.

I. INTRODUCTION

With the advent of agile processes and their emphasis on
test-driven development, developer testing has been gaining
popularity [1]. Developer tests are codified unit or integra-
tion tests written by developers, aiming to verify quickly
whether changes to the system break previous functional-
ity [2]. From a software engineering point of view, this is
certainly beneficial as it is likely to lead to higher quality
software. Yet, the very popularity of developer testing, is
also what could signal its downfall. In particular, if we look
at recent observations, we see that in 2005 Microsoft reports
that 79% of developers use unit tests [3]. Others report that
the code for developer tests is sometimes larger than the
application code under test [4], [5], [6]. Knowing about
the popularity of developer testing and the sheer size of
resulting test suites, we are worried about the effectiveness
of developer testing. When we look at the best practice
of testing both early and often [7], we are particularly
concerned with the observation of Runeson, who reports that
some unit test suites take hours to run [8].

Our concern stems from the observation that when devel-
oper tests take too long to run, developers are less inclined
to run them after each and every change. This is a genuine
concern, as confirmed in previous case studies, where we
witnessed that not all software projects uphold graceful
co-evolution between production code and test code [5].
This effectively means that the software is vulnerable for
extended periods of time as the production code evolves, but
the test code does not follow (immediately). In this context,
Moonen et al. have shown that even while refactorings are

behaviour preserving they potentially invalidate tests [9]. In
the same vein, Elbaum et al. concluded that even minor
changes in production code can significantly affect test
coverage [10].

We deduce that with today’s agile development practices,
it remains a challenge to capitalize on developer tests in
rapid feedback cycles. Consequently, we set-out to reexam-
ine so-called test selection techniques; i.e. techniques that
“determine which test-cases need to be re-executed [. . .]
in order to verify the behavior of modified software” [11].
While test selection was studied intensely in the context
of regression tests, it has seldom been studied in the area
of developer tests. This leads us to the overall goal of our
investigation:

How can method-level changes in the base-code
serve as a reliable indicator for identifying which
developer tests need to be rerun?

Given that test selection has been an active field of
research in the past, we address the main research question
via previously established criteria (e.g., [12], [13]) and derive
the following subsidiary research questions.
RQ1 What is the size reduction of the unit test suite in the

face of a particular change operation? Our reasoning
is that a “retest-all” possibly takes several hours, so
reducing the test set will likely lead to more testing
and quicker feedback cycles.

RQ2 What is the precision and recall of our approach?
Given that we reduce the test set, we are interested in
knowing the number of tests in the subset that were
added unnecessarily, and the ones that were omitted
erroneously. A perfectly safe selection technique has
100% recall (i.e. all of the relevant tests in the complete
test suite were included in the subset) perhaps at the
cost of precision (i.e., some irrelevant tests were also
included). In the context of developer tests however,
a safe selection technique is excessive because the
complete test suite will likely be executed as part of
the build anyway. Hence, we strive for an adequate
subset [14].

RQ3 How many mutants does the reduced test suite kill?
A mutant is a transformation of the original base
code that introduces a defect; a test which reveals the

corresponding defect is said to “kill” the mutant. If the
number of mutants killed by a subset is comparable to
the “retest all” approach, it increases the confidence in
the fault detection ability of the reduced test suite.

To answer these research questions, we implemented a
proof of concept prototype named ChEOPSJ, an Eclipse
plugin which extracts the changes from a version control
system and captures them made in the main editor while
the developer is programming [15]. We applied the proto-
type on two distinct cases —PMD and CruiseControl— to
verify the feasibility of the approach and assess against the
aforementioned criteria.

The remainder of this paper is structured as follows. First,
we describe both the change model and the test selection
algorithm and how all this is implemented in ChEOPSJ
(Section II). Next, we discuss the experimental set-up in
Section III. We proceed with an analysis of the results in
terms of the trade-off between the costs of selecting and
executing test cases versus the need to achieve sufficient
detection ability (Section IV). We end the paper with a dis-
cussion of the results and the threats to validity (Section V),
a summary of related work (Section VI), and wrap up with
the conclusions (Section VII).

II. CHANGE REIFICATION IN CHEOPSJ

Robbes and Lanza argue that to obtain more accurate in-
formation about the evolution of a program, changes should
be considered as first-class entities, i.e. entities that can be
referenced, queried and passed along in a program [16].
First-class change entities, modeled as objects in Robbes’
and Lanza’s approach, represent the behavior of the different
kinds of changes required for a program (for example to add,
remove, and modify classes) [17].

In recent years several researchers have built upon that
idea and have created tools that analyze change objects. The
approaches by Robbes et al. in the Spyware tool [18] and
later by Hattori et al. in the Syde tool [19] model changes
as operations on the Abstract Syntax Tree (AST). These
changes act upon program entities, such as packages, classes,
methods and attributes. The approach made by Ebraert et
al. also includes dependencies between changes [17]. We
chose to expand upon the approach by Ebreart et al., because
we are particularly interested in analyzing dependencies in
order to determine which tests are relevant for a set of
applied changes. Where Ebraert et al. made creative use of
Smalltalk’s internal change list, we have implemented a Java
version of his model in Eclipse.

The change model is shown in Figure 1. We define a
Change as an object representing an action that changes
a software system. In our model we define three kinds
of Atomic Changes: Add, Modify and Remove. These
changes act upon a Subject and respectively represent three
actions: adding a subject, modifying a subject or removing
a subject. For the subjects we can use any model of the

software system. We chose to use the FAMIX model as
defined in [20]. This is a model to which most class-
based object oriented programming languages adhere and
it contains entities representing, packages, classes, methods
and attributes, as well as more fine grained entities such
as method invocations, variable accesses and inheritance
relationships.

