
Circumventing Refactoring Masking
using Fine-Grained Change Recording

Quinten David Soetens, Javier Pérez
and Serge Demeyer

University of Antwerp
Antwerpen, Belgium

{quinten.soetens; javier.perez;
serge.demeyer}@uantwerp.be

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
a.e.zaidman@tudelft.nl

ABSTRACT
Today, refactoring reconstruction techniques are snapshot-
based: they compare two revisions from a source code man-
agement system and calculate the shortest path of edit op-
erations to go from the one to the other. An inherent risk
with snapshot-based approaches is that a refactoring may
be concealed by later edit operations acting on the same
source code entity, a phenomenon we call refactoring mask-
ing. In this paper, we performed an experiment to find out
at which point refactoring masking occurs and confirmed
that a snapshot-based technique misses refactorings when
several edit operations are performed on the same source
code entity. We present a way of reconstructing refactorings
using fine grained changes that are recorded live from an
integrated development environment and demonstrate on
two cases —PMD and Cruisecontrol— that our approach is
more accurate in a significant number of situations than the
state-of-the-art snapshot-based technique RefFinder.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

Keywords
Refactoring Reconstruction; Refactoring Masking; Fine Grained
Changes; Software Evolution

1. INTRODUCTION
Refactoring is widely recognised as a crucial technique

applied when evolving object-oriented software systems. The
key idea is to redistribute program entities and responsibil-
ities in order to prepare the software for future extensions.
If applied well, refactoring improves the design of software,
makes software easier to understand, helps to find bugs, and
helps to program faster [10]. As such, refactoring has received
widespread attention within both academic and industrial

circles, and is mentioned as a recommended practice in the
software engineering body of knowledge [1].

Given this widespread attention, several researchers set out
to reconstruct refactorings as they occurred in the evolution
of software projects. Initially, this was mainly an act of
scientific curiosity (i.e., [3, 21, 37, 39, 27, 14]), however
later on actual applications emerged. Weißgerber et al. for
instance used this as a means for studying the impact of
refactorings on defects [11, 38]. Dig et al. prototyped a
capture-playback tool capable of replaying refactorings when
migrating systems dependent on a refactored API [13, 7, 8].
Obviously, several authors tried to correlate the impact of
refactorings on the maintainability of a software project [32,
16, 22, 36].

In the meantime, several field studies and surveys indi-
cated that if refactoring is applied in practice, it is mainly
interwoven with normal software development [17, 15]. A
side effect of this interweaving is that a commit in a source
code management system tends to consist of more than just a
single refactoring [2]. Indeed Negara et al. reported that 46%
of refactored program entities are also edited in the same
commit [19]. Consequently, state of the art refactoring recon-
struction techniques miss a significant portion of the actual
refactorings, because they infer refactorings by comparing
two revisions of a system and making educated guesses about
the precise edit operations applied in between. At that point,
it is virtually impossible for such snapshot-based refactoring
reconstruction tools to correctly deduce refactorings since
these may be concealed by other changes. Negara et al. found
that on average 30% of refactoring operations do not reach
the version control system [18]. We call this the “refactor-
ing masking” phenomenon and investigate the nature of the
problem in a first Research Question.
RQ 1 – Refactoring Masking. Under which conditions

does a snapshot-based approach fail to reconstruct refac-
torings?

To address this first research question we followed the refac-
toring script of a small yet representative program (the LAN
Simulation [6]) and committed individual atomic changes
to separate revisions in a source code repository. We then
ran RefFinder [14] to compare all possible combinations of
revisions to investigate under which conditions RefFinder
fails to reconstruct the refactorings. We found that some
refactorings indeed conceal others as they act on the same
source code entities. Combinations of ExtractMethod
and MoveMethod are particularly vulnerable.

