
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Change-Based Test Selection: An Empirical
Evaluation

Quinten David Soetens · Serge Demeyer ·
Andy Zaidman · Javier Pérez

Received: date / Accepted: date

Abstract Regression test selection (i.e., selecting a subset of a given regression
test suite) is a problem that has been studied intensely over the last decade.
However, with the increasing popularity of developer tests as the driver of the
test process, more fine-grained solutions that work well within the context of the
Integrated Development Environment (IDE) are in order. Consequently, we cre-
ated two variants of a test selection heuristic which exploit fine-grained changes
recorded during actual development inside the IDE. One variant only considers
static binding of method invocations while the other variant takes dynamic bind-
ing into account. This paper investigates the tradeoffs between these two variants
in terms of the reduction (i.e., How many tests could we omit from the test suite,
and how much did we gain in runtime execution?) as well as the fault detection
ability of the reduced test suite (i.e., Were tests omitted erroneously?). We used
our approach on three distinct cases, two open source cases —Cruisecontrol and
PMD— and one industrial case — Historia. Our results show that only consid-
ering static binding reduces the test suite significantly but occasionally omits a
relevant test; considering dynamic binding rarely misses a test yet often boils down
to running the complete test suite. Nevertheless, our analysis provides indications
on when a given variant is more appropriate.

Keywords Fine Grained Changes · Test Selection · Developer Tests · Dynamic
Binding

Q. D. Soetens
University of Antwerp — Middelheimlaan 1 — 2020 Antwerp, Belgium — +32 3 265 38 71
E-mail: quinten.soetens@uantwerpen.be

S. Demeyer
University of Antwerp — Antwerp, Belgium
E-mail: serge.demeyer@uantwerpen.be

A. Zaidman
Delft University of Technology — Delft, The Netherlands
E-mail: A.E.Zaidman@tudelft.nl

J. Pérez
University of Antwerp — Antwerp, Belgium
E-mail: javier.perez@uantwerpen.be

2 Quinten David Soetens et al.

1 Introduction

With the advent of agile processes and their emphasis on continuous integra-
tion, developer testing has been gaining popularity (Garousi and Varma, 2010).
Developer tests are codified unit or integration tests written by developers, aim-
ing to quickly verify whether changes to the system break previous functional-
ity (Meszaros, 2006). From a software engineering point of view, this is certainly
beneficial as it is likely to lead to higher quality software. Yet, the very popular-
ity of developer testing is also what could signal its downfall. In particular, if we
look at recent observations, we see that in 2005 Microsoft reported that 79% of
developers use unit tests (Venolia et al, 2005). Others reported that the code for
developer tests is sometimes larger than the application code under test (Daniel
et al, 2009; Zaidman et al, 2011; Tillmann and Schulte, 2006). Knowing about
the popularity of developer testing and the sheer size of resulting test suites, we
are worried about the effectiveness of developer testing. When we look at the best
practice of testing both early and often (McGregor, 2007), we are particularly con-
cerned with the observation of Runeson, who reported that some unit test suites
take hours to run (Runeson, 2006). And when developer tests take too long to run,
developers are less inclined to run them after each and every change, hence offload
the test execution to a “retest-all” on the continuous integration server (Beller
et al, 2015a,b). This impedes the rapid feedback cycles required by continuous
integration (Dösinger et al, 2012).

Consequently, we set out to reexamine so-called test selection techniques; i.e.,
techniques that “determine which test-cases need to be re-executed [. . .] in order
to verify the behaviour of modified software” (Engström et al, 2010). While test
selection was studied intensely in the context of regression testing, it has seldom
been studied in the area of developer tests (Yoo and Harman, 2012; Yoo et al,
2011). The presence of modern development tools in particular presents a nice
opportunity since it is possible to obtain fine-grained access to the modifications
that have been made. Integrated development environments (such as Eclipse), for
instance, allow to record all changes that have been made in the editor. Similarly,
version control systems (such as Git) keep track of the intermediate stages which
allows to recover the changes.

In previous work, we designed a heuristic which, given a set of fine-grained
(i.e., method-level) changes, selected a subset of unit tests that were affected by
iterating over the static dependency graph (Soetens et al, 2013). The heuristic
proved to be very effective as long as the object-oriented design did not rely on
polymorphism. Consequently, we designed a variant of the heuristic which took
dynamic binding into account (Parsai et al, 2014). To compare the two variants of
the heuristic —one with and one without dynamic binding— we follow the Goal-
Question-Metric paradigm (Basili et al, 1994). The overall goal of our investigation
is:

GOAL – To investigate the tradeoffs between two variants of a test se-
lection heuristic, determining the minimal set of tests a developer needs
to re-execute in order to verify whether a software system still behaves as
expected.

The objects of study are two variants of a test selection heuristic, one based on
the static dependency graph only (hence will select only a few test cases, however

Change-Based Test Selection: An Empirical Evaluation 3

is likely to miss some) and another which takes dynamic binding into account
(hence will rarely miss at the expense of selecting several irrelevant test cases).
The purpose is an in-depth investigation of these tradeoffs: which variant is most
appropriate for which situation. The focus is the impact of dynamic binding on the
performance of the test selection heuristics. The viewpoint is that of a developer
who wants to minimise the number of test cases to re-execute, while maximising the
likelihood of exposing regression faults. The context is one of software development
teams adopting agile practices. In particular, fully automated unit tests combined
with continuous integration. The continuous integration is needed to serve as a
safety net, since relevant tests that are missed by the test selection are still executed
in the nightly build.

Given that test selection has been an active field of research in the past, we
address our goal via previously established criteria (e.g., Mansour et al (2001);
Graves et al (2001)) and derive the following research questions.

RQ1 – What is the fault detection ability of the reduced test suites? Given that
we reduce the test set, we are interested in knowing the number of tests in
the subset that were included unnecessarily, and the ones that were omitted
erroneously. This question is addressed by two metrics:
– Mutation Coverage: A mutant is a transformation of the original base code

that introduces a fault; a test which reveals the corresponding fault is said to
“kill” the mutant. If the number of mutants killed by a subset is comparable
to the “retest all” approach, it increases the confidence in the fault detection
ability of the reduced test suite.

– Failing Test Coverage: Both variants of the test-selection heuristic are de-
signed to prevent failing tests from reaching the continuous integration
server; these tests should fail when they are executed in, for example, the
IDE. Hence, as validation we propose to retroactively investigate the en-
tire history of a software system in order to identify in each revision which
tests failed on the continuous integration server. We subsequently evaluate
whether our test selection heuristic generates a subset of tests that include
the failing test cases.

RQ2 – How much can we reduce the unit test suite in the face of a particular
change operation? Our reasoning is that when a “retest-all” takes too long it is
off-loaded to the continuous integration server (Beller et al, 2015b,a). However,
when the reduced test suite is small enough (and thus runs quickly enough),
we expect developers will execute them before committing to the repository.
This question is addressed by two metrics:
– Size reduction: How many tests could we omit from the test suite? This is

a relative number compared to the total number of tests in the test suite.
– Time reduction: How much did we gain in run-time execution? We also

take into account the overhead imposed by running the heuristic.

To answer these research questions, we implemented a proof of concept prototype
named ChEOPSJ, an Eclipse plugin which extracts the changes from a version
control system or captures them in the main editor while the developer is program-
ming (Soetens and Demeyer, 2012). We applied the prototype on three distinct
cases: two open source cases —Cruisecontrol and PMD— and one industrial case
—Historia.

4 Quinten David Soetens et al.

This paper is an extension of the work reported at CSMR 2013 (Soetens et al,
2013) and RefTest 2014 (Parsai et al, 2014). In particular, the following extensions
have been made:
(i) A review and replication of the original case study on both of the original open

source cases —Cruisecontrol and PMD.
(ii) A new industrial case —Historia— where continuous integration was used,

that serves as a representative case.
(iii) An extra measurement, where we compare the run-time execution of the full

test-suite and the reduced test suite, to see how much time is saved.
(iv) An additional analysis to assess whether the test selection heuristic would

have prevented failing tests on the continuous integration server.
The remainder of this paper is structured as follows. First, we describe both
the change model and the test selection heuristic, both with and without tak-
ing dynamic binding into account. We also detail how all this is implemented
in ChEOPSJ (Section 2). The next sections are modelled following the GQM
paradigm. The Metrics are detailed in the case study design (Section 3), in which
we also motivate the cases under investigation. We proceed by analysing and dis-
cussing the results for each of the Questions in Sections 4 (RQ1) and 5 (RQ2).
In Section 6 we achieve our Goal by discussing the tradeoff between the costs of
selecting and executing test cases versus the need to achieve sufficient detection
ability. We end the paper with an overview of the threats to validity (Section 7),
a summary of related work (Section 8), and wrap up with the conclusions and
future directions (Section 9).

2 Change Reification

To obtain more accurate information about the evolution of a program, changes
should be considered as first-class entities, i.e., entities that can be referenced,
queried and passed along in a program (Robbes and Lanza, 2007). First-class
change entities, modeled as objects in Robbes and Lanza’s approach, represent the
behaviour of the different kinds of changes required for a program (for example,
to add, remove, or modify classes) (Ebraert et al, 2007).

In recent years several researchers have built upon that idea and have created
tools that analyse change objects. The approaches by Robbes et al. in the Spyware
tool (Robbes and Lanza, 2008) and later by Hattori et al. in the Syde tool (Hattori
and Lanza, 2010) model changes as operations on the Abstract Syntax Tree (AST).
These changes act upon program entities, such as packages, classes, methods and
attributes. The approach made by Ebraert et al. also includes dependencies be-
tween changes (Ebraert et al, 2007). We chose to expand upon the approach by
Ebreart et al. because we are particularly interested in analysing dependencies in
order to determine which tests are relevant for a set of applied changes. Where
Ebraert et al. made creative use of Smalltalk’s internal change list, we have im-
plemented a Java version of their change model in Eclipse (Soetens and Demeyer,
2012).

The change model is shown in Figure 1. We define a Change as an object
representing an action that changes a software system. In our model we define
three kinds of Atomic Changes: Add, Modify and Remove. These changes act upon
a Subject and respectively represent three actions: adding a subject, modifying

Change-Based Test Selection: An Empirical Evaluation 5

a subject or removing a subject. For the subjects we can use any model of the
software system. We chose to use the FAMIX model as defined in (Demeyer et al,
1999). This is a model to which most class-based object oriented programming
languages adhere to; as such, our approach can be translated to any object-oriented
language. FAMIX contains entities representing packages, classes, methods and
attributes; as well as more fine grained entities such as method invocations, variable
accesses and inheritance relationships.

Add Remove

Subject

FamixObject

timeStamp
isApplied
intent
user

Change

Atomic
Change

changeSubject

affectingChanges

dependentChanges changesOnWhichIDepend

Modify

Fig. 1: Model of the changes.

In our model we also define the change dependencies. For this we rely again
upon the FAMIX model, which imposes a number of invariants to which each
FAMIX model must adhere. For instance, there is an invariant that states that
each method needs to be added to a class. This means that there is a precondition
for the change that adds a method m to a class c: there should exist a change
that adds the class c and there is no change that removes the class c. Using these
preconditions we can define dependencies between changes.

In general we can say that a change object c1 depends on another change object
c2 if the application of c1 without c2 would violate the system invariants.

2.1 Test Selection Heuristic

We aim to use this dependency information for test selection purposes. In par-
ticular, in our test selection heuristic, we make use of two particular kinds of
dependencies:

– A change c1 is said to Hierarchically depend on a change c2 if the subject of c1
is in a belongsTo relation with the subject of c2. This belongsTo relation is
defined by the FAMIX model (e.g., a method belongs to a class, a class belongs
to a package, etc.).

– A change c1 is said to Invocationally depend on a change c2 if c2 is the change
that adds the behavioural entity that is invoked by the subject of c1. For

6 Quinten David Soetens et al.

instance, consider a change c1 that adds an invocation to a method, which was
added by change c2, then we say that c1 invocationally depends on c2.

The tests written in an XUnit framework are also written in the same programming
language as the base code. As such, both the changes that act upon the test code,
as well as the changes that act upon the program code, adhere to the same meta-
model. Therefore there exist dependencies between the changes of the test code
and the changes of the program code. These dependencies are used to retrieve the
tests that are relevant for a particular change (or set of changes).

To calculate a reduced test suit we execute Algorithm 1. In essence this is a
variation of the so-called “Retest within Firewall” method (Binder, 1999), using
control flow dependencies on the methods that have been changed to deduce the
affected tests.