Add Modify Remove

add
remove
modify

Subject

sourceAnchor
commentsAt

FamixObject

...

Composite
Change

timeStamp
isApplied
intent
user

Change

Atomic
Change

composites

parent changeSubject

affectingChanges

dependentChanges changesOnWhichIDepend

Figure 1: Model of the changes

In our model we also define the change dependencies. For
this we rely again upon the FAMIX model, which imposes
a number of invariants to which each FAMIX model must
adhere. For instance there is an invariant that states that each
method needs to be added to a class. This means that there
is a precondition for the change that adds a method m to
a class c: There should exist a change that adds the class c
and there is no change that removes the class c. Using these
preconditions we can define dependencies between changes.
A change object c1 is said to depend on another change
object c2 if the application of c1 without c2 would violate
the system invariants.

A. Test selection algorithm

We aim to use this dependency information for test selec-
tion purposes. In particular, in our test selection algorithm,
we make use of two particular kinds of dependencies:

• A change c1 is said to Hierarchically depend on a
change c2 if the subject of c1 is in a belongsTo
relation with the subject of c2. This belongsTo relation
is defined by the FAMIX model (e.g., a method belongs
to a class, a class belongs to a package, etc...).

• A change c1 is said to Invocationally depend on a
change c2 if c2 is the change that adds the behavioral
entity that is invoked by the subject of c1. For instance
consider a change c1 that adds an invocation to a
method, which was added by change c2, then we say
that c1 invocationally depends on c2.

The tests written in an XUnit framework are also written
in the same programming language as the base code. As
such both the changes that act upon the test code as well
as the changes that act upon the program code, adhere to
the same meta-model. Therefore there exist dependencies

between the changes of the test code and the changes of
the program code. These dependencies are used to retrieve
the tests that are relevant for a particular change (or set of
changes).

To calculate a reduced test suit we execute Algorithm 1.
In essence this is a variation of the so-called “Retest within
Firewall” method [21], using control flow dependencies on
the methods that have been changed to deduce the affected
tests.

Algorithm 1: selectRelevantTests
Input: A ChangeModel, A set SelectedChanges
Output: A Map that maps each selected change to a set of relevant tests.
foreach c in SelectedChanges do

calledMethod = findMethodAddition(c.hierarchicalDependencies());
invocations = calledMethod.invocationalDependees();
foreach i in invocations do

invokedBy = findMethodAddition(i.hierarchicalDependencies());
foreach m in invokedBy do

if m is a test then
add m to relevantTests;

else
if m was not previously analyzed then

tests = selectRelevantTests(m);
add tests to relevantTests;

map c to relevantTests;

In this algorithm, we iterate all selected changes and map
each change to their set of relevant tests. We start by finding
the change that adds the method in which the change was
performed. We can find this change, by following the chain
of hierarchical dependencies and stop at the change that adds
a method. In Algorithm 1 this is presented abstractly by a
call to the procedure findMethodAdditions. Next we
need to find all changes that invocationally depend on this
methodAddition. These are the additions of invocations to
the method in which the selected change occurred. For each
of these changes, we again look for the change that adds the
method in which these invocations were added. And thus we
find the set of all changes that add a method that invokes the
method that contains our selected change. We then iterate
these method additions and check whether these changes
added a test method. If this was the case we consider this test
method as a relevant test for the originally selected change.
If on the other hand the added method was not a test method,
then we need to find the relevant tests of this method and
that set of tests needs to be added to the set of relevant tests
for the selected change.

B. ChEOPSJ

In a previous paper we presented our tool, ChEOPSJ1

(Change and Evolution Oriented Programming Support for
Java), which is implemented as a series of Eclipse plug-
ins [15]. The general design is depicted in Figure 2.

At the center of the tool we have a plugin that contains
and maintains the change Model. To create instances of the
change model we have two plugins the Logger and Distiller.

1http://win.ua.ac.be/~qsoeten/other/cheopsj/

SVNKit

Change
Distiller

Model

Logger Distiller

ChEOPSJ

ChangeRecorders

Applications TestSelection

Figure 2: The layered design of ChEOPSJ

These two plugins are responsible for populating the change
model, respectively by recording changes that happen during
the current development session and by recovering previous
changes with an analysis of a Subversion repository.

The Logger sits in the background of Eclipse and
listens to changes made in the main editor dur-
ing a development session. We have used Eclipse’s
IElementChangedListener interface to receive no-
tifications from Eclipse whenever a change is made to
Eclipse’s internal Java Model (either by changes in the
textual Java editor or by changes in other views, like the
package explorer). Upon this notification ChEOPSJ will
leap into action to record the change; the ChangeRecorders
will then see what was actually changed. Information about
changes up to the level of methods (i.e. additions, removals
or modifications of packages, classes, attributes or methods)
is contained in the notification. For changes up to statement
level (e.g. adding or removing method invocations, local
variables or variable accesses) we diff the source code of
the changed class before and after the change. To this end
ChEOPSJ stores a local copy of the source code before the
change.

As the logger does not allow us to analyze real world
cases, we also provide a Distiller which implements a change
recovery technique. By using SVNKit it iterates through all
versions stored in the SVN repository and then looks at the
commit message to see what was changed. If a java file
was added, an Addition change needs to be instantiated for
everything in that file (class, attributes, methods,etc, ...). If a
file was removed a Remove change needs to be instantiated
for everything in the file. For a modified file we use Fluri
et al.’s ChangeDistiller [22] to diff between the unmodified
and the modified versions of the file and then translate the
changes from ChangeDistiller to the changes in our model.
This includes linking the changes with dependencies, which
are not present in the model of ChangeDistiller, but which
we can derive from the model of the source code.