A solution to this problem might be to use the actual
changes, as performed in an integrated development environ-
ment. Assuming that an integrated development environment
provides logging facilities for all editing operations (i.e., like
done in Spyware [25], Syde [12], Cheops [9], OperationRecor-
der [20] and ChEOPSJ [33]), we might query this stream of
changes to distinguish refactorings from ordinary program
edits. We performed a proof by construction via a tool
prototype named ChEOPSJ, which sits in the background
of Eclipse and records the changes made to a software sys-
tem while a developer is programming. We compared this
tool prototype against the state of the art snapshot-based
approach as explained by the second research question.
RQ 2 – Comparison. Do fine-grained changes allow us

to reconstruct refactorings where snapshot-based ap-
proaches fail?

We compare the change-based approach (exemplified by
ChEOPSJ [33]) against a snapshot-based approach (exempli-
fied by RefFinder [14]) on two open source cases – PMD and
Cruisecontrol. We locate instances of the refactoring masking
phenomenon and show that the change-based approach is
indeed more accurate in reconstructing refactorings in those
cases. Moreover, we argue that this improved accuracy is
relevant by estimating the number of edit operations acting
on the same source code entities within 5 minutes after an
ExtractMethod refactoring.

We structured the remainder of this paper as follows. Sec-
tion 2 introduces the state of the art, including a description
of the ChEOPSJ tool prototype. Next we have two sections
3, and 4, which each address one of the research questions
with their own experimental setup and results. The final two
sections 5 and 6 wrap up the paper with a discussion of the
limitations of – and threats to – the validity of our research
and summarise our major findings in the conclusions.

2. STATE OF THE ART

2.1 Snapshot-based Reconstruction
In this paper, we use the term “refactoring reconstruc-

tion” to refer to any software reengineering technique used
to infer refactorings that were performed in the history of
a software system. The current state of the art in this con-
sists of analyses of snapshots maintained in a source code
repository. Most approaches use some kind of code similarity
measure to identify possible refactoring candidates. Dig et
al. as well as Weißgerber et al. used a combination of a sig-
nature-based analysis and shingles (a form of hashing) [7,
8, 11, 38]. Van Rysselberghe et al. use clone detection on
two versions to look for a decrease in the number of clones.
Since many refactorings are aimed at the elimination of du-
plicated code [37], this would suggest that a refactoring was
performed. There exist two approaches that do not rely on
code similarity. Demeyer et al. developed a set of heuristics
to identify refactorings using decreasing code entities [3].
Xing and Stroulia search for refactorings at the design level
using their UMLDiff algorithm, which is capable of detecting
some basic structural changes to the system [39] [27].

RefFinder, an Eclipse plugin by Kim et al. is to date
the most comprehensive refactoring reconstruction tool as it
supports 63 different types of refactorings [14]. They use the
technique proposed by Prete et al., which is stronger than all
previous techniques because they not only detect primitive
refactorings (which all previous techniques do to some extent)

Figure 1: The types of changes implemented.

Figure 2: The types of source code entities imple-
mented. (note: For the sake of readability, when
multiple relationships exist between entities, a sin-
gle arrow is drawn.)

but also “complex refactorings” (i.e., refactorings which are
combinations of primitive refactorings). To do this they rely
on a fact base with a strong query engine (Tyruba logic) [21].
They describe the structural constraints before and after
applying a refactoring in terms of template logic queries.
RefFinder takes two versions of a system as input from the
Eclipse workspace and recovers changes as logic facts about
the systems’ syntactic structure using LSDiff. These are then
stored in a factbase, which can be queried to identify program
differences that match the constraints of each refactoring
type under focus.

We opted to use RefFinder in our experiments, because it
is a representative of the state-of-the art in snapshot-based
refactoring reconstruction techniques and because the list
of refactorings it is able to detect is currently the most
comprehensive.

2.2 Change-based Reconstruction
An alternative to the snapshot-based approach is to use

the actual edit operations as performed in an integrated de-
velopment environment. In such an approach a tool silently
records the activities of the programmers while they are
working, and registers all the changes as performed. For
instance, if the programmer modifies a method, the recorder
instantiates change objects for each of the statements that
were added, changed or removed. This approach was used
by Robbes and Lanza in Spyware [25]; by Hattori and Lanza
in Syde [12]; by Omori and Maruyama in OperationRecor-
der and OperationReplayer [20]; and by Ebraert et al. in
ChEOPS [9].