Algorithm 1: selectRelevantTests
Input: A ChangeModel, A set SelectedChanges
Output: A Map that maps each selected change to a set of relevant tests.
foreach c in SelectedChanges do

relevantTests = new empty list;
calledMethod = findMethodAddition(hierarchicalDependencies(c));
invocations = invocationalDependees(calledMethod);
foreach i in invocations do

invokedBy = findMethodAddition(hierarchicalDependencies(i));
foreach m in invokedBy do

if m is a test then
add m to relevantTests;

else
if m was not previously analysed then

tests = selectRelevantTests(m);
add tests to relevantTests;

map c to relevantTests;

In this algorithm, we iterate all selected changes and map each change to their
set of relevant tests. We start by finding the change that adds the method in which
the change was performed. We can find this change, by following the chain of hier-
archical dependencies and stop at the change that adds a method. In Algorithm 1
this is presented abstractly by a call to the procedure findMethodAdditions. Af-
ter this call calledMethod will be the change that adds the method in which the
change c took place. Next we need to find all changes that invocationally depend
on this methodAddition. These are the additions of invocations to the method in
which the selected change occurred. For each of these changes we again look for the
change that adds the method in which these invocations were added. And thus we
find the set of all changes adding a method that invokes the method containing our
selected change. We then iterate these method additions and check whether these
changes added a test method (i.e., for jUnit 3.X, we look for methods that have
an identifier starting with “test”; for jUnit 4.X we tag the methods in our change
model whenever a method has the annotation “@Test”). If this was the case we
consider this test method as a relevant test for the originally selected change. If
on the other hand the added method was not a test method, then we need to find
the relevant tests of this method and that set of tests needs to be added to the set
of relevant tests for the selected change.

Change-Based Test Selection: An Empirical Evaluation 7

2.2 Dynamic Binding During Test Selection

In our original approach (Soetens et al, 2013), the change model assumed that
invocations were a one to one relationship between the caller and the callee. As
such, the addition of an invocation was hierarchically dependent on the addition
of the caller method and invocationally dependent on the addition of the callee
method. We could statically determine the latter based on the type of the variable
on which the method was invoked. However with dynamic binding this is not
necessarily the case, as a method invocation might invoke any of a number of
possible methods.

Take for instance, the code in Figure 2. This is a simplified presentation of
one of the tests in the PMD case, where we have a class Renderer that declares
a method renderFileReport and a subclass HTMLRenderer which overrides that
method. The test code also makes use of dynamic binding, by using an Abstrac-

tRendererTest, that declares three methods: the abstract methods getRenderer

and getExpected and the actual test method testRenderer. The subclass HTML-

RendererTest then provides overridden versions (i.e., actual implementations) of
the methods getRenderer and getExpected. The actual test testRenderer in-
vokes the method renderFileReport on a variable renderer of type Renderer.
Therefore the heuristic would state that this test is relevant for all changes in
the method Renderer.renderFileReport. However invoking getRenderer will at
runtime actually generate an instance of type HTMLRenderer so this test is in fact
also relevant for the method HTMLRendererTest.renderFIleReport, which is a
link that the first variant of our test selection heuristic missed. This is due to the
fact that our change model did not account for dynamic binding. Indeed, when
we look at the change model for this code in Figure 3, we see that the three invo-
cations in the testRenderer method are only linked to the methods declared in
superclasses.

In Figures 3 and 4 hierarchical dependencies are shown with a full arrow, invo-
cational dependencies are indicated by a dashed arrow. Note that for readability
the links between changes and the FAMIX entities they act on are omitted and
instead this relationship is indicated by proximity.

In order to deal with dynamic binding, we changed our change model to include
the following heuristic: for each addition of a method invocation using method
identifier i, we take it to be invocationally dependent on all additions of methods
declared using i as method identifier. This simple heuristic is likely to lead to
overestimations, which is why we did an analysis of the method identifiers used in
our three cases. The results show that on average 70% of the method identifiers
are unique within a project, i.e., they are used for a single method declaration.
In 30% of the cases a method name is reused within the same class, i.e., method
overloading, and in 4.5% of the cases a method name is overriding a method in a
superclass. There is also a small percentage of methods that carry the same name,
but are not part of the same inheritance hierarchy. It is actually this last category
as well as the overloaded methods that possibly make our test reduction approach
less accurate, in the sense that this combined set of methods can still be reduced.

Therefore to take dynamic binding into account we redefine Invocational de-
pendency as follows:

8 Quinten David Soetens et al.

public abstract class Renderer {
public void renderFileReport(Report report){...};

}

public class HTMLRenderer extends Renderer {
public void renderFileReport(Report report){...}

}

public abstract class AbstractRendererTest{
public abstract Renderer getRenderer ();
public abstract String getExpected ();

@Test
public void testRenderer () throws Throwable {

Report report = new Report ();
Renderer renderer = getRenderer ();
actual = renderer.renderFileReport(report);
assertEquals(getExpected (), actual);

}
}

public class HTMLRendererTest extends AbstractRendererTest {
public Renderer getRenderer () {

return new HTMLRenderer ();
}
public String getExpected () {...}

}

Fig. 2: Example of code with dynamic binding (adapted from PMD code).

– A change c1 is said to invocationally depend on a change c2 if c2 is the change
that adds a behavioural entity with identifier i and the identifier i is used as
the invocation in the subject of c1.

This would change the model of the changes in Figure 3 to the model repre-
sented in Figure 4. In the new model there are added dependencies from the
additions of the invocations (indicated in blue arrows). Most importantly there
is an added dependency from the invocation addition in the test method to the
addition of the method HTMLRenderer.renderFileReport. So now our same test
selection heuristic will say that the test AbstractRendererTest.testRenderer is
relevant for changes in both the methods Renderer.renderFileReport and HTML-

Renderer.renderFileReport.

2.3 Tool Support: ChEOPSJ

In a previous paper we presented our tool, ChEOPSJ1 (Change and Evolution
Oriented Programming Support for Java), which is implemented as a series of
Eclipse plugins (Soetens and Demeyer, 2012). The general design is depicted in
Figure 5.

At the centre of the tool we have a plugin that contains and maintains the
change Model. To create instances of the change model we have two plugins: the
Logger and Distiller. These two plugins are responsible for populating the change

1 http://win.ua.ac.be/~qsoeten/other/cheopsj/

Change-Based Test Selection: An Empirical Evaluation 9

Test CodeProduction Code

Renderer

renderFileReport

HTMLRenderer

AbstractRendererTest

getRenderer

Invocation

renderFileReport

getExpected

testRenderer

HTMLRendererTest

getRenderer

getExpected

Invocation Invocation

Fig. 3: Change Model for code in Figure 2 without dynamic binding.

Test CodeProduction Code

Renderer

renderFileReport

HTMLRenderer

AbstractRendererTest

getRenderer

Invocation

renderFileReport

getExpected

testRenderer

HTMLRendererTest

getRenderer

getExpected

Invocation Invocation

Fig. 4: Change Model for code in Figure 2 with dynamic binding.

model, respectively by recording changes that happen during the current develop-
ment session and by recovering previous changes with an analysis of a Subversion
repository.

The Logger sits in the background of Eclipse and listens to changes made
in the main editor during a development session. We have used Eclipse’s IEle-

10 Quinten David Soetens et al.

DistillerLogger

Model

Applications

Change Recorders

Test Selection

Change
Distiller

ChEOPSJ

Fig. 5: The layered design of ChEOPSJ.

mentChangedListener interface to receive notifications from Eclipse whenever a
change is made to Eclipse’s internal Java Model (either by changes in the tex-
tual Java editor or by changes in other views, like the package explorer). Upon
this notification ChEOPSJ will leap into action to record the change; the Chan-
geRecorders will then see what was actually changed. Information about changes
up to the level of methods (i.e., additions, removals or modifications of packages,
classes, attributes or methods) is contained in the notification. For changes up to
statement level (e.g., adding or removing method invocations, local variables or
variable accesses) we diff the source code of the changed class before and after the
change. To this end ChEOPSJ stores a local copy of the source code before the
change.

As the logger does not allow us to analyse existing systems for which a change
model has not been recorded, we also provide a Distiller which implements a
change recovery technique. Using SVNKit2 it iterates through all versions stored
in the Subversion repository and then looks at the commit message to see what
was changed. If a java file was added, an Addition change needs to be instantiated
for everything in that file (class, attributes, methods, etc.). If a file was removed a
Remove change needs to be instantiated for everything in the file. For a modified
file we use ChangeDistiller by Fluri et al (2007) to find the difference between
the unmodified and the modified versions of the file and then translate a subset
of the changes from ChangeDistiller to the changes in our model. This includes

2 http://svnkit.com

Change-Based Test Selection: An Empirical Evaluation 11

linking the changes with dependencies, which are not present in the model of
ChangeDistiller, but which we can derive from the model of the source code.

Limitations: As ChEOPSJ is an academic tool prototype, there are some limita-
tions to its implementation which we need to keep in mind when doing analyses
using this tool. As we are using the FAMIX model to model source code entities,
we can not define changes on language specific constructs. In the case of Java for
instance, this means we can not express changes dealing with generics, annotations,
reflexion, etc.. We also currently do not maintain all of the FAMIX changes. For
instance, below method level we only record changes on method invocations, but
not on local variables, statements, expressions, etc.. Additionally these method in-
vocations do not include invocations of constructors. This implies that we will not
be able to find tests relevant for changes made in a constructor. Another problem
that we encountered while doing the analyses is that the current implementation
is unable to deal with inheritance in the test code. An example of this and how
this can be a problem is explained in Section 4.

3 Case Study Design

To address the research questions in Section 1 we perform a case study and follow
the guidelines for case study research by Runeson and Höst (2009). We first pre-
cisely describe the procedures for the analyses. Next, we also provide the necessary
motivation for and the characteristics of the cases under investigation. This should
provide sufficient details so that other researchers can replicate our investigation.

Each of the following subsections describes in detail the procedure for an anal-
ysis that we performed and is divided in three parts: a short introduction, where
we explain the context of the analysis; the Setup in which we explain all the details
that are needed for replication purposes (which tools were used and which mea-
surements were collected, etc.); and the Exceptions that explains why certain data
points were omitted or why certain steps were taken to ensure we could actually
run the analysis.

We start by explaining the two analyses dealing with RQ1 to investigate the
fault detection ability of the reduced test suites. The setup for the Mutation Cover-
age Analysis is detailed in Section 3.1 and the setup for the Failing Test Coverage
Analysis is explained in Section 3.2. The next section (Section 3.3) explains how
we measured the size and time reduction of the test suites which addresses RQ2.

Finally we wrap up this section with an in depth motivation for the cases under
investigation in Section 3.4.

3.1 Mutation Coverage Analysis Procedure

A recurring issue with testing experiments is the lack of realistic cases containing
documented faults. As a substitute, researchers often plant faults into a correct
program by applying a so-called mutation operator (Andrews et al, 2005; Rother-
mel et al, 2001). These mutation operators are chosen based on a fault model and
as such, are a close approximation of typical faults occurring in realistic software
systems. If a mutation causes a test to fail, the mutation is killed, if a mutation

12 Quinten David Soetens et al.

can be introduced without breaking any of the tests, then the mutation survived.
The fault detection ability of the test suite can now be gauged by the percentage
of mutations that were killed. This is called the mutation coverage, which provides
a reliable metric to measure the quality of a test suite. A higher mutation coverage
means that more of the introduced mutants were killed and consequently that your
test suite is of better quality.

From this point onwards we will refer to this analysis as the “Mutation Coverage
Analysis’ ’.

Setup: PIT3 is a tool that does mutation testing based on Java byte code. It
supports both Ant4 and Maven5 and can thus easily be integrated into the build
process of many open source systems. We used the default PIT configuration, in
which seven kinds of mutation operators are activated. These are briefly explained
in Table 1. Additionally we set PIT to run on four threads, which allows us to
speed up the process as PIT can then calculate mutation coverage on four different
cores in parallel.

Mutation operator Description

Conditionals Boundary Replaces relational operators with their boundary counter-
part (e.g., < becomes <=, >= becomes >, etc.).

Negate Conditionals Replaces all conditionals with their negated counterpart (e.g.,
== becomes ! =, < becomes >=, etc.).

Math Replaces binary arithmetic operations from either integer or
floating-point arithmetic with another operation (e.g., + be-
comes −, ∗ becomes /, etc.).

Increments Replaces increments of local variables with decrements and
vice versa.

Invert Negatives Inverts the negation of integer and floating point numbers.
Return Values Changes the return value of a method depending on the return

type (e.g., non-null return values are replaced with null,
integer return values are replaced with 0, etc.).

Void Method Call Removes method calls to void methods.

Table 1: Default mutation operators activated in PIT.

To get a base measurement of the quality of the test suites, PIT is first run
considering all classes of the production code and the full test suite.

For each case we distilled changes from the source code repository up to the
head revision in the repository. At that point our change model contains all changes
ever performed in the history of the case. We then proceed to select all method
level changes (Method Additions and Method Removals) and ran the test selection
algorithm for each of these changes. The subsets of tests calculated for each method
level change are then aggregated on a per class basis, so that we get a subset of
tests relevant for each class. It is important to note that since we use all changes
in a particular class, we should also find all relevant tests for that class. As such,
we can compare the mutation coverage of that class using the reduced test suite
with the mutation coverage using the full test suite.

3 http://pitest.org
4 http://ant.apache.org
5 http://maven.apache.org

Change-Based Test Selection: An Empirical Evaluation 13

The configuration for PIT in a project’s build file allows us to only target
a specific subset of classes and a specific subset of tests to use in the mutation
analysis.

In that sense we set up the test selection process as follows: for each class c, we
will use all method level changes inside that class to calculate a set of test classes T
that our heuristic deemed relevant. We can then use this data to generate separate
build files for the project, in which we configure PIT with the target class c and
the target tests T .