We can now build other applications on top of ChEOPSJ
that use the information contained in the model. One of these

is our TestSelection plugin, that implements the test selection
algorithm shown in Algorithm 1. The ChangeInspector view,
provided by the ChEOPSJ Model plugin allows us to make a
selection of changes for which we can then run the algorithm
that finds tests that are relevant for those changes.

III. EXPERIMENTAL SETUP

To address the subsidiary research questions in Section I
(in particular RQ2 and RQ3) we first establish precise rules
on how we measured the precision, recall and the mutants
killed. Next, we also provide the necessary motivation for
and the characteristics of the cases under investigation. This
should provide sufficient details so that other researchers
could replicate our investigation.

A. Dynamic Analysis with AspectJ

To measure the precision and recall of our test selection
algorithm, we need to define a baseline of the relevant tests
for a certain method-level change. To obtain this base-line
we perform a dynamics analysis: we execute the original
test suite and note for each class which tests actually invoke
a method of this class. Via this baseline we can calculate
precision and recall; in Figure 3 we show how the set of
tests selected by ChEOPSJ relate to the tests selected by
the dynamic analysis. The true positives (TP) are those
tests that are in both the reduced set and the baseline. The
tests that were only selected by ChEOPSJ are called the
false positives (FP), whereas the tests only selected with
the dynamic analysis are called the false negatives (FN).
All tests that were neither selected by ChEOPSJ nor by the
dynamic analysis are the true negatives (TN).

ChEOPSJ Dynamic

All Tests

TN

FP TP FN

Figure 3: The basis for calculating precision and recall.

We can now define precision and recall as follows:
Precision: is the rate of true positives versus the

number of tests in the reduced test suite. This says how
many of the tests selected by ChEOPSJ were also selected
by the Dynamic Analysis (i.e., how many of the selected
tests are actually relevant?).

Precision =
TP

TP + FP

Recall: is the rate of true positives versus the number
of tests in the set found with the dynamic analysis. This says
how many of the tests selected with the dynamic analysis
were also selected by ChEOPSJ (i.e., how many of the
relevant tests were also selected?).

Recall =
TP

TP + FN

To do the dynamic analysis we wrote a simple aspect in
AspectJ2 More specifically we wrote an aspect that whenever
a test method is executed, we note which test class this
method belongs to. Additionally the aspect works upon
each method execution within the control flow of the test
method’s execution. It will then keep track of the class in
which this method was and add the corresponding test class
to the relevant tests for this class.

B. Mutation Testing with PIT

A recurring issue with testing experiments is the lack of
realistic cases containing documented faults. As a substitute,
researchers often plant defects into a correct program by
applying a so-called mutation operator or mutator [23].
These mutators are chosen based on a fault model and as
such are a close approximation of typical defects occurring
in realistic software systems. If a mutation causes a test to
fail, the mutation is killed, if a mutation can be introduced
without breaking any of the tests, then the mutation survived.
The fault detection ability of the test suite can now be gauged
by the percentage of mutations that were killed.

PIT (http://pitest.org) is a tool that does byte code based
mutation testing. It supports both Ant (http://ant.apache.org)
and Maven (http://maven.apache.org) and can thus easily
be integrated into the build process of many open source
systems. We used the default PIT configuration, which uses
seven kinds of mutators, which we briefly explain in Table I.
We can run PIT using all tests or using only our reduced test
suite and then compare the outcomes. In the one case we
let PIT create mutations in the entire code base, in the other
case we tell PIT to create mutations only on one particular
class. For all changes in this class we can determine what
the relevant tests are and can then see how many of the
mutations are found when only running this subset of tests.

C. Case Selection

We selected two cases — PMD and Cruisecontrol —
on which to run our evaluations. Cruisecontrol (http://

2http://www.eclipse.org/aspectj/

Mutator Description

Conditionals Boundary Replaces relational operators with their boundary coun-
terpart (e.g. < becomes <=, >= becomes >, ...)

Negate Conditionals Replaces all conditionals with their negated counterpart
(e.g. == becomes ! =, < becomes >=, ...)

Math Replaces binary arithmetic operations from either integer
or floating-point arithmetic with another operation (e.g.
+ becomes −, ∗ becomes /, ...)

Increments Replaces increments of local variables with decrements
and vice versa.

Invert Negatives Inverts the negation of integer and floating point numbers.
Return Values Changes the return value of a method depending on the

return type. (e.g. non-null return values are replaced
with null, integer return values are replaced with 0,)

Void Method Call Removes method calls to void methods.

Table I: Default mutators activated in PIT

cruisecontrol.sourceforge.net) is a framework that allows
for creating a custom continuous integration process.
PMD (http://pmd.sourceforge.net) is a source code analyzer
to find a variety of common mistakes like unused variables,
empty catch blocks unnecessary object creations, etc.

Our main research question is essentially a feasibility
study, hence we chose the cases mainly on the basis of
convenience. Both of these are open-source Java projects,
which can be accessed through a Subversion repository.
They both come with a .project file for Eclipse, making
it easy to run our Eclipse plugin to instantiate the changes
necessary for running our test selection algorithm. They can
also be built via the command line through either Ant or
Maven, which allows us to easily add the commands to the
build files to run the PIT mutation tester.

The sizes of these projects in terms of number of lines
of code and number of classes for both the source code and
the test code as well as the revision that was analyzed are
shown in table II.