We extended the later approach with our tool prototype
ChEOPSJ1, which is a Java version of the same model [34, 33].
It operates in the Eclipse background and silently records the

1ChEOPSJ: Change and Evolution Oriented Programming
Support for Java (http://win.ua.ac.be/~qsoeten/other/
cheopsj/)

Figure 3: The graph transformation rule to reconstruct the PullUpMethod refactoring

changes that are made to the source code while the developer
is programming.

In our tool we implemented two kinds of Atomic Changes:
Add and Remove (see Figure 1). These act upon a Subject
that represents an actual entity in the source code. For these
subjects we implemented a subset of the FAMIX model [5]
(see Figure 2). We chose the FAMIX model as this model
captures most object oriented programming languages. It de-
fines entities representing packages, classes, methods and at-
tributes, as well as more fine grained entities such as method
invocations, variable accesses and inheritance relationships.

In our change model the changes are interconnected through
dependencies. These dependencies between change objects
(See Figure 1) are determined by the relationships between
the entities in the subset of the FAMIX model we are using
(See Figure 2). Hence, the dependencies between change
objects are defined as follows: A change c1 is said to depend
on another change c2 if the application of c1 without c2 would
violate the system invariants. For instance, an addition of a
method depends on the addition of a class as you cannot add
a method to a nonexistent class. As such a software system
and its entire evolution is represented as a graph with the
changes as nodes and the dependencies between the changes
as edges.

Once the sequence of changes and their dependencies is
recorded, we use Groove [24], a graph transformation tool,
to search the change graph for pre-defined patterns corre-
sponding to a refactoring. We chose Groove because it uses a
simple XML format to store their graphs, as such it was easy
to export the change graphs from ChEOPSJ into a Groove
readable format. Besides that, Groove offers a fast and scal-
able state space exploration so it should be able to find our
refactoring patterns on large graphs relatively quickly.

As an example, we briefly describe how we reconstruct a
PullUpMethod refactoring from a graph of changes. The
other refactorings are defined in a similar way and are pub-
lished on figshare [29]. The Groove graph transformation is
shown in Figure 3. The top of this pattern describes how
the classes are related. The class from which the method
is removed needs to be different from the class in which we
added a method. The class node on the left should be a
descendant to the class on the right. We express this relation-

ship using a regular expression (-superclass.subclass)+,
meaning that we traverse the edge in the opposite direction
(with -superclass) from the superclass node to the implicit
Inheritance node, and then traverse the edge in the normal
direction (subclass) to the subclass node. Adding the +

makes this the transitive closure, meaning that we can trace
this edge to any descendant class in the inheritance tree of
the superclass. The bottom half of the pattern describes the
changes to the methods. In the subclass the method has (at
least) two changes: an addition (which is dependent on the
addition of the class) and a removal which is dependent on
the addition of the method. In the superclass the method
has (at least) one change: an addition. Moreover the method
in the subclass and the superclass should have an identical
name. The left side of the pattern (the subclass and its
method along with the additions of both and the removal
of the method) have a universal quantifier (∀) meaning that
this pattern applies to all subgraphs of this kind. In other
words, for each instance of a removal of the method in a
subclass, this removal is part of the PullUpMethod refac-
toring reconstructed. This graph transformation rule adds
a new node – PulledUpMethod – linked to (i) the changes
that remove instances of the method in subclasses (ii) the
change that adds the method to the superclass. However this
should only be done if these changes are not already linked
to a previously reconstructed refactoring node.

We argued the feasibility of a change-based approach for
refactoring reconstruction in a previous paper where we
had implemented a way for detecting MoveMethod and
RenameMethod [35]. For this paper, we extended this
proof by construction to incorporate 11 of the refactoring
rules that can be expressed on the model in Figure 1 and
Figure 2.