To calculate the mutation coverage of class c for a given set of tests T , PIT
uses the following formula:

MutCov(c, T) =
MKilled(c, T)

MTotal(c)

With MTotal(c) the total number of mutants introduced in class c and
MKilled(c, T) the number of mutants in c killed by test suite T .

To assess the fault detection ability of the reduced test suite, we compare
the number of mutants killed with the ones that are killed by the complete
test suite. For each class c we can calculate the difference between the muta-
tion coverage of class c when using the complete test suite (MutCov(c, Full))
with the mutation coverage of class c using only the reduced set of tests for class c
(MutCov(c,Reduced)):

MutCovDiff(c) = MutCov(c, Full) −MutCov(c,Reduced)

With Full the set of all tests, Reduced the reduced set of tests calculated for
class c.

Ideally, the mutation coverage of the reduced test suite should be equal to the
mutation coverage of the full test suite (MutCovDiff(c) = 0). In that case the
reduced test set kills the same number of mutants as the full test set and is therefore
as good at exposing faults. When mutation coverage is lower (MutCovDiff(c) >
0), it means we have missed some relevant tests in our selection, showing that the
fault detection ability of the reduced test suite is worse, however the confidence one
might have in the results depends on the percentage of mutants that survive. Since
the number of mutants introduced in a class will always be the same, regardless
of the test suite used to calculate the mutation coverage, MutCovDiff(c) should
never be negative.

For those reduced test suites that achieve a lower mutation coverage than the
full test suite, we do an additional investigation to see how much worse it actually
is. To do so we look at the average MutCovDiff . However this will provide a
warped image, as the total number of mutants introduced in a class varies with
the size of the class. Missing a high percentage of a low amount of mutants might
drastically increase the average. Suppose there is a class with only 2 mutants,
running the full test suite kills both (achieving 100% mutation coverage) and
running the reduced test suite kills none (resulting in 0% mutation coverage). The
difference here would be that the reduced test suite misses 100% of the mutants.
To counter this we look at a weighted average of the percentage of fewer mutants
killed, using the total number of mutants introduced as a weight. The formula for

14 Quinten David Soetens et al.

this calculation is then:

AvgMutCovDiff =

∑
∀ cMutCovDiff(c)>0

MutCovDiff(c)∑
∀ c∈MutCovDiff(c)>0

MTotal(c)

In which MutCovDiff(c) > 0 is a way of representing classes with a reduced
test suite with lower mutation coverage than the full test suite.

We run the mutation analysis on the subset of tests using the technique, both
with and without taking dynamic binding into account.

Exceptions: In order for PIT to work properly it needs a “green” test suite (i.e., a
test suite in which all tests pass). That means that in the base setup for Cruisec-
ontrol we had to exclude the following ten testclasses, since they contained failing
tests to begin with:
– net.sourceforge.cruisecontrol.BuildLoopInformationBuilderTest
– net.sourceforge.cruisecontrol.bootstrappers.ExecBootstrapperTest
– net.sourceforge.cruisecontrol.builders.ExecBuilderTest
– net.sourceforge.cruisecontrol.builders.PipedExecBuilderTest
– net.sourceforge.cruisecontrol.util.GZippedStdoutBufferTest
– net.sourceforge.cruisecontrol.util.StdoutBufferTest
– net.sourceforge.cruisecontrol.functionaltest.BuildLoopMonitorTest
– net.sourceforge.cruisecontrol.jmx.CruiseControlControllerJMXAdaptorGendocTest
– net.sourceforge.cruisecontrol.jmx.DashboardControllerTest
– net.sourceforge.cruisecontrol.util.BuildInformationHelperTest

For PMD we had to exclude the following two test classes:
– net.sourceforge.pmd.cpd.XMLRendererTest
– net.sourceforge.pmd.RuleSetFactoryTest

For Historia, we had no tests to exclude as all tests passed successfully.

3.2 Failing Test Coverage Analysis Procedure

When the execution of the developer tests takes too long, developers off-load the
testing to the continuous integration server (Beller et al, 2015a,b). This impedes
the rapid feedback cycles required by continuous integration (Dösinger et al, 2012),
as the test results will only become available after the so-called “nightly build”.
Both variants of the test-selection heuristic are designed to prevent failing tests on
the continuous integration server. Therefore, the ultimate validation is to retro-
actively investigate whether the heuristic would have selected those failing tests.

From this point onwards we will refer to this analysis as the “Failing Test
Coverage Analysis”.

Setup: In this analysis we looked for cases of failing tests that are stored in the
version control system of each case system. More precisely we are looking for tests
that failed in the past due to changes in the source code. To find these we wrote a
simple python script that iterates all revisions stored in a version control system
and builds the system (using either Ant or Maven). If the test suite fails during
the build, the test reports are copied and stored for later analysis. In this way we
were capable of identifying revisions that had failing tests. Moreover we needed

Change-Based Test Selection: An Empirical Evaluation 15

to compare the failing tests in each revision with the failing tests in the previous
revision in order to find only those revisions that introduced at least one new
failing test.

For each of the revisions that introduced failing tests we used Eclipse’s built-in
compare capabilities to determine which methods were changed in that revision.
We distilled changes for all entities in that revision and then ran the test selection
heuristic for the changed methods to determine a reduced set of tests. We then
checked if the failing test(s) introduced in that revision are in the reduced set of
tests. Note that in contrast to the Mutation Coverage Analysis where we dealt
with test classes, here we are doing a more fine grained analysis, by creating a
reduced set of test methods.

Again we run this analysis for both the technique with dynamic binding taken
into account, as the one without.

Exceptions: We basically recreate a local build server for the three projects. By do-
ing so, we run into some problems, since the build environment sometimes changes
during the evolution of a software system. In the case of PMD for instance, we
find that they only started using Maven in revision 5590 (before that they used
Ant). Therefore for PMD we only looked at revisions after 5590 (analysing a total
of 2116 revisions). For Cruisecontrol we ran into build failures not related to the
testing in revision 4208, so we only analysed the revisions from that point onwards
(totalling 418 revisions). For Historia we also ran into build problems and therefore
only analysed half of the repository (for a total of 2168 revisions).

In order to successfully build the projects we needed to slightly modify the
build files before running the build commands. Both PMD and Historia are built
using Maven, which meant sometimes the build file referred to a “SNAPSHOT”
dependency. However the snapshot dependencies are not stored in the main Maven
repositories, so we removed any occurrence of “-SNAPSHOT” from the build files
and built using the closest release dependency. Additionally, the Historia build
files were modified to remove one of the modules that used JavaScript code and
required additional dependencies.

For both the Cruisecontrol and PMD cases there were instances of failing tests
that occurred in several subsequent revisions. We are only interested in the first
occurrence of a failing test, thus we ignored all failing tests that already failed
in the previous (successful6) build. In the case of Cruisecontrol we remained with
22 revisions in which a test failed for the first time, which means that something
changed in that revision to make that test fail. Similarly for the PMD case we find
23 revisions that introduce a failing test.

A manual inspection of the changes made in the revisions with failing tests
showed that sometimes those revisions had either only changes in the test code
itself or no changes to any code at all. For instance, in one revision the commit
message stated “added test for bug 3484404 (NPathComplexity and return state-
ments)” which means that in this revision they introduced a test to reproduce a
bug, which should indeed fail when no changes to the source code were done. Also
in the case of PMD, they sometimes made changes in the xml files used by the
tests but nothing code-related was changed, which could make the tests fail. As
we are only interested in tests that failed due to changes in the production code,

6 We consider a build successful when no build failures occurred, other than failing tests.

16 Quinten David Soetens et al.

we omitted these kinds of revisions. When we eliminate these instances we remain
with 9 revisions for Cruisecontrol and 7 revisions for PMD, where we have actual
changes in the production code that lead to at least one new failing test.

In the case of Historia, we had no such problems since failing tests are almost
immediately fixed. We found failing tests in 22 revisions. Most of the time it was
only a handful of tests that failed. In only three cases we found more than ten
tests that failed.

3.3 Size and Time Reduction

As we are reducing the full test suite to smaller test suites relevant for particular
classes or methods, we need to evaluate, how much it was reduced (in terms of
size) and also whether reducing the test suite was worth the effort (i.e., how long
did it take to calculate the reduced set? and what is the return on investment?).

Setup: To evaluate the size reduction, we looked at all the reduced test suites we
obtained for both the Mutation Coverage Analysis and the Failing Test Coverage
Analysis. In the case of the Mutation Coverage Analysis, due to the technical
limitations of using PIT, we are dealing with reductions in terms of test classes.
Hence the size reduction is also evaluated on the number of test classes in the
reduced set. We measure the test size reduction as the percentage of test classes
in the selected subset against the number of test classes in the entire test suite.
Thus for each reduced set of tests the reduction can be calculated as follows:

ReductionSize =
Nr. of Test Classes in Reduced Suite

Nr. of Test Classes in Full Suite
× 100%

In the Failing Test Coverage Analysis we are capable of doing a more fine grained
reduction (i.e., reducing to a set of test methods rather than test classes). The
reduction can in that case be calculated as:

ReductionSize =
Nr. of Test Methods in Reduced Suite

Nr. of Test Methods in Full Suite
× 100%

The ReductionSize is expressed in terms of a percentage of the full test suite. When
this percentage is high, it means that a large portion of tests are included in the
reduced test suite. A low percentage means that we reached a good reduction. The
lowest ReductionSize we can achieve is dependent on the total number of tests in
a system. For instance, in Cruisecontrol the total number of test classes is 183,
so when we reduce to 1 single test class we achieve the minimal ReductionSize of
0.55%. For PMD the minimal ReductionSize is 0.62% (or 1 test class out of 162).
In Historia the minimal ReductionSize is 0.96% (or 1 out of 104 test classes).

To evaluate the time reduction, we look at (i) how long it takes to calculate
a reduced set of tests for a selection of changes (CalculationT ime) and (ii) how
long it takes to run the reduced test suite (Runtime(Reduced)) in comparison to
the time it takes to run the full test suite (Runtime(Full)). Using these measures
we can calculate the Reduction in terms of runtime as follows.

Change-Based Test Selection: An Empirical Evaluation 17

ReductionTime =
CalculationT ime + Runtime(Reduced)

Runtime(Full)
× 100%

As with ReductionSize the ReductionTime is expressed in terms of percentage of
the runtime of the full test suite. The higher this percentage, the worse the reduc-
tion. If it is above 100% it even means that calculating and running a reduced set
of tests takes longer than running the full set of tests. A low percentage therefore
means that we reached a good reduction in terms of time.

The time reduction measurements were taken on a Macbook Pro running a 2.4
Ghz Intel Core i7 (with 4 cores) and 8GB of RAM.

Exceptions: As we are performing these measurements in parallel to both the
Mutation Coverage Analysis and the Failing Test Coverage Analysis, the same
exceptions apply.

In the Mutation Coverage Analysis all reduced test suites are calculated to-
gether, therefore it is difficult to measure the time it took to calculate the individ-
ual reduced test suites. That is why the time reduction is only evaluated on the
reduced test suites in the Failing Test Coverage Analysis.

3.4 Case Selection

We selected three distinct cases — Cruisecontrol, PMD and Historia — on which
to run our evaluations:
– Cruisecontrol7 is both a continuous integration tool and an extensible frame-

work for creating a custom continuous build process.
– PMD8 is a source code analyser to find a variety of common mistakes like

unused variables, empty catch blocks, unnecessary object creations, etc.. Ad-
ditionally, it includes CPD, the copy-paste-detector, which finds duplicated
code in several programming languages.

– Historia is an industrial codebase owned by the Flemish Department for Roads
and Traffic. It is an administrative tool that is used by the Department for
Roads and Traffic to monitor the budgets of its projects. Division managers
can link cost estimations to open projects and Historia will then use these
estimations to draft a proposal that can then be approved by the necessary
authority.

The sizes of these projects in terms of number of lines of code (in KLOC) and
number of classes for both the source code and the test code are shown in Ta-
ble 2. Additionally we also show the count of the total number of test methods
implemented inside these Test Classes.

The test coverage of the three cases in terms of Class, Method, Block and Line
Coverage is shown in Table 3. This shows that the test suites that come with the
cases under investigation are of good quality and we can use these test suites for
the evaluation of our heuristics.

7 http://cruisecontrol.sourceforge.net
8 http://pmd.sourceforge.net
9 http://metrics2.sourceforge.net

18 Quinten David Soetens et al.

Project
Nr. of Revisions
Analysed

Src
KLOC

Nr. of Src
Classes

Test
KLOC

Nr. of Test
Classes

Nr. of Test
Methods

Cruisecontrol 4627 31 397 25 183 1157
PMD 7706 60 890 14 162 831
Historia 1944 28 438 28 104 1365

Table 2: Size metrics for both source code and test code (measured with Metrics
plugin for Eclipse 1.3.89).