IV. ANALYSIS OF RESULTS

Given the description of the conceptual tool prototype
(Section II) and the motivation for the selected cases (Sec-
tion III-C), this section analyzes the results of applying the
test selection algorithm (Algorithm 1) on the two cases.
This analysis is performed on the basis of the criteria listed
in the introduction: the test size reduction (Section IV-A),
precision and recall (Section IV-B) and the mutants killed
(Section IV-C).

A. Test Size Reduction

We measure the test size reduction as the percentage of
test classes in the selected subset against the number of test
classes in the entire test suite. In most cases the reduced
test suite consists of a single unit test. For Cruisecontrol this
implies a reduction of 0.34% (1 out of 295 test classes); for
PMD this corresponds to 1 out of 215 classes or 0.47%.

The relative reductions in size for the two cases under
study are shown in the box plot in Figure 4. We can see that
for Cruisecontrol the minimum and the median are the same,
which means that 50% of the test suites are reduced to 0.34%
— a single test class. The next 25% (between the median
and the 3rd quartile) of reduced test suites were reduced
to sizes between 0.34% and 1.0%. The largest reductions
vary between 1.0% and 7.5%. For PMD we observe similar
reductions. Half of the reduced test suites were reduced to

Project Version Src Src Test Test Build
analyzed KLOC NOC KLOC NOC Process

Cruisecontrol rev. 4601 26.5 376 24.5 295 ant
PMD rev. 7706 46 804 9 215 maven

Table II: Number of 1000 Lines of Code (KLOC) and
Number of Classes (NOC) for both source code and test
code (measured with InFusion 7.2.7).

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

Cruisecontrol" PMD"

Re
la
8v
e"
siz

e"
(P
er
ce
nt
ag
e"
of
"e
n8

re
"te

st
"su

ite
)"

MEDIAN"

AVERAGE"

Figure 4: Relative Test Size Reduction.

between 0.47% (the minimum) and 0.93% (the median); a
quarter was reduced to between 0.93% (the median) and
1.4% (the upper quartile). The most reduced test suites have
relative sizes of between 1.4% and 7.0% of the total test
suite. In PMD we also found three outliers where the test
suite was reduced to 13.5% (29 tests out of 215), 15.3% (33
tests out of 215) and 17.2% (37 tests out of 215).

Since for both PMD and Cruisecontrol, the third quartile
lies around 1%, we deduce that in 75% of the cases the test
selection algorithm reduces the entire test suite by 99%.

B. Precision and Recall

To count the number of tests in the subset that were added
unnecessarily, and the ones that were omitted erroneously we
compared the subset identified with the test selection algo-
rithm against a baseline test set identified with a dynamic
analysis. As such we gathered results for 236 test sets for
Cruisecontrol and 139 test sets for PMD. These results are
shown in the box plots in Figure 5

Half of the test sets in Cruisecontrol get an ideal precision
of 1, as both the median and the maximum are located at
1. The next 25% of the test sets have a precision between
0.84 (the lower quartile) and 1 (the median) and the final
25% have a precision that varies between 0 (the minimum)
and 0.84 (the lower quartile). Overall we have an average
precision of 0.87, which implies that on average, 13% of the
test are added unnecessarily by our test selection algorithm.

The recall performs a bit worse. Again, the first half of
the reduced test sets obtain a perfect recall of 1. However
25% of the reduced test sets score between 0.5 (the lower
quartile) and 1 (the median); the rest of the test sets get a
recall between 0 and 0.5. On average we have a recall value
of 0.77, which implies that on average 23% of the relevant
tests were omitted erroneously by our algorithm.

In the case of PMD, the precision and recall values are
significantly lower. Again we see that in half of the test sets
we get an ideal precision of 1. A quarter of the test sets have
precision values between 0.67 (the lower quartile) and 1 (the
median) and the rest of the test sets have a precision lower

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

PMD"Precision" PMD"Recall" CC"Precision" CC"Recall"

MEDIAN" AVERAGE"

Figure 5: Precision and recall of the test selection.

than 0.67 with 0 being the smallest precision. On average
the precision is 0.83, which is comparable to the precision of
Cruisecontrol. The recall on the other hand is significantly
worse. Only a quarter of the test sets have an ideal recall
of 1; the second quarter of test sets have recall of between
0.56 (the median) and 1 (the upper quartile); the final half of
the test sets have a recall lower than 0.56 (the median). On
average there is a recall value of 0.58, which implies that
almost half of the relevant tests were omitted erroneously
by our test selection algorithm.

C. Mutants Killed

To assess the fault detection ability of the reduced test
suite, we compare the number of mutants killed against the
ones that are killed by the complete test suite. When the
reduced test set kills the same number of mutants, it is as
good at exposing defects as the retest-all approach. When
more mutants survive, the detection ability of the reduced
test suite is worse, however the confidence one might have
in the results depends on the percentage of how many
more mutants survive. Table III shows the initial results:
for Cruisecontrol in 88% of the investigated test suites (155
out of 176) both test suites kill the same number of mutants.
In the case of PMD, this number drops to 50% (71 out of
141). Consequently, for a number of reduced test sets, fewer
mutants were killed: 12% (21 of 176) for CruiseControl;
50% (71 out of 141) for PMD.

Despite fewer mutants being killed, the confidence one
might have in the reduced test set is still acceptable as
may be deduced from Figures 6 and 7. The horizontal axis
shows how many mutants were introduced in total in the
inspected class; the vertical axis shows how many more
mutants survived relative to the total number of mutants
introduced. For instance point A in Figure 6, indicates that

Project Equal Kills Less Kills

Cruisecontrol 88% (155 out of 176) 12% (21 out of 176)
PMD 50% (71 out of 141) 50% (70 out of 141)

Table III: Quality of reduced test sets.