- PullUpMethod
- PullUpField
- PushDownMethod
- PushDownField
- MoveClass
- MoveMethod

- MoveField
- RenamePackage
- RenameClass
- RenameMethod
- RenameField

With this list, we have a sufficient basis to compare against
the state-of-the-art snapshot-based tool RefFinder [14].

3. REFACTORING MASKING
In this section we address RQ 1: Under which conditions

does a snapshot-based approach fail to reconstruct refactor-
ings? We illustrate the refactoring masking phenomenon, by
using the state of the art tool RefFinder [14] on a small yet
realistic system: the LAN Simulation [6]2. This is a script
of refactorings that are performed on a small system. It
is mostly used as a teaching lab to teach how and why to
refactor.

3.1 Experimental Setup
We followed the script of the LAN Simulation [6] and in-

jected some non-refactoring changes along the way. After
every atomic change we committed revisions to a local sub-
version repository. For these commits, we handled the same
level of granularity (method level changes) as the model in
our change recording tool shown in Figure 2. For instance
when performing a MoveMethod refactoring, we executed
a simple copy, paste and delete and then updated the signa-
ture and the invocations. This resulted in at least 5 commits
to the repository: after the copy; after the paste; after the
delete; after the signature update; and after the invocation
update. As such we created a fine grained change model
stored in a subversion repository, with each revision con-
taining one change. We then had RefFinder compare each
revision with every other revision in order to find both the
smallest and the largest distance between revisions needed
to reconstruct a refactoring.

3.2 Results
We performed a series of 22 refactorings in 150 commits:

2 instances of IntroduceExplainingVariable; 7 instances
of ExtractMethod; 10 instances of MoveMethod; 2
instances of ExtractSubclass and a single instance of Re-
placeConditionalWithPolymorphism). The repository
is published on figshare [30]. We compared all possible pairs
of these 150 commits with RefFinder. That is, we compared
revision 1 to revisions 2 to N, then we compared revision 2 to
revisions 3 to N, and so on. We looked at the refactorings that
RefFinder reconstructed all together, and summed up all the
unique distinct refactorings it could reconstruct in all pairs
of revisions. We found that RefFinder reconstructed 100
refactorings, of which 40 were false positives, 19 were true
positives and 41 were neither, but could be considered as
side effects (or subrefactorings) of the performed refactor-
ings. For instance, a MoveMethod usually also involved
the removal of a parameter, as the class to which the method
was moved used to be a parameter. Another example was
the ExtractSubClass refactorings, that also consisted of 3
MoveMethod refactorings. Additionally there were three
false negatives: two instances of ExtractMethod and one
instance of MoveMethod refactorings that we performed,
but that RefFinder did not manage to reconstruct.

The important thing to note is that most of the refactorings
we performed were reconstructable by RefFinder at one point
or another. In Figure 4 we show the minimum and maximum
windows under which these occur. The maximum window
is shown below the minimum window; the latter shows the
revisions where the refactoring was actually performed. The
maximum window denotes up to which point, either before or
after the minimum window boundaries, RefFinder is capable

2http://lore.ua.ac.be/Research/Artefacts/refacLab/

of identifying the performed refactoring. To the right of the
figure, each refactoring is numbered for easy referencing in
the following paragraphs.

We see that refactorings 7, 8, 13, 16, 17, 18, 19 and 20 have
a window that reaches to the HEAD revision, which implies
that these refactorings were not masked by any other changes.
The other eleven refactorings are at one point masked by
other changes, hence no longer reconstructable.

The first refactoring masking instances that we want to
highlight are the refactorings 3, 6, 10, 12 and 14. These are
one ExtractMethod and four MoveMethod refactorings
that are masked by changes other than refactoring opera-
tions. The ExtractMethod was no longer reconstructable,
since we completely changed the code inside the extracted
method. It was changed in such a way that it semantically
did more or less the same thing, but syntactically it was
completely different. A similar observation can be made with
the four MoveMethod refactorings that are masked by non
refactoring changes.