Project
Class
Coverage

Method
Coverage

Block
Coverage

Line
Coverage

Cruisecontrol 87% (284/325) 68% (2066/3048) 60% (40175/66550) 61% (9386.4/15331)
PMD 79% (695/877) 68% (4253/6263) 65% (94782/145567) 65% (19596.5/30332)
Historia 93% (399/430) 67% (1955/2909) 60% (36900/61671) 61% (7718.9/12739)

Table 3: Test coverage of all three cases (measured with emma10).

The precise selection criteria are summarised in table 4. Each of the three cases
adheres to the a common set of criteria: they are well designed object-oriented sys-
tems, written in the Java programming language and have gone through evolution
(according to the staged model of Bennett and Rajlich (Bennett and Rajlich,
2000)). Both PMD and Cruisecontrol have their evolution stored in Subversion
repositories and Historia comes in a Mercurial repository. By mining the log of
these software repositories we find that Cruisecontrol has 13 contributors, with 6
major contributors (i.e., more than 200 commits); PMD has 24 contributors in its
history, with 5 major contributors; and Historia has 8 contributors, with half of
them major contributors.

Additionally we can find evidence of agile practices. In particular, these projects
use fully automated developer tests as a first defence against regression (all cases
use JUnit), and an automatic build system to easily test and deploy a new version
(ant for Cruisecontrol and Maven for PMD and Historia).

Technical limitations of our approach imply that they should be written in
Java and they should be easily integrated into the eclipse IDE, either by already
being Eclipse projects (i.e., coming with a “.project” file in the repository, like
in the case of Cruisecontrol) or by easily transforming it to an Eclipse project
(for instance, by running the “mvn eclipse:eclipse” command that comes with
Maven in the cases of PMD and Historia). Another limitation of our tool is that
the Distiller can currenlty only distill changes from Subversion repositories. So in
order to distill changes for the Historia case a bash script was run to i) trace all
ancestor revisions of the HEAD revision (recursively tracing the “parent revision”)
ii) then update (using Mercurial) to each of these revisions and committing (using
Subversion) that revision to a newly made Subversion repository. In doing so we
lose some of the meta-data from the Mercurial repository (e.g., author, timestamp,
etc.) however we are only interested in the change information which is implicitly
maintained in the difference between subsequent revisions.

These three cases show a varied degree in the usage of dynamic binding. We can
estimate this degree by looking at how many classes contain overridden methods
(i.e., methods that override a method declaration in a superclass) and by looking

10 http://emma.sourceforge.net

Change-Based Test Selection: An Empirical Evaluation 19

Case Selected Case Properties

All Cases
– Small team of developers.
– Evolution stored in source code repository (e.g., Subversion, Git,

Mercurial, etc.)
– Fully automated developer tests (using JUnit).
– Automatic build system (e.g., Maven, Ant, etc.).
– Written in Java programming language.

Cruisecontrol
– Open source case.
– Developer tests consist mainly of unit tests.
– Small to moderate usage of dynamic binding.

PMD
– Open source case.
– Developer tests consist of many integration tests, running several

scenarios to exercise a particular rule.
– Heavy use of dynamic binding.

Historia
– Industrial case.
– Use of continuous integration; failing tests must be repaired before

other changes can be made.
– Developer tests consist mainly of unit tests, with a few smoke tests

exercise a happy-day scenario.
– Test coverage is monitored (branch coverage, etc.)

Table 4: Criteria for case selection.

at the average ratio between the number of overridden methods (NORM) and the
total number of methods (NOM) per class. These numbers are summarised in the
box plots in Figure 6.

We can give an estimation for the degree of dynamic binding usage per class:

DBc =
NORMc

NOMc

With DBc the degree of dynamic binding usage for class c; NORMc the number
of overridden methods in class c; and NOMc the total number of methods in class c.

We can then give an estimation for the degree of dynamic binding usage for
an entire project (DBproject), by looking at the average DBc of all classes.

DBproject =

∑
∀ c∈Classes

DBc

N

With Classes the set of all classes in the project and N the number of classes
in the project.

Cruisecontrol: This is a case in which we encounter a small to moderate usage of
dynamic binding and should have unit tests covering most of the code base (see
coverage metrics in Table 3). Cruisecontrol has 47 classes out of 397 (or 12%)
that have overridden methods. The fact that 88% of the classes have no overriden
methods, is also visible in Figure 6, as the minimum, median and both first and
third quartile of the DBc are at 0. The DBproject for Cruisecontrol lies at 4.3.
Showing that it does indeed show a small usage of dynamic binding.

20 Quinten David Soetens et al.

Cruisecontrol PMD Historia
Project

0

20

40

60

80

100
D
B

c
(in

%
)

Fig. 6: Degree of dynamic binding usage in the three cases. The horizontal dashed
lines show the DBproject.

PMD: This is a case where we encounter a heavy use of dynamic binding. The
developer tests consist of unit tests, but also many integration tests that run
several scenarios to exercise a particular rule. PMD has 401 out of 890 classes (or
45%) that have overridden methods and the DBproject lies at 17. This shows that
this project has a high degree of dynamic binding usage.

Historia: This is a case in which there is a known use of continuous integration
and a corresponding quality assurance. In particular, when a unit test fails, it must
be repaired before new features are added. Apart from that the quality of the test
suite is guarded by monitoring test coverage through the means of branch coverage.
With regard to the usage of dynamic binding, Historia lies somewhere between
PMD and Cruisecontrol. 98 out of 438 classes (or 22%) have overridden methods
making it similar to Cruisecontrol, but those 98 classes display a high number of
overridden methods resulting in a DBproject of 14. Similar to the Cruisecontrol
case the minimum, median and both first and third quartiles of the DBc lie at 0,
which is again explained by the low number of classes with overridden methods.

By talking to one of the main developers we know that they use a continuous
integration framework and failing tests in the repository should be avoided as
much as possible.

4 Results for RQ1 – Fault Detection Ability

In this section we address RQ1 (What is the fault detection ability of the reduced
test suites?) by analysing the results of both the Mutation Coverage Analysis
(Section 4.1) and the Failing Test Coverage Analysis (Section 4.2).

Change-Based Test Selection: An Empirical Evaluation 21

4.1 Mutation Coverage Analysis Results

We performed the Mutation Coverage Analysis on the three cases starting from
the following revisions: rev. 4627 for Cruisecontrol; rev. 7706 for PMD and rev.
4336 for Historia. We first ran PIT to calculate the mutation coverage on these
revisions using the full test suite. We show the results of the mutation coverages
for each case using the full test suite in Table 5. We then proceeded to use our
tool to distill changes and dependencies from the first revision of each case up
to these revisions. In Table 6 we show the number of changes that were distilled
for each case broken down into additions (indicated by the icon) and removals
(indicated by the icon) for each of the structured program entities we support.
We then used these changes to calculate reduced sets of tests for each class in each
case. We then calculated the mutation coverage for each class individually using
these reduced sets of tests, which is then compared to the mutation coverage of
each class using the full test suite.

Case
Total
Mutants
Killed

Total
Mutants
Introduced

Mutation
Coverage

Cruisecontrol 3952 7128 55%
PMD 10361 19831 52%
Historia 3915 7899 50%

Table 5: Mutation coverages with the full test suites.

Entity Type Change Type Cruisecontrol PMD Historia

Packages 36 258 312

0 0 0

Classes 863 3653 1650

164 2375 5

Methods 7102 22694 11565

1965 16087 1167

Fields 3331 8970 5340

1133 6415 601

Invocations 17493 47797 29953

7279 38387 6940

Total 28825 83372 48820

10541 63264 8723

Total 39366 146636 57543

Table 6: Number of changes distilled from the source code repositories.

The results of these comparisons are summarised in Figure 7. We detail the
results for each case separately in the following paragraphs:

Cruisecontrol: In this case we could generate mutants in 249 classes (on average 29
mutants per class). When taking dynamic binding into account we could calculate

22 Quinten David Soetens et al.

W
it

h
 D

y
n

a
m

ic
 B

in
d

in
g

8.0%

57.7%

34.4%

14.5%
66.3%

19.3%

7.2%

49.1%

43.7%

5.1%

66.8%

28.2%

Aggregated

W
it

h
o

u
t

D
y

n
a

m
ic

 B
in

d
in

g

61.0%

24.4%

14.6%

Cruisecontrol

38.2%

45.4% 16.5%

PMD

78.8%

10.4%

10.8%

Historia

45.4%

34.8% 19.8%

No Tests Found

Equal Mutation Coverage

Lower Mutation Coverage

Fig. 7: Lower and equal mutation coverages for the reduced test suites.

a reduced test suite for all of these 249 classes. Without it however we could only
generate a reduced test suite for 154 of these. If we ignore the classes for which
we could not generate a reduced test suite we find that with dynamic binding we
have 81.1% (202 out of 249) classes that have an equal mutation coverage when
compared to the mutation coverage of the full test suite. Without dynamic binding
there is 61% (94 out of 154) where there is an equal mutation coverage.

Consequently, there are also a number of reduced test suites, for which fewer
mutants were killed: 26 (10.4%) when we take dynamic binding into account and
44 (28.6%) when we do not take dynamic binding into account.

When we apply our formula to calculate the weighted average of how much
lower the mutation coverage is in the classes with a lower mutation coverage
(AvgMutCovDiff), we find that both with and without dynamic binding this results
in on average 14% less mutants killed.

PMD: In this case we could generate mutants in 665 classes (on average 30 mu-
tants per class). With dynamic binding we can calculate reduced test suites for
most of these (616) which is a lot better than without dynamic binding, where for
only 141 classes a reduced test suite could be calculated. This can be explained by
the fact that PMD is a highly polymorphic project (see Section 3.4). The reason
we are unable to calculate a reduced test suite for all classes (even with dynamic
binding) is that not all classes are covered by the test suite. So those are classes
where even with the full test suite we get a mutation coverage of 0%. When we
only look at the classes for which we could generate a reduced test suite we see
that in both cases with and without dynamic binding, that about half (315 out

Change-Based Test Selection: An Empirical Evaluation 23

of 616 (51.5%) and 64 out of 141 (45.4%)) have an equal mutation coverage and
the other half (291 out of 616 (47.2%) and 70 out of 141 (49.6%)) have a lower
mutation coverage.

For the classes with a reduced test suite that achieves a lower mutation cov-
erage, we can calculate the AvgMutCovDiff . We find that with dynamic binding
on average 24% less mutants were killed and without dynamic binding 11% less
mutants were killed.

Historia: In this case we could generate mutants in 394 classes (on average 20
mutants per class). With dynamic binding taken into account we can calculate
reduced test suites for 374 of these. Which is substantially higher than the 215
classes we could generate a reduced test suite for without taking dynamic binding
into account. When we only look at the classes for which we generated a reduced
test suite, we find that with dynamic binding taken into account; 92.5% (346 out
of 374) of the reduced test suites have the same mutation coverage as when we use
the full test suite. Without dynamic binding we also find a majority of reduced
test suites (85.1% or 183 out of 215) that have the same mutation coverage as the
full test suite.

There are few (19 out of 374 (5.1%) and 28 out of 215 (13.0%)) that have
a lower mutation coverage, meaning that fewer mutations were killed using the
reduced test suite when compared to the full test suite. Looking at these we calcu-
late the AvgMutCovDiff and find that with dynamic binding, on average 50% less
mutants were killed and without dynamic binding on average 21% less mutants
were killed.

The fact that some reduced test sets kill fewer mutants means that we missed
some relevant test cases. Although we can still put this in perspective: on av-
erage 14% less mutants were killed in Cruisecontrol; 24% and 11% less mutants
(with and without dynamic binding respectively) were killed in PMD; and the
reduced test suites for Historia killed 50% and 21% less mutants (with and with-
out dynamic binding respectively). The reasons for missing some relevant tests
(even with dynamic binding taken into account) are twofold: on the one hand
one of the test classes in PMD (PMDTaskTest) tests PMD’s functionality to work
with Ant build files. To this end they use third party testing code (org.apache.-
tools.ant.BuildFileTest) which does not directly invoke the PMD code, but
merely runs the necessary build targets and verifies that the output contains the
expected warnings. On the other hand as we mentioned in Section 2.3 our cur-
rent implementation of the approach is unable to deal with inheritance in the test
code itself. Especially in PMD this is a problem where one particular test class
(SimpleAggregatorTst) has 46 subclasses. The actual test method that is being
run is implemented in the base class, yet the test’s behaviour is driven by the
setUp methods in the subclasses.

One of the examples this caused a lower mutation coverage was for the class
RuleSet. This class had 87 mutants introduced, of which the full test suite killed 57
and the reduced test suite killed 46 (with dynamic binding taken into account). So 5
less mutants were killed by the reduced test suite. Upon closer inspection 1 of those
mutants was killed by the PMDTaskTest which uses the third party testing code and
the 4 other mutants were in the full test suite all killed by the test SignatureDe-

clareThrowsExceptionTest.testAll(). This test was missed by our implementa-

24 Quinten David Soetens et al.

tion, as the test structure itself is built using derived classes (as shown in Listing 1).
The problem then lies in the fact that the method RuleSet.usesTypeResolution()

is invoked somewhere in the execution of the testAll in SimpleAggregatorTst.
However as the test class SignatureDeclareThrowsExceptionTest is a subclass of
SimpleAggregatorTst it inherits the testAll method. This method will have a
changed behaviour due to configurations set in the setUp() method of Signature-
DeclareThrowsExceptionTest. Our heuristic is perfectly capable of identifying
SimpleAggregatorTst.testAll() as a relevant test, however since SignatureDe-

clareThrowsExceptionTest has no direct implementation of the testAll method
it will not be included in the reduction.

public abstract class SimpleAggregatorTst extends RuleTst {
[...]
private List <Rule > rules = new ArrayList <Rule >();

/**
* Add new XML tests associated with the rule to the test suite.
* This should be called from the setup method.
*/

protected void addRule(String ruleSet , String ruleName) {
rules.add(findRule(ruleSet , ruleName));

}

@Test
public void testAll () {

[...] // does something with the rules
}
[...]