A’s reduced test suite killed 38.8% (out of 36 mutants) less
mutants than the entire test suite. Similary, point B shows
that 31% of 138 mutants survived the reduced test suite, yet
did not survive the retest-all.

On each graph we also show two lines: the bottom line is
the three-mutant line, which indicates what the percentage
is of three mutants out of the total number of mutants (e.g.
3 out of 3 is 100%, 3 out of 6 is 50% and 3 out of 180 is
1.667%). Any point below this line represents a case where
the reduced test suite killed only one or two less mutants. In
these cases we still have a comparable number of mutants.

The second line is the ten-mutant line, which indicates the
percentages of ten mutants in the total number of mutants.
All points above this line indicate that in those cases the
reduced test suite killed more than ten mutants less. In the
case of Cruisecontrol there are only two such points: A and
B, which respectively have 14 out of 36 and 43 out of 138
more surviving mutants.

These lines also put the higher percentages in perspective.
For instance point C in Figure 6 misses all (100%) of the
mutants that were killed with the retest-all; however out of
a total of only two introduced mutants.

In the case of PMD many more classes lie above the ten-
mutant line. This indicates a lot more tests were missing
from the reduced test suites, which was also evident from the
lower recall values. Nonetheless many points also lie below
the three-mutant line representing cases were the reduced
test suites killed only one or two mutants less, which is still
a comparable result to the number of mutants killed by the
entire test suite.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0" 20" 40" 60" 80" 100" 120" 140" 160" 180"

Pe
rc
en

ta
ge
)o
f)m

or
e)
su
rv
iv
in
g)
m
ut
an

ts
)

Total)number)of)mutants)

A
B

C

Figure 6: Percentages of survived mutants for Cruisecontrol

V. DISCUSSION

In this section we discuss the results shown in the previous
section and revisit the research questions introduced in
Section I. We also indicate threats to validity.

A. Revisiting the research questions

RQ1 What is the size reduction of the unit test suite in the
face of a particular change operation? In Section IV-A,

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0" 20" 40" 60" 80" 100" 120" 140" 160" 180"

Pe
rc
en

ta
ge
)o
f)m

or
e)
su
rv
iv
in
g)
m
ut
an

ts
)

Total)number)of)mutants)

Figure 7: Percentages of survived mutants for PMD

we have shown that according to our test selection
algorithm, in most cases more than 99% of the entire
test suite is discarded. Thus, for most changes only a
handful of tests need to be rerun. We identified three
outliers in the case of PMD. Two of these outliers can
be explained due to the fact that the selected class is
actually an enum with hundreds of references in the
rest of the project. The third outlier is a class named
AbstractNode, which serves as the base class for
199 concrete node classes.

RQ2 What is the precision and recall of our approach?
We have shown in Section IV-B that we reach high
precision scores: on average 0.87 for Cruisecontrol and
0.83 for PMD. This implies that only 13% and 17% of
the selected tests are irrelevant, when compared against
the baseline obtained via dynamic analysis. The recall
values are a bit lower for Cruisecontrol (with an average
of 0.77) and much lower for PMD (with an average
of 0.58). This means that for Cruisecontrol 23% of the
tests that are relevant according to the dynamic analysis
were found to be irrelevant with our change-based test
selection. For PMD on the other hand almost half of
the relevant tests are missing from our reduced test sets.
Whether this is adequate remains an open question:
since the build process involves a retest all anyway,
there is a safety net in place which catches those defects
not detected by the reduced subset. For some systems,
this safety net will be used half of the time.

RQ3 How many mutants does the reduced test suite kill? In
Section IV-C we have shown that in 88% of the reduced
test suites for Cruisecontrol and 50% of the reduced test
suites for PMD kill the same amount of mutants as the
complete test suite.The other 12% and 50% however are
cases where the reduced test suites killed fewer mutants
than the whole test suite. Although we can still put this
in perspective: these reduced test suites kill on average
23.8% (for Cruisecontrol) and 29.8% (for PMD) less
mutants. This image is a bit warped as the total number

of mutants introduced varies between 2 and 179. There
are a few cases where we miss a high percentage of a
low amount of mutants (e.g. 100% of 2 mutants) which
increases the average. To counter this we can look at
a weighted average of the percentage fewer mutants
killed, using the total number of mutants as weight.
We then find for Cruisecontrol and PMD, a weighted
average of respectively 12.3% and 23.9 % less mutants
killed.
The fact that some reduced test sets kill fewer mutants
means that in we missed some relevant test cases. This
is also confirmed by the lower recall values. In fact
when we look at the cases where less mutants were
killed we can also find a low value for the recall of
those reduced test sets. In the other direction this is not
necessarily true. A low recall value does not indicate
that there will be a lower number of mutants killed as
several tests might be able to kill the same mutants.

The fact that for some classes we kill less mutants and
have a lower recall can be explained by a number of factors.
A general observation is that this can be explained due to the
fact that some language constructions can not yet be modeled
in our change model. These missing constructs include
invocations of class constructors, as well as invocations of
polymorphic methods, abstract methods or methods declared
in interfaces.

A common example in the PMD case is the invocation
of a visit method in the JavaParserVisitor interface.
This interface has many implementations, one example is
the DataFlowFacade class, which invokes the following
method in the ASTCompilationUnit.
@Override
public Object jjtAccept(JavaParserVisitor visitor, ...) {

return visitor.visit(this, ...);
}

It is clear that this method is invoked from the test
class, but there is a link missing between the method
declared in the interface and the actual implementation in
the DataFlowFacade class. Any method invoked from
the actual implementation will be missing a relevant test.