The other six refactoring instances are masked by other
refactoring operations (indicated with the dashed lines). The
first are the two IntroduceExplainingVariable refactor-
ings (refactorings 1 and 2), these were hidden by MoveMe-
thod 3 (refactoring 8), as this move operation moved the
method in which the variables were introduced. The fig-
ure then also shows that four ExtractMethod refactorings
were hidden by a MoveMethod refactoring. What happened
is some code was extracted to a method and this newly cre-
ated method was then moved to a different class, at which
point it was no longer possible to reconstruct the ExtractMe-

thod refactorings. A special case is Extract Method 2, which
is shown twice in the figure (as refactorings 4 and 5). This
is because this refactoring extracted a duplicate series of
statements from two methods into a new method. RefFinder
identified this as two distinct ExtractMethod refactorings.

We conclude from this experiment that the minimum win-
dow in which a refactoring can be identified needs to be
comprised of, at least, the changes of that refactoring. The
maximum window in which the refactoring can be recon-
structed is uncertain, as a refactoring can be hidden by
other operations. In our case study, we have observed that a
refactoring can always be reconstructed as long as no other
changes act on the same source code entities as that refactor-
ing. One could argue that it is possible to write new rules for
RefFinder that identifies a combination of refactorings, but
this is an infeasible approach since we can not be expected
to devise rules for every possible combination of refactoring
operations.�

�

	

As an answer to RQ 1, we conclude that a snapshot-
based approach fails to reconstruct refactorings when
other edit operations act on the same source code entities.
We then say that the refactoring is “masked” by those
other changes.

4. COMPARING REFFINDER TO CHEOPSJ
In this section we address RQ 2: Do fine-grained changes

allow us to reconstruct refactorings where snapshot-based
approaches fail? We search for instances of refactoring mask-
ing in two real-world cases and see whether a change-based
approach is capable of reconstructing refactorings where
snapshot-based approaches do not.

Figure 4: Minimum and maximum windows in which the performed refactorings are reconstructable by
RefFinder.

4.1 Experimental Setup
We used two larger open source cases—PMD and Cruisec-

ontrol. PMD3 is a source code analyser to find a variety of
common mistakes like unused variables, empty catch blocks,
unnecessary object creations, and so on. Cruisecontrol4 is
a framework that allows for creating a custom continuous
integration process.

These projects were selected as they are written in Java and
their development history is freely available on a subversion
repository. More importantly, the developers of these two
software projects used the commit messages to consciously
document some of the applied refactorings. We could thus
mine these commit messages using a simple grep command
to identify those revisions with documented refactorings.
We searched for commit messages that contain the terms
“refactor(-ed,-ing)”, “move(-d)” or “rename(-d)”.

We sampled these two projects for cases of refactoring
masking and selected 10 revisions containing masked refac-
torings. Tables 1 and 2 show the selected revisions in which
we have a total of 26 masked refactorings. These revisions
were selected with the following criteria: each revision should
be one with refactoring documented in the commit message;
RefFinder should be unable to reconstruct any refactorings;
and a manual analysis of the revision should show that there
were actual refactorings performed and that RefFinder’s
refactoring reconstruction failed due to refactoring masking.
Note that this is a very conservative way of looking for cases
of refactoring masking, since we cannot claim that there is
no refactoring masking in either the revisions that had no
documented refactorings or the revisions where RefFinder
did find refactorings.

3http://pmd.sourceforge.net
4http://cruisecontrol.sourceforge.net

In these cases of refactoring masking, we set out to re-
perform those refactorings while recording our changes with
ChEOPSJ in order to obtain a fine grained change model.
Suppose revision Rx is documented as a refactored version of
revision Rx−1 and RefFinder cannot identify the performed
refactorings because they were masked by other changes.
In this case we checked out revision Rx−1 and distilled an
addition change for every source code entity in this revision
to have a starting set of changes. We then started recording
the changes and performed the refactorings that we identified
during our manual analysis in order to obtain the fine-grained
change history. At the end of re-performing the refactorings,
we verified (using Eclipse’s built in compare support) that
our changed version of the system matched revision Rx.
We could then export our graph of recorded changes to a
Groove readable format and had Groove perform our graph
transformation rules to reconstruct the refactoring instances.