}

public class SignatureDeclareThrowsExceptionTest extends SimpleAggregatorTst {

@Before
public void setUp() {

addRule("java -typeresolution", "SignatureDeclareThrowsException");
}

[...]
}

Listing 1: SignatureDeclareThrowsExceptionTest

We have shown that (when we only look at the classes for which we could
calculate a subset of tests) on average 62.6% of the reduced test suites kill the same
amount of mutants as the complete test suite. The Historia and Cruisecontrol cases
perform much better than PMD, where we saw a fifty-fifty distribution between
subsets with equal and subsets with lower mutation coverage.

�

�

	
On average 62.6% of the reduced test suites have the same quality as the
full test suite. Despite fewer mutants being killed in 37% of the cases, the
confidence one might have in the reduced test suites is still acceptable as on
average only 22% less mutants are killed.

Change-Based Test Selection: An Empirical Evaluation 25

4.2 Failing Test Coverage Analysis Results

To assess whether our approach might work in practice we look at test failures in
the history of our three cases. As mentioned in Section 3.2 we found 9 revisions in
Cruisecontrol that introduce at least one new failing test, 7 such revisions in PMD
and 22 revisions with new failing tests in Historia. For each of these 38 revisions
we distilled changes from the first revision of the case up to that revision. Only the
methods changed in these revisions are used for the test selection heuristics and
we checked if the failing tests in the revisions are in the calculated subset of tests.
Table 7 shows the detailed results of this analysis. For each revision we analysed
this table shows the total number of tests, the number of failing tests introduced,
the number of changes distilled by our tool and the number of changed methods.
Moreover for both the heuristic with and without dynamic binding it shows the
number of tests in the reduced set of tests as well as the number of failing tests
that are in the reduced set of tests. These results are color coded to map the results
to each of the categories in Figure 8.

Figure 8 shows a summary of the results of this analysis in terms of four distinct
categories:

- All Failing Tests Found : This is the optimal results, in which all of the failing
tests are covered by the reduced test suite.

- Some Failing Tests Found : These are the results in which we found a reduced
set of tests, yet only some of the failing tests are covered by the reduced set.
This means that our heuristic is capable of finding some of the relevant tests,
yet not all of them.

- No Failing tests found : For the results in this category we were capable of cal-
culating a reduced set of test methods, however this reduced set did not contain
any of the failing tests.

- No Tests Found : In this category our heuristic was unable to calculate a reduced
set of tests for the selected changes.

In the following paragraphs the results are detailed for each case separately:

Cruisecontrol: We calculated the reduced test sets for the changes in the nine
revisions of Cruisecontrol that introduce a failing test. We find that when we take
dynamic binding into account, in all but one case we find all failing tests. In the
one revision where we only found some of the failing tests, we missed 3 out of 17.
If we do not take dynamic binding into account, we only have about half the cases
where we find all or some of the failing tests. In the other half we either find none
of the failing tests or we could calculate no reduced test suite at all.

PMD: In this case, we calculated reduced test sets for the changes in seven re-
visions. We find that when we take dynamic binding into account, in all but one
case, we could generate reduced test suites that contained all of the newly failing
tests.

When we do not take dynamic binding into account we find that in all but one
of the seven revisions we are in fact unable to generate a reduced test suite, which
is again due to the highly polymorphic nature of some of PMD’s core functionality
(see Figure 6). Still we find one revision in which the reduced test suite was capable
of finding the single new failing test.

26 Quinten David Soetens et al.

With
Dynamic
Binding

Without
Dynamic
Binding

C
a
se

R
e
v
is

io
n

#
T

e
st

s
to

ta
l

#
(N

e
w

)
F
a
il
e
d

T
e
st

s

#
D

is
ti

ll
e
d

C
h
a
n
g
e
s

#
C

h
a
n
g
e
d

M
e
th

o
d
s

#
T

e
st

s
in

R
e
d
u
c
e
d

S
e
t

#
F
a
il
e
d

T
e
st

s
in

R
e
d
u
c
e
d

S
e
t

#
T

e
st

s
in

R
e
d
u
c
e
d

S
e
t

#
F
a
il
e
d

T
e
st

s
in

R
e
d
u
c
e
d

S
e
t

C
ru

is
e
c
o
n
tr

o
l

4377 1004 1 36510 3 898 1/1 0 0/1
4416 1028 1 36999 1 915 1/1 0 0/1
4564 1118 17 38780 1 974 14/17 36 11/17
4571 1124 7 39058 26 979 7/7 16 7/7
4590 1130 6 39115 37 980 6/6 11 6/6
4591 1138 1 39151 9 988 1/1 57 1/1
4613 1148 1 39253 2 994 1/1 23 0/1
4623 1152 1 39298 12 999 1/1 13 1/1
4624 1157 1 39335 3 1003 1/1 27 0/1

P
M

D

6214 957 3 93607 1 439 3/3 0 0/3
6374 982 1 94355 19 438 1/1 0 0/1
6388 995 1 94499 45 447 1/1 7 1/1
7275 821 2 101106 9 485 2/2 0 0/2
7469 826 8 101920 8 496 0/8 0 0/8
7547 826 3 145861 4 496 3/3 0 0/3
7680 831 1 146545 1 518 1/1 0 0/1

H
is

to
ri

a

2370 691 2 27757 1 69 2/2 1 1/2
2415 692 8 27724 5 24 8/8 0 0/8
2424 693 5 27813 9 592 5/5 71 4/5
2449 692 64 27890 52 604 64/64 6 0/64
2538 719 3 29251 11 72 3/3 3 0/3
2542 719 1 29269 2 69 1/1 1 0/1
2566 730 1 29432 51 615 1/1 53 0/1
2598 730 1 29454 28 618 1/1 16 0/1
2719 760 1 29733 15 139 1/1 111 1/1
2789 763 2 30046 21 717 2/2 2 0/2
2807 769 1 30049 4 647 1/1 113 1/1
2857 769 18 30088 1 141 18/18 113 18/18
2866 769 1 30100 2 4 1/1 2 1/1
2919 769 3 30413 7 646 3/3 11 3/3
2927 769 3 30434 5 69 3/3 1 1/3
2931 769 1 30443 9 650 0/1 114 0/1
2941 770 3 30544 1 12 3/3 0 0/3
3897 1162 1 40491 10 385 1/1 151 1/1
4215 1273 18 44075 68 1109 18/18 153 4/18
4229 1289 1 44524 2 1155 1/1 0 0/1
4230 1288 5 44528 9 1156 5/5 25 3/5
4334 1365 2 45944 2 5 2/2 0 0/2

Table 7: Measurements taken on revisions with failing tests.

Historia: The changes for 22 revisions were used to calculate reduced sets of tests.
Our approach with dynamic binding was capable of identifying all but one fail-
ing test in its reduced test sets. The one failing test that we missed, was due to
a change in a constructor, that is invoked from the failing tests. We miss this
instance, since our change model currently does not keep track of constructor in-
vocations (see Section 2.3). Without dynamic binding we find that in only half of
the reduced test suites, all or some of the failing tests are present. In the other
half we either have no test found at all or none of the failing tests.

Change-Based Test Selection: An Empirical Evaluation 27

W
it
h
 D
y
n
a
m
ic
 B
in
d
in
g

2
1

35

1

8

1

6

1
21

Aggregated

W
it
h
o
u
t
D
y
n
a
m
ic
 B
in
d
in
g

12
9

6 11

Cruisecontrol

2
2

1

4

PMD

6

1

Historia

4
7

5 6

No Tests Found

No Failing Tests Found

Some Failing Tests Found

All Failing Tests Found

Fig. 8: Quality of reduced test suites for Failing Test Coverage Analysis.

When we look at the aggregated results of the Failing Test Coverage Analysis,
we see that when we take dynamic binding into account we can find all failing
tests in all but three cases. In one of those three cases we were still even capable
of finding 14 out of 17 failing tests. The other two cases can be explained by (i)
the fact that our change model currently is not capable of linking constructor
invocations to the constructor being invoked (see Section 2.3) and (ii) third party
testing code that was used (this is discussed in more detail in Section 6).

Looking at the data obtained when we do not take dynamic binding into ac-
count, we get that in 17 out of 38 (45%) cases we find all or some of the failing
tests. In the other half we either find none of the failing tests or no test reduction
at all. This last category is what happened most in the PMD case. Again we see
that the Historia and Cruisecontrol cases performed much better.�
�

�
�

Taking dynamic binding into account we find that almost all of the failing
tests are in the reduced test suites. Without dynamic binding this only hap-
pens in half the cases.

5 Results for RQ2 – Test Reduction

In this section we address RQ2 (How much can we reduce the unit test suite in the
face of a particular change operation?) by analysing the ReductionSize in both the
Mutation Coverage and the Failing Test Coverage Analysis (Section 5.1). We also
analyse the ReductionTime in the Failing Test Coverage Analysis (Section 5.2).

28 Quinten David Soetens et al.

For the Failing Test Coverage Analysis we provide a table with detailed mea-
surements for each revision analysed (Table 8). Apart from the sizes and runtime
of the full and reduced sets of tests we also provide the calculation time for the
reduced set of tests and the number of changes distilled from the repository as well
as the number of dependencies distilled with both variants of our heuristic. Note
that the number of dependencies distilled is much higher when taking into account
dynamic binding. Particularly in the case of PMD we see that the difference is of
an order of magnitude.

With Dynamic Binding Without Dynamic Binding

R
ev

is
io

n

#
T

es
ts

to
ta

l

#
R

u
n
ti

m
e

o
f

F
u

ll
S

et
(i

n
se

co
n

d
s)

#
D

is
ti

ll
ed

C
h

a
n

g
es

#
C

h
a
n

g
ed

M
et

h
o
d

s

#
D

is
ti

ll
ed

D
ep

en
d

en
ci

es

#
T

es
ts

in
R

ed
u

ce
d

S
et

#
C

a
lc

u
la

ti
o
n

T
im

e
o
f

R
ed

u
ce

d
S

et
(i

n
se

co
n

d
s)

#
R

u
n
ti

m
e

o
f

R
ed

u
ce

d
S

et
(i

n
se

co
n

d
s)

#
D

is
ti

ll
ed

D
ep

en
d

en
ci

es

#
T

es
ts

in
R

ed
u

ce
d

S
et

#
C

a
lc

u
la

ti
o
n

T
im

e
o
f

R
ed

u
ce

d
S

et
(i

n
se

co
n

d
s)

#
R

u
n
ti

m
e

o
f

R
ed

u
ce

d
S

et
(i

n
se

co
n

d
s)

C
ru

is
ec

o
n
tr

o
l

4377 1004 42.06 36510 3 100787 898 8.17×10−1 29.33 33879 0 1.93×10−4 0
4416 1028 46.27 36999 1 102161 915 8.22×10−1 33.11 34275 0 3.60×10−5 0
4564 1118 57.70 38780 1 111057 974 4.51×10−1 44.34 36082 36 2.87×10−4 12.27
4571 1124 58.26 39058 26 112134 979 9.19×100 44.89 36306 16 2.15×10−4 10.30
4590 1130 58.26 39115 37 112234 980 1.22×101 44.89 36356 11 2.69×10−4 10.22
4591 1138 58.26 39151 9 112309 988 3.36×100 44.89 36387 57 1.41×10−3 12.36
4613 1148 58.54 39253 2 112548 994 9.88×10−1 45.05 36457 23 2.95×10−4 1.44
4623 1152 58.81 39298 12 112627 999 4.86×100 45.32 36485 13 1.84×10−3 0.41
4624 1157 58.96 39335 3 112911 1003 1.44×100 45.47 36494 27 1.55×10−3 10.32