Similar examples can be found for invocations of abstract
methods and methods that overload a method declared in a
superclass.

Another issue with finding relevant tests in PMD is that
this project uses polymorphism in its test classes as well.
As such we can find the class AbstractRendererTst
to be a relevant test for a number of classes, but it will be
harder to find any of its subclasses to be a relevant test.

B. Threats to Validity

We now identify factors that may jeopardize the validity of
our results and the actions we took to reduce or alleviate the
risk. Consistent with the guidelines for case studies research
(see [24], [25]) we organize them into four categories.

Construct validity – do we measure what was intended:
We evaluated the reduced test suites with three criteria, the

size of the reduction, the accuracy of the tool via precision
and recall and the fault detection ability of the reduced test
suites measured through the number of mutants killed. There
are however other criteria that can be used to evaluate test
selection algorithm, e.g., test coverage, inclusion.

Internal validity – are there unknown factors which
might affect outcome of the experiment: The change model
currently does not include polymorphism or constructor
invocations, which leads to relevant tests being omitted
erroneously. We can improve the results by incorporating
these language constructs in the change model. A method
invocation will then not only be invocationally dependent
on the method that is being invoked but also on every
polymorphic variation of this method. This will improve
recall, at the expense of precision.

External validity – to what extent is it possible to gen-
eralize the findings: In this study we investigated two cases:
Cruisecontrol and PMD. We chose them to be sufficiently
different, yet, with only two datapoints, we cannot claim that
our results generalise to other systems.

Reliability – is the result dependent on the tools: In
this paper we relied on tools of our own making as well
as some external tools. Our ChEOPSJ tool is implemented
as an Eclipse plugin and relies on Eclipse’s internal java
model; it also uses ChangeDistiller, both of which can
be considered to be reliable external tools. Our dynamic
analysis is performed using a simple aspect that we wrote
ourselves in AspectJ and which we thoroughly tested. The
mutation experiment is performed using an external tool PIT,
which is still actively being developed and improved, but
which can be considered reliable.

VI. RELATED WORK

Regression test selection is a problem that has been
investigated intensely over the last decade as demonstrated
in the systematic literature review conducted by Engström
et al. [11], [26]. It is an interesting problem from a practical
point of view because it results in significant savings on
the time to execute the regression test suite, hence lessens
the pressure right before a software release [21]. From a
research point of view it is equally interesting as it results
in interesting trade-offs: the costs of selecting and executing
test cases versus the need to achieve sufficient detection
ability. Two studies in particular inspired the experimental
set-up in this paper, as they compared different regression
test selection techniques using a predefined set of criteria.
Mansour et al. investigated algorithms such as simulated
annealing, reduction, slicing, dataflow and firewall and com-
pared them using criteria like number of selected test cases,
execution time, precision, inclusiveness, preprocessing re-
quirements, type of maintenance, level of testing, and type
of approach [12]. Graves et al. compared a representative

algorithm for four categories of techniques: minimization,
dataflow, safe, random and retest all using criteria like the
test size reduction and fault detection effectiveness [13].

Developer Tests. However, with the advent of agile pro-
cesses and their emphasis on test-driven development [27]
and continuous integration [28], the nature of the test
selection problem has changed significantly. In particular
the line between unit/integration and regression testing is
blurred; some authors explicitly use the term “developer
tests” to refer to this grey zone [2]. This has an impact
on the following characteristics.
Process: Regression testing is traditionally a separate ac-

tivity scheduled after unit and integration testing but
before acceptance testing. With developer tests, it is an
activity tightly interwoven with the build- and release
process.

Automation: While automation has always been a key
enabler for efficient regression testing some degree
of manual scenario testing is often tolerated. With
developer tests, “self testing code” is a necessary pre-
requisite.

Coverage: Regression tests are designed to maximize the
chance of exposing regression bugs; hence mainly use
black-box coverage criteria. With developer tests, the
coverage criteria depend on the focus of a particular
test case, mixing black-box and white-box criteria.

These three dimensions together illustrate why it is worth-
while to revisit the test selection problem in the context of
developer tests, yet that the criteria used to assess the solu-
tion should be interpreted differently. The process dimension
implies that developer tests run more frequently, hence that
the test size reduction (as an indicator for speed) is a highly
relevant criterion. On the other hand, the fully automated
tests imply that a safe selection is not required: we can afford
to miss a few relevant tests as long as the complete test suite
is executed regularly serving as a safety net. Finally, the
mixture of black- and white-box coverage criteria, implies
that we should look beyond traditional coverage metrics
(branch coverage, statement coverage, . . .) to assess the
fault detection effectiveness, for instance by comparing the
number of mutants killed [23].

Test selection heuristics. Given that the nature of the
test selection problem has changed significantly, some au-
thors have investigated heuristics to recover test-to-code
traceability links. In earlier research, we exploited naming
conventions, fixture element types, the static call graph, last
call before assert, lexical analysis and co-evolution [29].
Qusef et al. compared against these heuristics with their
tool SCOTCH, which exploits dynamic slicing and con-
ceptual coupling [30]. These heuristics work surprisingly
well, however not in all cases. Weijers for instance has
shown that naming conventions are not reliable because
some developer tests serve more like integration tests, testing
multiple methods of multiple classes [31].