4.2 Refactoring Masking Instances
In the PMD project we analysed 6 revisions, where Ref-

Finder was unable to reconstruct the refactorings performed
due to refactoring masking. The details of these six revisions
are in Table 1. In all of the cases, the masking involved an
ExtractMethod refactoring followed directly by a Move-
Method or PullUpMethod refactoring. This means that
the developers extracted a piece of code and immediately
moved it to a class where they felt it belonged. RefFinder
is unable to reconstruct either of these refactorings. For the
ExtractMethod it looks for a newly created method in the
same class, but the method is already moved to a different
class. For the MoveMethod it looks for the class from
which the method originates, but there was no such method
to begin with.

Table 1: Refactoring masking in PMD.

Rev. Commit Message Refactorings Per-
formed

578 refactoring ExtractMethod
MoveMethod

659 more CPD-aided refac-
toring

ExtractMethod
PullUpMethod
2xInlineTemp

1082 more refactoring and tests ExtractMethod
MoveMethod
InlineTemp

1085 more refactoring ExtractMethod
MoveMethod

1088 minor refactoring ExtractMethod
MoveMethod
RenameLocalVar

2207 Refactored some more
code into CommandLineOp-

tions, wrote some more
tests

ExtractMethod
MoveMethod

Number of refactorings
masked

16

A typical example is shown in listings 1 and 2. An Ex-
tractMethod extracted some code from the visit method
in the class EmptyFinallyBlockRule into a new method
called getFinallyBlock. This method was then moved to
the class ASTTryStatement.

package net.sourceforge.pmd.rules;
public class EmptyFinallyBlockRule extends AbstrRule {

public Object visit (...){
// some Code that is extracted and moved

}
}

package net.sourceforge.pmd.ast;
public class ASTTryStatement extends SimpleNode {
}

Listing (1) PMD revision 1084.

package net.sourceforge.pmd.rules;
public class EmptyFinallyBlockRule extends AbstrRule {

public Object visit (...){
ASTBlock finallyBlock = node.getFinallyBlock ();

}
}

package net.sourceforge.pmd.ast;
public class ASTTryStatement extends SimpleNode {

public ASTBlock getFinallyBlock () {
// some Code that is extracted and moved

}
}

Listing (2) PMD revision 1085.

In the case of Cruisecontrol we analysed 4 revisions con-
taining instances of refactoring masking. We detailed these
revisions in Table 2. One of these (rev 842) is similar to
the refactoring masking instances in PMD, in that a new
method was extracted and immediately pushed to the re-
sponsible subclass. The one difference is that the extracted
method had the same identifier as the method from which
it was extracted and the class to which it was moved was
a subclass. As such they created a polymorphic version of
the same original method. To maintain behaviour and thus
make it a pure refactoring, they added a call to the super

Table 2: Refactoring masking in Cruisecontrol.

Rev. Commit Message Refactorings Per-
formed

842 Making buildResultsUrl

optional in HTMlEmailPub-

lisher. Moved valida-
tion of the parameter from
EmailPublisher to LinkE-

mailPublisher.

Combination of
ExtractMethod
PushDownMethod
RenameMethod

879 renamed _now and get-

Now() to timeOfCheck and
getTimeOfCheck()

RenameMethod
RenameField

2257 move knowledge of default
log location into Log class

Combination of
ExtractMethod
MoveMethod
InlineMethod

2629 . . . Also renamed
IO.deleteFile to
IO.delete because the
File part is obvious from
the signature and therefor
superfluous.. . .