H
is

to
ri

a

2370 691 17.57 27757 1 152708 69 4.70×10−3 0.81 29387 1 1.45×10−4 0.01
2415 692 17.72 27724 5 152819 24 3.21×10−4 0.21 29486 0 7.70×10−5 0
2424 693 17.36 27813 9 152845 592 1.95×10−1 14.42 29534 71 1.41×10−3 2.21
2449 692 17.04 27890 52 153385 604 2.61×10−1 14.49 29650 6 2.37×10−4 0.03
2538 719 19.24 29251 11 162821 72 1.90×10−3 0.82 31077 3 9.50×10−5 0
2542 719 19.22 29269 2 162852 69 1.09×10−3 0.83 31089 1 2.30×10−5 0.01
2566 730 19.52 29432 51 163243 615 1.46×100 16.84 31266 53 6.93×10−4 2.52
2598 730 21.02 29454 28 163288 618 1.12×100 18.42 31288 16 2.42×10−3 0.18
2719 760 20.54 29733 15 163964 139 1.71×10−2 5.10 31564 111 6.38×10−3 4.91
2789 763 20.53 30046 21 165336 717 3.17×10−1 20.34 31901 2 1.95×10−4 0.02
2807 769 20.89 30049 4 165341 647 2.36×10−1 11.00 31905 113 3.80×10−4 4.93
2857 769 21.52 30088 1 165515 141 1.43×10−3 4.80 31934 113 4.25×10−4 4.59
2866 769 22.00 30100 2 165551 4 7.40×10−5 0.03 31955 2 2.40×10−5 0.02
2919 769 20.91 30413 7 166464 646 8.13×10−2 11.04 32270 11 8.60×10−5 0.09
2927 769 21.12 30434 5 166486 69 3.69×10−3 0.85 32292 1 3.40×10−5 0.01
2931 769 20.99 30443 9 166553 650 3.90×10−1 10.94 32301 114 5.56×10−4 4.96
2941 770 21.10 30544 1 166564 12 8.40×10−5 0.11 32312 0 1.70×10−5 0
3897 1162 23.77 40491 10 231654 385 1.63×10−2 5.80 43097 151 5.67×10−4 4.73
4215 1273 29.06 44075 68 260871 1109 5.20×10−1 12.61 47037 153 7.49×10−4 0.30
4229 1289 25.29 44524 2 265057 1155 2.24×10−1 22.91 47520 0 2.30×10−5 0
4230 1288 25.39 44528 9 265090 1156 3.82×10−1 23.03 47523 25 1.01×10−4 0.23
4334 1365 25.08 45944 2 272786 5 6.50×10−5 0.10 49035 0 6.00×10−6 0

P
M

D

6214 957 22.56 93607 1 1655210 439 1.95×100 6.97 103008 0 1.30×10−5 0
6374 982 24.96 94355 19 1656796 438 8.32×100 6.11 103635 0 3.20×10−5 0
6388 995 24.52 94499 45 1659890 447 4.83×101 6.37 103741 7 1.54×10−3 0.004
7275 821 28.15 101106 9 1926090 485 3.30×101 16.76 110303 0 6.00×10−5 0
7469 826 23.32 101920 8 1940090 496 3.43×101 7.25 111001 0 1.16×10−4 0
7547 826 28.71 145861 4 3721435 496 1.50×101 11.86 184161 0 5.10×10−5 0
7680 831 34.72 146545 1 3724971 518 5.09×100 18.84 185190 0 1.03×10−3 0

Table 8: Measurements taken on revisions with failing tests.

Change-Based Test Selection: An Empirical Evaluation 29

5.1 Test Size Reduction

We start by analysing the reduction in terms of size (ReductionSize). We differ-
entiate between test size reductions in the Mutation Coverage Analysis (Figure 9)
and the test size reductions in the Failing Test Coverage Analysis (Figure 10).
In both we make the distinction between the heuristic without taking dynamic
binding into account and the one with the dynamic binding implementation.

Aggregated Cruisecontrol PMD Historia
0

20

40

60

80

100

R
e
la
ti
v
e
 S
iz
e
 o
f
R
e
d
u
ce

d
 T
e
st
 S
u
it
e

 (
Pe

rc
e
n
ta
g
e
 o
f
e
n
ti
re
 t
e
st
 s
u
it
e
)

Reduction with Dynamic Binding

Aggregated Cruisecontrol PMD Historia
0

20

40

60

80

100

R
e
la
ti
v
e
 S
iz
e
 o
f
R
e
d
u
ce

d
 T
e
st
 S
u
it
e

 (
Pe

rc
e
n
ta
g
e
 o
f
e
n
ti
re
 t
e
st
 s
u
it
e
)

Reduction without Dynamic Binding

Fig. 9: Size reduction in the Mutation Coverage Analysis.

In the reductions for the Mutation Coverage Analysis (Figure 9) we can see
that when we do not take dynamic binding into account, in most cases the reduced
test suite consists of a single unit test. For Cruisecontrol this implies a reduction
of 0.55% (1 out of 183 test classes); for PMD this corresponds to 1 out of 162 test
classes or 0.62% and for Historia this comes down to 0.91% or 1 out of 104 test
classes. When we run our heuristic that takes dynamic binding into account the

30 Quinten David Soetens et al.

Aggregated Cruisecontrol PMD Historia
0

20

40

60

80

100

R
e
la
ti
v
e
 S
iz
e
 o
f
R
e
d
u
ce

d
 T
e
st
 S
u
it
e

 (
Pe

rc
e
n
ta
g
e
 o
f
e
n
ti
re
 t
e
st
 s
u
it
e
)

Reduction with Dynamic Binding

Aggregated Cruisecontrol PMD Historia
0

20

40

60

80

100

R
e
la
ti
v
e
 S
iz
e
 o
f
R
e
d
u
ce

d
 T
e
st
 S
u
it
e

 (
Pe

rc
e
n
ta
g
e
 o
f
e
n
ti
re
 t
e
st
 s
u
it
e
)

Reduction without Dynamic Binding

Fig. 10: Size reduction in the Failing Test Coverage Analysis.

reductions are on average much worse. In a lot of cases we even see hardly any
reduction. In the case of Cruisecontrol we find that most cases are reduced to 98%
or 179 out of 183 testclasses. For PMD all but 8 reductions are a reduction of 63%
(or 102 out of 162 test classes). And in the case of Historia, what we see most is a
reduction to 87.5% (or 91 out of 104 test classes). On the other hand we also see
some classes with a reduced test suite of less than 20% of the full test suite. For
Cruisecontrol there are 7 such classes, for PMD there are 8 and for Historia there
are 112 which is 28.4% of all classes.

We can see similar results in the reductions for the Failing Test Coverage
Analysis (Figure 10 and Table 8). When we do not take dynamic binding into
account for all three cases all of the reduced test suites are less than 15% of the
full test suite. When we do take dynamic binding into account, we see that for
Cruisecontrol, we find all nine cases result in a reduction to around 86% of the full
test suite. In the case of PMD all seven cases result in a reduction to 45% or 60%
of the full test suite. Finally for Historia we find 10 cases where the test suite is

Change-Based Test Selection: An Empirical Evaluation 31

reduced to less than 20% of the full test suite and 11 cases where the test suite
was reduced to between 84% and 94%.

For Cruisecontrol we find that in all instances there is nearly no reduction
when taking dynamic binding into account. This is a similar observation as the
one made by Graves et al (2001). This could be caused by the way Cruisecontrol
is tested (e.g., more integration or system testing than unit testing) or by the
fact that the dynamic binding has a more significant effect than we anticipated.
Curiously, even though PMD has a higher DBProject than Cruisecontrol it still
gets on average better reductions when taking dynamic binding into account. This
is because we still miss some relevant tests with PMD, due to its use of third party
testing code and even more so the number of inheritance relationships in the test
code of PMD (see example in Section 4.1).

We can conclude that when we do not take dynamic binding into account
we get much better reductions than when we do. Nevertheless even when taking
dynamic binding into account we can sometimes still get a very nice reduction,
but this happened mostly in the Historia case.

We have shown that in both the Failing Test Coverage Analysis as well as the
Mutation Coverage Analysis, the solution that does not take dynamic binding into
account has a much higher reduction. In most cases we can even say that more than
99% of the entire test suite is discarded. Which means that for many changes only
a handful of tests need to be rerun. When dynamic binding is taken into account,
we find that both Cruisecontrol and PMD in most cases have nearly no reduction.
Only in the industrial case (Historia), we can sometimes have a good reduction
even with dynamic binding taken into account. This could be explained by the
way we deal with dynamic binding (i.e., only looking at the identifier used in a
method invocation). In the PMD case the use of the Visitor pattern in particular
introduces a visit identifier in 998 method declarations, which dominates the way
the system behaves at runtime (and during the tests).�

�

	
Without dynamic binding, we can reduce the full test suite to only a handful
of tests. When taking dynamic binding into account, this is true for only a
few cases. In the other cases taking dynamic binding into account often boils
down to selecting near to the complete set of tests.

5.2 Runtime Evaluation

In this section we present and analyse the reduction in terms of runtime of the
reduced test suite as well as the time needed to calculate the reduced test suite.

We start by looking at the calculation time. Figure 11 shows two scatterplots
in which we have plotted the time needed to calculate the reduced set of tests (Y-
axis) in relation to the number of method level changes selected for the calculation
(X-axis).

A general trend and also the most obvious is that the more changes are selected
the longer it will take to perform the calculation. However the most interesting
observation that we can make is that when we compare the calculation time for
the approaches with and without dynamic binding included, we see that there
is a difference in several orders of magnitude. Calculating the reduced test suite

32 Quinten David Soetens et al.

using the approach with dynamic binding takes milliseconds to seconds. While
the calculation without dynamic binding takes mere microseconds, compared to
the milliseconds that are necessary for the case with dynamic binding. This is
because when we take dynamic binding into account the number of dependencies
between additions of method invocations and additions of method declarations is
much higher (see Table 8). In the PMD case for instance, the use of the Visitor
pattern results in a visit() method, which is declared 998 times and invoked 602
times, therefore each of these 602 invocations has a dependency to each of the 998
declarations. So instead of there being 602 dependencies from an invocation to a
method being called, there are now 600796 (602 × 998) dependencies.

0 10 20 30 40 50 60 70
Nr. of Changes Selected

0

5

10

15

20

25

30

35

40

45

C
a
lc
u
la
ti
o
n
 T
im
e
 (
in
 s
e
co
n
d
s)

With Dynamic Binding

0 10 20 30 40 50 60 70
Nr. of Changes Selected

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

C
a
lc
u
la
ti
o
n
 T
im
e
 (
in
 s
e
co
n
d
s)

Without Dynamic Binding

Cruisecontrol

PMD

Historia

Fig. 11: Calculation time (in seconds) of reduced test suite in relation to number
of changes selected for calculation.

Looking at the ReductionTime in Figure 12, what we see is that when we do
not take dynamic binding into account the combined calculation time and runtime
of the reduced sets are in all cases less than 25% of the runtime of the full test suite.
When all data is aggregated the ReductionTime is on average 9%. Which means
that calculating and running a reduced set of tests is on average 11 times faster
than running the complete test suite. When we take dynamic binding into account
the time won is much lower. The average ReductionTime on the aggregated data is
65% of the runtime of the full test suite, which means that on average calculating
and running a reduced set of tests is 1.5 times faster than running the full test
suite.

Cruisecontrol: Looking at the individual cases we see that for Cruisecontrol the
average ReductionT ime without dynamic binding is 14% (7 times faster) and with
dynamic binding is 82% (1.2 times faster).

Change-Based Test Selection: An Empirical Evaluation 33

Aggregated Cruisecontrol PMD Historia
0

50

100

150

200

R
e
la

ti
v
e
 R

u
n
ti
m

e
 o

f
R
e
d
u
ce

d
 T
e
st

 S
u
it
e

 (
P
re

ce
n
ta

g
e
 o

f
ru

n
ti
m

e
 f
o
r
e
n
ti
re

 t
e
st

 s
u
it
e
)

Reduction with Dynamic Binding

Aggregated Cruisecontrol PMD Historia
0

20

40

60

80

100

R
e
la

ti
v
e
 R

u
n
ti
m

e
 o

f
R
e
d
u
ce

d
 T
e
st

 S
u
it
e

 (
P
re

ce
n
ta

g
e
 o

f
ru

n
ti
m

e
 f
o
r
e
n
ti
re

 t
e
st

 s
u
it
e
)

Reduction without Dynamic Binding

Fig. 12: Time reduction in the Failing Test Coverage Analysis.

PMD: Without dynamic binding, there was only one of the seven cases in which a
reduced test suite was calculated, but for that case the ReductionTime was 0.02%.
When taking dynamic binding into account, there were three out of the seven cases
in which the ReductionTime was larger than 100% (177%, 178% and 192%) which
means that in those three cases it actually took longer (almost twice as long) to
calculate and run the reduced test suite as it would have been to run the full test
suite.

Historia: Results of the reduction with dynamic binding are again very much
spread with a maximum ReductionTime of 100.63% (a case where almost the full
test suite was selected) to a minimum ReductionTime of 0.14%. On average the
ReductionTime is 43% (2.3 times faster). In the case without dynamic binding the
average ReductionTime is 7% (14 times faster).

34 Quinten David Soetens et al.�
�

�
�

What we can conclude from this is that when we do not take dynamic binding
into account we achieve better reductions in time than when we do. Addi-
tionally the calculation of the reduced test suites is much faster.

6 GOAL - Discussion of Tradeoffs

In this section we summarise the results and look at the tradeoffs involved for
taking dynamic binding into account, which was the goal of the paper:

GOAL – To investigate the tradeoffs between two variants of a test se-
lection heuristic, determining the minimal suite of tests a developer needs
to re-execute in order to verify whether a software system still behaves as
expected.