Integration with the IDE. The goal of developer testing
is to provide rapid feedback to the individual developer,
hence tight integration with the Integrated Development
Environment (IDE) is critically important. Saff and Ernst
have proposed continuous testing [32], which, similarly
to background compilation in the IDE, enables ultra-short
feedback cycles. However, Saff and Ernst also report that
in order to make continuous testing feasible, test selection
techniques should be incorporated. Hurdugaci and Zaidman
have developed TestNForce, a Visual Studio plug-in that
links changes in production code to the tests that cover the
changed pieces of production code [33]. Ideas like these are
making the transition from the state-of-the-art towards the
state-of-the practice: Microsoft has incorporated the “Test
Impact Analysis” feature in Visual Studio.

VII. CONCLUSION

With the advent of agile processes and their emphasis
on test-driven development and continuous integration, ob-
taining rapid feedback from executing a suite of developer
tests remains a challenge. Given the size of the complete
test suite, it is impractical to perform a “retest all” after
each and every change. Hence, the problem is to select an
appropriate subset of the complete test suite covering the
most recent changes with sufficient detection ability. Inspired
by previous research on test selection, we have investigated
whether changes in the base-code can serve as a reliable
indicator for identifying which developer tests need to be
re-executed.

Our results show that, given a list of methods which
changed since the latest commit, it is feasible to exploit
control flow dependencies to select a subset of the entire test
suite which is significantly smaller. The selected subset is not
safe as it occasionally misses a few relevant tests, however
it is adequate especially since the complete test suite will be
executed as part of the integration build anyway. To assess
the significance of the reduction and the detection ability of
this subset, we turn to the subsidiary research questions:
RQ1 What is the size reduction of the unit test suite in the

face of a particular change operation? If a developer
changes a single method, the test selection algorithm
reduces in 75% of the cases the subset to approximately
1% of the complete test suite; in most cases this
corresponds with a single unit-test. There are a few
outliers however, yet in the worst-case the reduction is
still 17% corresponding to 37 test cases out of 215.

RQ2 What is the precision and recall of our approach?
For half of the method-level changes, the test selection
algorithm identifies the exact subset of tests covering
those changes. For the remaining half, the algorithm
selects few irrelevant test cases, however misses a lot of
the relevant ones. This is quite dependent on the imple-
mentation however: methods exhibiting polymorphism
have multiple possible targets and then the test selection

becomes less adequate. Parts of the PMD design relies
heavily on template methods and in those cases the test
selection missed up to 35 out of 42 test cases.

RQ3 How many mutants does the reduced test suite kill?
Here as well, we observe that this is quite dependent on
the implementation. In at least half of the cases (9 out of
10 in Cruisecontrol, 1 out of 2 in PMD), the selected
subset kills exactly the same number of mutants. In
the remaining cases, there are very few mutants who
survive, typically 1 out of 5. There are a few outliers
however (in the worst case 43 mutants survived out
of 78), which again can be explained by the use of
polymorphism.

Contributions. Over the course of this research, we have
made the following contributions:

• We have implemented a tool prototype named
ChEOPSJ serving as an experimental platform for con-
ducting feasibility studies with first-class representation
of changes in Java.

• We have demonstrated how this platform can be used
to deduce which developer tests need to be re-executed
when a given method has changed.

• We applied the prototype on two cases — PMD and
CruiseControl — to assess the savings on reducing the
test suite versus the ability to detect regression faults.

• We have demonstrated that it is feasible to use method-
level changes to select a subset of a large test suite
which is significantly smaller yet is adequate for iden-
tifying regression faults.

Future work. There is a large body of knowledge on test
selection techniques in the context of regression testing.
Some of this work will have to be re-examined against the
changing context of developer tests. In particular, we aim to
address the following questions.

Are more elaborate test selection algorithms worthwhile?
In literature more elaborate test selection techniques based
on dataflow and slicing are documented. Hence it is worth-
while to see whether these techniques achieve better results.

What are acceptable thresholds for precision, recall and
surviving mutations survived? In this paper, we used these
measures as indicators for the fault detection ability of the
reduced test suite. We observed that for many changes the
reduced test set is perfectly safe. However, in some cases
the reduced test set does not expose defects and then the
question is when this reduced test set is adequate. Acceptable
thresholds still need to be defined probably on the basis of
field studies with realistic projects.

What is the real significance of test selection in the context
of developer tests ? Will developers be more inclined to
run their developer tests more frequently with test selection
enabled? Will this result in fewer (regression) faults later
in the life-cycle? We see it as a challenge to perform field
studies with real project teams to get insight here.

ACKNOWLEDGMENTS

We express our gratitude to the SEAL team in the University
of Zürich, Switzerland for releasing Changedistiller in the public
domain; our ChEOPSJ tool is partly based on this release.

This work has been sponsored by (i) the Interuniversity Attrac-
tion Poles Programme - Belgian State Belgian Science Policy,
project MoVES; (ii) the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)
under project number 120028 entitled “Change-centric Quality
Assurance (CHAQ)”; (iii) the RAAKPRO project EQuA (Early
Quality Assurance in Software Production) of the Foundation
Innovation Alliance, the Netherlands.

REFERENCES

[1] V. Garousi and T. Varma, “A replicated survey of software
testing practices in the canadian province of alberta: What
has changed from 2004 to 2009?” Journal of Systems and
Software, vol. 83, no. 11, pp. 2251–2262, 2010.

[2] G. Meszaros, XUnit Test Patterns: Refactoring Test Code.
Prentice Hall PTR, 2006.

[3] G. Venolia, R. DeLine, and T. LaToza, “Software develop-
ment at microsoft observed,” Microsoft Research, Tech. Rep.,
2005, http://research.microsoft.com/pubs/70227/tr-2005-140.
pdf.