RenameMethod
RenameParame-
ter

Number of refactorings
masked

10

implementation. Another similar operation was in revision
2257, where they moved a few statements from one method
to another method in a different class. One way of doing
this is simply cutting and pasting the code from the one
method to the other, which is probably what the developers
did. However this same result could also be achieved by
performing an ExtractMethod and a MoveMethod to
get the piece of code to the right class. Then the invocation
to the new method needs to be removed from the original
method and an invocation needs to be added in the place
where we want the code. To finish off an InlineMethod
would put the code where we want it.

Cruisecontrol also provided us with a few examples of
masked RenameMethod refactorings. In one case (revision
879), this refactoring is hidden by a RenameField refactor-
ing. In RefFinder the rule to reconstruct a RenameMethod
checks whether the method body has a certain similarity. In
this case the method body consisted of a single statement: a
return statement returning the value of the field. Since the
field itself was also renamed to a name that is very different,
the method body was no longer similar enough to count as a
RenameMethod.

4.3 Change-based Reconstruction
Our approach for refactoring reconstruction based on

recorded changes was capable of reconstructing all refac-
torings for which we currently have rules. More precisely,
our approach allowed us to identify 12 out of 26 refactorings
that, for RefFinder, were masked.

Specifically we could reconstruct all of the MoveMethod
refactorings and the one PullUpMethod refactoring that
we performed in PMD as well as the two MoveMethod,
the two RenameMethod and the one RenameField refac-
torings we performed in Cruisecontrol. As an example we
present the results of the refactoring pattern reconstructed
from the changes we performed to go from revision 658 to
revision 659 in PMD (Figure 6) and the patterns recon-
structed from the changes between revision 878 and 879 in
Cruisecontrol (Figure 7). All other resulting graphs can be

found on figshare [31]. Figure 6 shows that there was a
PullUpMethod refactoring that removed two instances of
a method named “getEndName” in two subclasses of the class
“UnusedCodeRule” and an addition of a method by the same
name in the superclass. Figure 7 shows that in Cruisecontrol
we were able to reconstruct two refactorings from a set of
changes: one is the RenameField refactoring that removes
the attribute _now and adds the attribute timeOfCheck; and
the RenameMethod refactoring that changes the name of
this attribute’s getter from getNow to getTimeOfCheck.�

�

�

�

We conclude that the presence of fine-grained changes al-
lows us to reconstruct refactorings where snapshot-based
approaches fail. Indeed, we have found several occur-
rences of masked refactorings in two real-world open
sourced cases, all of which RefFinder was unable to re-
construct. In contrast, our change-based approach was
able to reconstruct 12 out of 26 masked refactorings; the
other refactorings could be reconstructed by extending the
source code model (see Figure 2) and defining new rules
for these particular refactorings. As such we effectively
answered RQ 2.

4.4 Is this relevant?
Knowing that change-based approaches are capable of re-

constructing refactorings where snapshot-based approaches
fail, the natural follow up question is to what extent is this
improvement relevant. That is, how often does refactoring
masking occur in real software projects? This question is
impossible to answer precisely, given that there is no project
where all refactoring operations are recorded [17]. Moreo-
ever, Negara et al. already reported that on average 30% of
refactoring operations do not reach the version control sys-
tem [18]. Nevertheless, we can make a rough estimate based
on the data gathered by the Eclipse Usage Data Collector
(UDC)5. This data is made publicly available and Emerson
Murphy Hill et. al. have put the whole data set on Google
BigQuery, which enables us to query and process this data
using Google’s storage and compute infrastructure [28].

We know that snapshot-based approaches typically fail
when several edit operations act on the same source code
entities. In particular, sequences of ExtractMethod,
MoveMethod (and in the case of Cruisecontrol also a Re-
nameMethod) operating on the same segments of code are
likely to cause misses. From the UDC dataset it is clear
that the RenameMethod operation is by far the most used
automated refactoring in Eclipse; Move–Element– and
ExtractMethod are also among the top most used auto-
mated refactoring operations. This gives a first indication
that refactoring masking is relevant.