In the previous sections we have already highlighted results with and without
dynamic binding, but here we will focus on highlighting the advantages and dis-
advantages of using the one over the other. Table 9 lists the advantages and dis-
advantages of each. We see that in fact both approaches are polar opposites in the
criteria examined (what is good in the one, is bad in the other).

WITH Dynamic Binding WITHOUT Dynamic Binding

(-) Slow calculation (+) Fast calculation
(+) Can calculate a reduced set of tests

for most classes
(-) Unable to calculate reduced set of

tests for many classes

(-)
Often bad reduction
(sometimes nearly no reduction)

(+)
Very good reduction
(mostly handful of tests)

(+) Most failures covered by the reduced
set of tests

(-) Often failures missed

Table 9: Tradeoff when taking dynamic binding into account.

When we look at the calculation time we can see that this takes a lot longer
when taking dynamic binding into account. This is of course due to the fact that
there will be a lot more links between invocations and methods that an invocation
could possibly be invoking. Whereas in the approach without dynamic binding, a
one-to-one mapping between invocation and method is assumed. Table 8 showed
that indeed the number of dependencies distilled from the repositories when taking
dynamic binding into account was much higher. This was especially the case in
PMD, where there was a difference of an order of magnitude due to its use of the
Visitor pattern. As a result in some cases the time needed to calculate and run a
reduced set of tests would exceed the runtime of the full test suite.

Looking at the reduction, we find that by not taking dynamic binding into
account, we have many classes for which we are unable to calculate a reduced
set of tests. Since the test selection heuristic is based on tracing the call graph
from test cases to methods in the production code, we can not guarantee that we
can find a subset of tests for each class. This is most likely the case with a high
degree of dynamic binding. Since those are method invocations that can not be

Change-Based Test Selection: An Empirical Evaluation 35

traced statically. Hence, when we take dynamic binding into account the number
of classes for which we can calculate a reduced set of tests is much higher.

Yet for those classes that we are able to calculate a reduced set of tests without
dynamic binding, we almost always have a very good reduction with in most cases
just a handful of tests selected. Taking dynamic binding into account however will
off course have its effect on the number of tests found for the reduced set of tests.
Often it leads to very large sets of tests, sometimes even nearly no reduction.

Again the case of PMD provided some interesting observations, where some of
the relevant tests were missed for other reasons than dynamic binding. On the one
hand some tests in PMD used a third party library through which the production
code was tested indirectly. On the other hand the test suit itself used a lot of
inheritance (more so than the other two cases) which our heuristic currently does
not support. Therefore a test class that indirectly tested production code through
a test in its superclass would not be selected.

For the fault detection ability of the reduced sets of tests, we find that when
we take dynamic binding into account most failures are covered. And without dy-
namic binding we do occasionally miss some relevant tests in our selection.

In order to make the trade-off we suggest that software teams should assess
the degree of dynamic binding into the project. Most likely, the software engineers
involved in the project will know this at the start. They can rely on the metrics
DBc and DBproject to create a box-plot like in Figure 6. Moreover they should
keep in mind that currently our heuristic only works for tests that directly in-
voke production code and not indirectly through third party libraries or through
inheritance in the test class hierarchy.

�

�

�

From the point of view of the test suite reduction the introduction of dynamic
binding increases the size of the reduced set of tests as well as the runtime
for its calculation. This is a normal tradeoff we have to accept if we increase
the number of potential relevant tests of our set. A software engineer may
rely on the metrics DBc and DBproject to assess the use of dynamic binding
in the project, and based on that decide which variant to use.

7 Threats to Validity

We now identify factors that may jeopardize the validity of our results and the
actions we took to reduce or alleviate the risk. Consistent with the guidelines for
case studies research (Runeson and Höst, 2009; Yin, 2002) we organise them into
four categories.

Construct validity – do we measure what was intended We evaluated the reduced
set of tests with three criteria, the size of the reduction, the runtime of the calcu-
lation and its return on investment, and the fault detection ability of the reduced
set of tests measured through (i) the number of mutants killed and (ii) the number
of actual failing tests found. There are however other criteria that can be used to
evaluate a test selection heuristic, e.g., test coverage, inclusion.

36 Quinten David Soetens et al.

Mutation coverage is not an exact metric for the quality of a set of tests, it can
only be used to gauge the quality. The results could be influenced by the use of
other mutation operators (for instance, mutation operators specifically designed
for Object-Oriented systems). However a higher number of mutation operators
doesn’t necessarily lead to a different mutation coverage. Indeed Offutet al. have
determined that only a selection of few mutation operators is enough to produce
the same coverage as all essential mutation operators (Offutt et al, 1996). Still
it will be interesting to further investigate test selection using Object-Oriented
mutation operators.

Another possible issue in the mutation analysis, is the possibility of equivalent
mutants (i.e., mutations that do not change the observable (testable) behaviour of
the code). On the one hand PIT is designed to minimise the number of equivalent
mutants generated. On the other hand if equivalent mutants are introduced our
analysis would not suffer from this, as the same equivalent mutants would be
introduced in both the mutation analysis with the reduced set of tests and the one
with the full test suite. Therefore the mutation coverages can be reliably compared.

In the Failing Test Coverage Analysis, when looking for revisions with failing
tests, we might miss certain revisions that contain failing tests. However it was
never our intent to find all instances of failing tests that occurred in the system’s
evolution.

Internal validity – are there unknown factors which might affect outcome of the
analyses The change model currently does not include constructor invocations,
which leads to relevant tests being omitted erroneously. Additionally we were
unable to deal with class hierarchies in the test code itself. In future work we will
evaluate whether incorporating these constructs in the change model improves the
results. Another problem that arose was, when the tests use third party libraries
(e.g., to test Ant tasks) the production code is not directly invoked from the tests
but rather through the third party library. When doing the Failing Test Coverage
Analysis we ignored tests that failed due to non-code changes (e.g., changes to
configurations in xml files). In future work it could be interesting to see whether
we could incorporate changes to non source-code files in the change model and do
test selection for those files as well.

Lastly our approach for dealing with dynamic binding is based on a simple
approach of linking invocations to method declarations merely using the identi-
fier. This approach can still be improved by taking into account the full method
signature and the inheritance tree and by ignoring common java methods like
toString(), equals, etc. It would be interesting to see in future work how these
improvements influence the fault detection ability and the reduction of our heuris-
tic.

External validity – to what extent is it possible to generalise the findings In this
study we investigated three cases: Cruisecontrol and PMD as open source cases
and Historia as an industrial case. We chose them to be sufficiently different, yet,
with only three data-points, we cannot claim that our results generalise to other
systems. Moreover all three cases come with a full test suite that achieves relatively
good code coverage (see Table 3) yet we cannot claim that the use of a different
test suite on the same program achieves the same results, which is an issue that
is interesting to further investigate.

Change-Based Test Selection: An Empirical Evaluation 37

Reliability – is the result dependent on the tools In this paper we relied on tools
of our own making as well as some external tools. Our ChEOPSJ tool is imple-
mented as an Eclipse plugin and relies on Eclipse’s internal java model; it also uses
ChangeDistiller, both of which can be considered to be reliable external tools. The
Mutation Coverage Analysis is performed using an external tool PIT, which is still
actively being developed and improved, but which can be considered reliable.

8 Related Work

Regression Test Selection. This is a problem that has been investigated in-
tensely over the last decade as demonstrated in the systematic literature review
conducted by Engström et al (2010, 2008). It is an interesting problem from a
practical point of view because it results in significant savings on the time to ex-
ecute the regression test suite, hence lessens the pressure right before a software
release (Binder, 1999). From a research point of view it is equally interesting as it
results in interesting tradeoffs: the costs of selecting and executing test cases versus
the need to achieve sufficient detection ability. Two studies in particular inspired
the experimental set-up in this paper, as they compared different regression test
selection techniques using a predefined set of criteria. Mansour et al. investigated
algorithms such as simulated annealing, reduction, slicing, data-flow and firewall
and compared them using criteria like number of selected test cases, execution
time, precision, inclusiveness, preprocessing requirements, type of maintenance,
level of testing, and type of approach (Mansour et al, 2001). Graves et al. com-
pared a representative algorithm for five categories of techniques: minimisation,
data-flow, safe, random and retest all using criteria like the test size reduction and
fault detection effectiveness (Graves et al, 2001).

The variants of our test selection heuristic (with and without dynamic binding)
can be classified in Graves’ categories as follows. The variant without dynamic
binding can be considered a minimisation technique, and the variant with dynamic
binding can be considered a safe technique. Our approach differs from the ones
used in their studies, as we are basing our selection technique on fine grained
method level changes and we evaluate the approach in the context of developer
tests. Moreover our heuristics are a static analysis of the source code, where many
of the existing test selection (or test prioritisation) techniques rely on dynamic
information. We do however come to the same conclusions in that the technique
without dynamic binding (minimization) produces the smallest and least effective
test suites whereas the approach with dynamic binding (safe) capture most test
failures, but in several instances it cannot reduce the test suites at all.

Developer Tests. However, with the advent of agile processes and their em-
phasis on test-driven development (Beck, 2002) and continuous integration (Fowler,
2006), the nature of the test selection problem has changed significantly. In partic-
ular the line between unit/integration and regression testing is blurred; some au-
thors explicitly use the term “developer tests” to refer to this grey zone (Meszaros,
2006). This has an impact on the following characteristics.

Process: Regression testing is traditionally a separate activity scheduled after unit
and integration testing but before acceptance testing. With developer tests, it
is an activity tightly interwoven with the build- and release process.

38 Quinten David Soetens et al.

Automation: While automation has always been a key enabler for efficient regres-
sion testing some degree of manual scenario testing is often tolerated. With
developer tests, “self testing code” is a necessary prerequisite.

Coverage: Regression tests are designed to maximise the chance of exposing re-
gression faults; hence mainly use black-box coverage criteria. With developer
tests, the coverage criteria depend on the focus of a particular test case, mixing
black-box and white-box criteria.

These three dimensions together illustrate why it is worthwhile to revisit the test
selection problem in the context of developer tests, yet that the criteria used to
assess the solution should be interpreted differently. The process dimension implies
that developer tests run more frequently, hence that the test size reduction (as an
indicator for speed) is a highly relevant criterion. Nevertheless, the fully automated
tests imply that a safe selection is not required: we can afford to miss a few relevant
tests as long as the complete test suite is executed regularly serving as a safety
net. Finally, the mixture of black- and white-box coverage criteria, implies that
we should look beyond traditional coverage metrics (branch coverage, statement
coverage, etc.) to assess the fault detection effectiveness, for instance, by comparing
the number of mutants killed (Andrews et al, 2005).

Test Traceability. Given that the nature of the test selection problem has
changed significantly, some authors have investigated heuristics to recover test-to-
code traceability links. In earlier research, we exploited naming conventions, fixture
element types, the static call graph, last call before assert, lexical analysis and
co-evolution (Van Rompaey and Demeyer, 2009). Qusef et al. compared to these
heuristics with their tool SCOTCH, which exploits dynamic slicing and conceptual
coupling (Qusef et al, 2011). These heuristics work surprisingly well, however not in
all cases. Weijers for instance, has shown that naming conventions are not reliable
because some developer tests serve more like integration tests, testing multiple
methods of multiple classes (Weijers, 2012).

Test Case Prioritisation. Some studies have expanded on the Regression
Test Selection studies. Since using the safe regression test selection techniques
often leeds to nearly no reduction at all these studies investigate the prioritisation
of tests. On top of selecting a relevant subset of tests, they also put an ordering on
them with the test most likely to reveal faults ranked highest. The way the tests
are ranked can then be based on coverage criteria (i.e., prioritization in terms of
the number of statements, basic blocks, or methods test cases cover) (Catal and
Mishra, 2013).

Integration with the IDE. The goal of developer testing is to provide rapid
feedback to the individual developer, hence tight integration with the Integrated
Development Environment (IDE) is critically important. Saff and Ernst have pro-
posed continuous testing (Saff and Ernst, 2004), which, similarly to background
compilation in the IDE, enables ultra-short feedback cycles. However, Saff and
Ernst also report that in order to make continuous testing feasible, test selection
techniques should be incorporated. Hurdugaci and Zaidman have developed Test-
NForce, a Visual Studio plug-in that links changes in production code to the tests
that cover the changed pieces of production code (Hurdugaci and Zaidman, 2012).
As the TestNForce approach relies on coverage, a coverage baseline is necessary,
which is unavailable in the case of newly developed code as the tests have not
been executed to cover that code. Our approach does not suffer from this weak-
ness, yet it is potentially also less fine-grained. Ideas like these are making the

Change-Based Test Selection: An Empirical Evaluation 39

transition from the state-of-the-art towards the state-of-the practice: Microsoft
has incorporated the “Test Impact Analysis” feature in Visual Studio.

9 Conclusion

With the advent of agile processes and their emphasis on test-driven development
and continuous integration, obtaining rapid feedback from executing a set of devel-
oper tests remains a challenge. Given the size and execution time of the complete
test suite, it is often impractical to perform a “retest all” after each and every
change. Hence, the problem is to select an appropriate subset of the complete test
suite covering the most recent changes with sufficient detection ability. Inspired by
previous research on test selection, we have investigated whether changes in the
base-code can serve as a reliable indicator for identifying which developer tests
need to be re-executed.