[4] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert:
Suggesting repairs for broken unit tests,” in Proc. of the
Int’l Conference on Automated Software Engineering (ASE).
IEEE CS, 2009, pp. 433–444.

[5] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. De-
meyer, “Studying the co-evolution of production and test code
in open source and industrial developer test processes through
repository mining,” Empirical Software Engineering, vol. 16,
no. 3, pp. 325–364, 2011.

[6] N. Tillmann and W. Schulte, “Unit tests reloaded: Parame-
terized unit testing with symbolic execution,” IEEE Software,
vol. 23, no. 4, 2006.

[7] J. McGregor, “Test early, test often,” Journal of Object
Technology, vol. 6, no. 4, 2007.

[8] P. Runeson, “A survey of unit testing practices,” IEEE Soft-
ware, vol. 23, no. 4, pp. 22–29, 2006.

[9] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink,
“The interplay between software testing and software evolu-
tion,” in Software Evolution, T. Mens and S. Demeyer, Eds.
Springer, 2008, pp. 173–202.

[10] S. Elbaum, D. Gable, and G. Rothermel, “The impact of
software evolution on code coverage information,” in Proc. of
the Int’l Conference on Software Maintenance (ICSM). IEEE
CS, 2001, pp. 170–179.

[11] E. Engström, P. Runeson, and M. Skoglund, “A systematic
review on regression test selection techniques,” Journal Infor-
mation and Software Technology, vol. 52, no. 1, pp. 14–30,
2010.

[12] N. Mansour, R. Bahsoon, and G. Baradhi, “Empirical com-
parison of regression test selection algorithms,” Journal of
Systems and Software, vol. 57, no. 1, pp. 79—90, Apr. 2001.

[13] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel, “An empirical study of regression test selection
techniques,” ACM Transactions on Software Engineering and
Methodology, vol. 10, no. 2, pp. 184–208, 2001.

[14] M. Pezze and M. Young, Software Testing and Analysis:
Process, Principles and Techniques. Wiley, 2007.

[15] Q. D. Soetens and S. Demeyer, “ChEOPSJ: Change-based
test optimization,” in Proc. of the European Conference on
Software Maintenance and Reengineering (CSMR). IEEE
CS, 2012, pp. 535–538.

[16] R. Robbes and M. Lanza, “A change-based approach to soft-
ware evolution,” Electronic Notes in Theoretical Computer
Science, vol. 166, pp. 93–109, 2007.

[17] P. Ebraert, J. Vallejos, P. Costanza, E. V. Paesschen, and
T. D’Hondt, “Change-oriented software engineering,” in Proc.
of the Int’l Conference on Dynamic Languages (ICDL).
ACM, 2007, pp. 3–24.

[18] R. Robbes and M. Lanza, “Spyware: A change-aware devel-
opment toolset,” in Proc. of the Int’l Conference in Software
Engineering (ICSE). ACM Press, 2008, pp. 847–850.

[19] L. Hattori and M. Lanza, “Syde: A tool for collaborative
software development,” in Proc. of the Int’l Conference on
Software Engineering (ICSE). ACM, 2010, pp. 235–238.

[20] S. Demeyer, S. Tichelaar, and P. Steyaert, “FAMIX 2.0 - the
FAMOOS information exchange model,” University of Berne,
Tech. Rep., 1999.

[21] R. Binder, Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Addison-Wesley, 1999.

[22] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change dis-
tilling: Tree differencing for fine-grained source code change
extraction,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 725–743, 2007.

[23] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proc. Int’l Conf.
on Software Engineering (ICSE). ACM, 2005, pp. 402–411.

[24] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” Em-
pirical Softw. Engineering, vol. 14, no. 2, pp. 131–164, 2009.

[25] R. K. Yin, Case Study Research: Design and Methods, 3
edition. Sage Publications, 2002.

[26] E. Engström, M. Skoglund, and P. Runeson, “Empirical eval-
uations of regression test selection techniques: a systematic
review,” in Proc. Int’l Symp. Empirical Softw. Engineering
and Measurement (ESEM). ACM, 2008, pp. 22–31.

[27] K. Beck, Test Driven Development: By Example. Addison-
Wesley, 2002.

[28] M. Fowler, “Continuous integration,” http://www.
martinfowler.com/, Tech. Rep., May 2006, http:
//www.martinfowler.com/articles/continuousIntegration.html.

[29] B. Van Rompaey and S. Demeyer, “Establishing traceability
links between unit test cases and units under test,” in Proc. of
the Conference on Software Maintenance and Reengineering
(CSMR). IEEE CS, 2009, pp. 209–218.

[30] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Scotch: Test-to-code traceability using slicing and concep-
tual coupling,” in Proc. of the Int’l Conference on Software
Maintenance (ICSM). IEEE CS, 2011, pp. 63–72.

[31] J. Weijers, “Extending project lombok to improve
junit tests,” Master’s thesis, Delft University of
Technology, 2012, http://resolver.tudelft.nl/uuid:
1736d513-e69f-4101-8995-4597c2a4df50.

[32] D. Saff and M. D. Ernst, “An experimental evaluation of
continuous testing during development,” in Proc. Int’l Symp.
Softw. Testing and Analysis (ISSTA). ACM, 2004, pp. 76–85.

[33] V. Hurdugaci and A. Zaidman, “Aiding software developers to
maintain developer tests,” in Proc. European Conf. on Softw.
Maintenance and Reengineering (CSMR). IEEE CS, 2012,
pp. 11–20.