The goal of this paper was:

To investigate the tradeoffs between two variants of a test selection heuristic,
determining the minimal set of tests a developer needs to re-execute in order
to verify whether a software system still behaves as expected.

This tradeoff can be expressed in terms of the results we obtained for the research
questions:

RQ1 What is the fault detection ability of the reduced test suites? Looking at
the mutation coverage we found that the results with and without dynamic
binding were very similar, however this was only when looking at the classes
for which a reduced test suite could be generated. The biggest influence of
taking dynamic binding into account was that this resulted in the technique
being able to generate a reduced test suite for more classes. Looking at the
test failures in the history of the cases we find that with dynamic binding the
fault detection ability was better than without dynamic binding.

RQ2 What is the size reduction of the unit test suite in the face of a particular
change operation? When we do not take dynamic binding into account, the test
selection heuristic reduces in 75% of the cases the subset to approximately 1%
of the complete test suite; in most cases this corresponds to a single unit-test.
With dynamic binding in the picture the reduction is worse, in 75% of the cases
the subset was reduced to more than 60% of the full test suite. When we look
at the return on investment in terms of runtime, we find that when not taking
dynamic binding into account we make a significant improvement. However,
taking dynamic binding into account sometimes results in the situation that
the combination of calculating and running the reduced test suite takes longer
than running the full test suite.

Our results show that, given a list of methods which changed since the latest
commit, it is feasible to exploit control flow dependencies to select a subset of the
entire test suite which is significantly smaller. The selected subset is not safe as
it occasionally misses a few relevant tests, however it is adequate. Especially so,
because we still expect that the complete test suite will be executed as part of
the integration build anyway. When taking dynamic binding into account, we are

40 Quinten David Soetens et al.

capable of calculating a reduced test suite for more cases, and the reduced test
suites will be safer. However this comes at the cost of a longer calculation time
and larger reduced test suites.

As such, the adoption of dynamic binding in the test selection process should
be provided as an optional feature for the developers to choose from depending on
the degree of dynamic binding usage in the project.

Contributions. Over the course of this research, we have made the following
contributions:

– We have implemented a tool prototype named ChEOPSJ serving as an experi-
mental platform for conducting feasibility studies with first-class representation
of changes in Java.

– We have demonstrated how this platform can be used to deduce which devel-
oper tests need to be re-executed for a given change.

– We applied the prototype on three cases —Cruisecontrol and PMD— as open
source cases and Historia as an industrial case to assess the savings on reducing
the test suite versus the ability to detect regression faults.

– We have demonstrated that it is feasible to use method-level changes to select
a subset of a large test suite which is significantly smaller yet is adequate for
identifying regression faults.

– We have compared two variants of our approach and analysed the tradeoffs
involved.

Future work. There is a large body of knowledge on test selection techniques in
the context of regression testing. Some of this work will have to be re-examined
against the changing context of developer tests. In particular, we aim to address
the following questions.

Are more elaborate test selection algorithms worthwhile? In literature more
elaborate test selection techniques based on data-flow and slicing are documented.
Hence it is worthwhile to see whether these techniques achieve better results. It is
also worthwhile to further improve and evaluate the heuristics presented here. They
can be improved by eliminating some of the limitations of the tool (e.g., extend the
change model to support constructor invocations; or adapt the heuristic to take
into account inheritance in the test code). Moreover it would be interesting to
see the effect (if any) of evaluating the heuristics with Object-Oriented mutation
operators.

What are acceptable thresholds for less surviving mutations? In this paper, we
used this measure as indicator for the fault detection ability of the reduced test
suite. We observed that for many changes the reduced test set is perfectly safe.
However, in some cases the reduced test set does not expose faults and then the
question becomes when this reduced test set is adequate. Acceptable thresholds
still need to be defined probably on the basis of field studies with realistic projects.

What is the real significance of test selection in the context of developer tests?
Will developers be more inclined to run their developer tests more frequently with
test selection enabled? Will this result in fewer (regression) faults later in the life-
cycle? We see it as a challenge to perform field studies with real project teams to
get insight.

Change-Based Test Selection: An Empirical Evaluation 41

Acknowledgements We express our gratitude to the SEAL team in the University of Zürich,
Switzerland for releasing Changedistiller in the public domain; our ChEOPSJ tool is partly
based on this release.

We would also like to express are gratitude to Yves Vandewoude at Qmino, for allowing
us to conduct these analyses on the Historia codebase.

This work has been sponsored by (i) the Interuniversity Attraction Poles Programme -
Belgian State Belgian Science Policy, project MoVES; (ii) the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen) under project num-
ber 120028 entitled “Change-centric Quality Assurance (CHAQ)”; (iii) the NWO TestRoots
project, the Netherlands.

Figures 6, 7, 8, 9, 10, 11 and 12 were created with matplotlib (Hunter, 2007).

References

Andrews JH, Briand LC, Labiche Y (2005) Is mutation an appropriate tool for test-
ing experiments? In: Proc. Int’l Conf. on Software Engineering (ICSE), ACM,
pp 402–411, DOI 10.1145/1062455.1062530

Basili VR, Caldiera G, Rombach HD (1994) The goal question metric approach.
Encyclopedia of Software Engineering

Beck K (2002) Test Driven Development: By Example. Addison-Wesley
Beller M, Gousios G, Panichella A, Zaidman A (2015a) When, how and why de-

velopers (do not) test in their ides. In: Proceedings of the 10th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE), ACM, pp
179–190

Beller M, Gousios G, Zaidman A (2015b) How (much) do developers test? In:
Proceedings of the 37th International Conference on Software Engineering (ICSE
– volume 2), IEEE, pp 559–562

Bennett KH, Rajlich VT (2000) Software maintenance and evolution: A roadmap.
In: Proceedings of the Conference on The Future of Software Engineering, ACM,
New York, NY, USA, ICSE ’00, pp 73–87, DOI 10.1145/336512.336534, URL
http://doi.acm.org/10.1145/336512.336534

Binder R (1999) Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley

Catal C, Mishra D (2013) Test case prioritization: A systematic mapping study.
Software Quality Control 21(3):445–478, DOI 10.1007/s11219-012-9181-z, URL
http://dx.doi.org/10.1007/s11219-012-9181-z

Daniel B, Jagannath V, Dig D, Marinov D (2009) Reassert: Suggesting repairs
for broken unit tests. In: Proc. of the Int’l Conference on Automated Software
Engineering (ASE), IEEE CS, pp 433–444

Demeyer S, Tichelaar S, Steyaert P (1999) FAMIX 2.0 - the FAMOOS information
exchange model. Tech. rep., University of Berne

Dösinger S, Mordinyi R, Biffl S (2012) Communicating continuous integration
servers for increasing effectiveness of automated testing. In: Proceedings of the
International Conference on Automated Software Engineering (ASE), pp 374–
377

Ebraert P, Vallejos J, Costanza P, Paesschen EV, D’Hondt T (2007) Change-
oriented software engineering. In: Proc. of the Int’l Conference on Dynamic
Languages (ICDL), ACM, pp 3–24, DOI http://doi.acm.org/10.1145/1352678.
1352680

42 Quinten David Soetens et al.

Engström E, Skoglund M, Runeson P (2008) Empirical evaluations of regression
test selection techniques: a systematic review. In: Proc. Int’l Symp. Empirical
Softw. Engineering and Measurement (ESEM), ACM, pp 22–31, DOI 10.1145/
1414004.1414011

Engström E, Runeson P, Skoglund M (2010) A systematic review on regression test
selection techniques. Journal Information and Software Technology 52(1):14–30

Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Transactions on Software
Engineering 33(11):725–743, DOI http://dx.doi.org/10.1109/TSE.2007.70731

Fowler M (2006) Continuous integration. Tech. rep., http://www.martinfowler.
com/, http://www.martinfowler.com/articles/continuousIntegration.

html

Garousi V, Varma T (2010) A replicated survey of software testing practices in
the canadian province of alberta: What has changed from 2004 to 2009? Journal
of Systems and Software 83(11):2251–2262

Graves TL, Harrold MJ, Kim JM, Porter A, Rothermel G (2001) An empirical
study of regression test selection techniques. ACM Transactions on Software
Engineering and Methodology 10(2):184–208

Hattori L, Lanza M (2010) Syde: A tool for collaborative software development.
In: Proc. of the Int’l Conference on Software Engineering (ICSE), ACM, pp
235–238

Hunter JD (2007) Matplotlib: A 2d graphics environment. Computing In Science
& Engineering 9(3):90–95

Hurdugaci V, Zaidman A (2012) Aiding software developers to maintain devel-
oper tests. In: Proc. European Conf. on Softw. Maintenance and Reengineering
(CSMR), IEEE CS, pp 11–20

Mansour N, Bahsoon R, Baradhi G (2001) Empirical comparison of regression test
selection algorithms. Journal of Systems and Software 57(1):79—90

McGregor J (2007) Test early, test often. Journal of Object Technology 6(4)
Meszaros G (2006) XUnit Test Patterns: Refactoring Test Code. Prentice Hall

PTR
Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An experimental de-

termination of sufficient mutant operators. ACM Trans Softw Eng Methodol
5(2):99–118, DOI 10.1145/227607.227610, URL http://doi.acm.org/10.1145/

227607.227610

Parsai A, Soetens QD, Murgia A, Demeyer S (2014) Considering polymor-
phism in change-based test suite reduction. In: Agile Methods. Large-Scale
Development, Refactoring, Testing, and Estimation - XP 2014 International
Workshops, Rome, Italy, May 26-30, 2014, Revised Selected Papers, pp 166–
181, DOI 10.1007/978-3-319-14358-3 14, URL http://dx.doi.org/10.1007/

978-3-319-14358-3_14

Qusef A, Bavota G, Oliveto R, De Lucia A, Binkley D (2011) Scotch: Test-to-
code traceability using slicing and conceptual coupling. In: Proc. of the Int’l
Conference on Software Maintenance (ICSM), IEEE CS, pp 63–72, DOI 10.
1109/ICSM.2011.6080773

Robbes R, Lanza M (2007) A change-based approach to software evolution. Elec-
tronic Notes in Theoretical Computer Science 166:93–109, DOI http://dx.doi.
org/10.1016/j.entcs.2006.06.015

Change-Based Test Selection: An Empirical Evaluation 43

Robbes R, Lanza M (2008) Spyware: A change-aware development toolset. In:
Proc. of the Int’l Conference in Software Engineering (ICSE), ACM Press, pp
847–850

Rothermel G, Untch R, Chu C, Harrold M (2001) Prioritizing test cases for re-
gression testing. IEEE Transactions on Software Engineering 27(10):929–948,
DOI 10.1109/32.962562

Runeson P (2006) A survey of unit testing practices. IEEE Software 23(4):22–29
Runeson P, Höst M (2009) Guidelines for conducting and reporting case study

research in software engineering. Empirical Softw Engineering 14(2):131–164
Saff D, Ernst MD (2004) An experimental evaluation of continuous testing during

development. In: Proc. Int’l Symp. Softw. Testing and Analysis (ISSTA), ACM,
pp 76–85

Soetens QD, Demeyer S (2012) ChEOPSJ: Change-based test optimization. In:
Proc. of the European Conference on Software Maintenance and Reengineering
(CSMR), IEEE CS, pp 535–538, DOI http://doi.ieeecomputersociety.org/10.
1109/CSMR.2012.70

Soetens QD, Demeyer S, Zaidman A (2013) Change-based test selection in the
presence of developer tests. In: Proc. Conf. Softw. Maintenance and Reengi-
neering (CSMR), pp 101–110

Tillmann N, Schulte W (2006) Unit tests reloaded: Parameterized unit testing
with symbolic execution. IEEE Software 23(4)

Van Rompaey B, Demeyer S (2009) Establishing traceability links between
unit test cases and units under test. In: Proc. of the Conference on Soft-
ware Maintenance and Reengineering (CSMR), IEEE CS, pp 209–218, DOI
http://doi.ieeecomputersociety.org/10.1109/CSMR.2009.39

Venolia G, DeLine R, LaToza T (2005) Software development at microsoft
observed. Tech. rep., Microsoft Research, http://research.microsoft.com/

pubs/70227/tr-2005-140.pdf

Weijers J (2012) Extending project lombok to improve junit tests. Master’s
thesis, Delft University of Technology, http://resolver.tudelft.nl/uuid:

1736d513-e69f-4101-8995-4597c2a4df50

Yin RK (2002) Case Study Research: Design and Methods, 3 edition. Sage Publi-
cations

Yoo S, Harman M (2012) Regression testing minimization, selection and priori-
tization: a survey. Software Testing, Verification and Reliability 22(2):67–120,
DOI 10.1002/stvr.430, URL http://dx.doi.org/10.1002/stvr.430

Yoo S, Nilsson R, Harman M (2011) Faster fault finding at Google using multi
objective regression test optimisation. In: 8th European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’11), Szeged, Hungary

Zaidman A, Van Rompaey B, van Deursen A, Demeyer S (2011) Studying the
co-evolution of production and test code in open source and industrial devel-
oper test processes through repository mining. Empirical Software Engineering
16(3):325–364