We are most interested in the combination of ExtractMe-
thod and MoveMethod, so we looked at the edit operations
that occurred within 5 minutes after an ExtractMethod
operation (see Figure 8). Here we assume programming lo-
cality, that is two edit operations that occur closely together
are likely to act on the same source code entities [23]. Move–
Element– appears at the nineteenth position, but the top
three operations are Delete, Paste and Copy; which serve
as a manual substitute for a move. Launching a query which
counts all ExtractMethod operations that are followed

5http://www.eclipse.org/epp/usagedata

within 5 minutes by either a MoveMethod or by a Copy,
a Paste and a Delete, we found 10,869 instances out of a
total of 43,602, thus almost 25%. Note that this is a conser-
vative estimate, as these are the situations where we know a
snapshot-based approach will fail. In reality, there are likely
to be more, since we only took into account those change
sequences which start with an extract method. Therefore, we
argue that a snapshot-based approach is likely to miss a sig-
nificant amount of the refactoring sequences, hence that the
potential improvements induced by a change-based approach
are indeed relevant.

5. THREATS TO VALIDITY
We now identify factors that may jeopardise the validity

of our results and the actions we took to alleviate the risk.
Consistent with the guidelines for case studies research [26,
40] we organise the identified threats into four categories.

Construct validity – do we measure what was intended?.
We relied on the versioning system’s log messages to iden-
tify revisions corresponding to refactorings. Since no strict
conventions are in place for what should be specified in such
messages, there may be significant differences in the con-
tent and quality of log messages across tasks and developers.
Consequently, we might miss certain revisions which do cor-
respond to refactorings. However it was never our intent to
find all instances of refactorings that occurred in the system’s
evolution. In that sense, using this simple way of locating
instances of refactorings is sufficient for our purposes.

An additional threat could be that the expertise and ex-
perience of developers plays a key role in this application.
A developer that knows the purpose of the different refac-
torings, might be less inclined to perform floss refactoring
and actually commit the refactoring as a whole to the source
code management system.

Moreover, the fine-grained recorded changes did not exist
in the original sample from the repositories so we had to
manually re-perform them. These changes might not be
the ones applied by the developers. The transformations
we performed, in order to obtain the fine-grained change
history, are just one possible change-sequence from many
potential scenarios. We used our expertise to choose the
transformations that we would have applied. We verified
(using Eclipse’s built in compare support) that our changed
version of the system matched the actual revision in the
repository.

Internal validity – are there unknown factors which
might affect the outcome of the experiment?. The sub-
stitution of “real” recorded changes by a manual synthetic
reproduction of them might be a confounding factor for our
results. The improvement in the number of masked refac-
torings detected by our approach over RefFinder might not
be due to the availability of fine-grained changes but to the
particular change sequences we manually applied. To reduce
this risk, the first two authors of this paper proposed and
discussed these change sequences in order to come up with
the transformations that, in our opinion, are closest to the
real ones.

As already mentioned, there can also be a problem of
selection bias caused by how we decided on the refactored
revisions we used as experiment subjects. The need to verify

Figure 6: The PullUpMethod refactoring identified by ChEOPSJ in PMD. (note: The subject relationships
between changes and source code entities are hidden for the sake of readability.)

Figure 7: The RenameMethod and RenameField refactorings identified by ChEOPSJ in CruiseControl. (note:
The subject relationships between changes and source code entities are hidden for the sake of readability.)

RefFinder results and to manually apply the fine-grained
changes, led us to sample only those revisions whose commit
messages mentioned refactoring operations. In order to al-
leviate the potential bias, we run the experiments in a toy
example and in two different open source systems. Similar
results were obtained from them.

External validity – to what extent is it possible to gen-
eralise the findings?. In this study we investigated two
cases: Cruisecontrol and PMD. We chose them to be suffi-
ciently different, yet, with only two data points, we cannot
claim that our results generalise to other systems. The results
are also dependent on the number of refactoring detection
rules we have implemented. The instances of refactoring
masking we have analysed might very well appear in other
systems. We cannot however make any claims about other
types of (as yet unidentified) refactoring masking.

According to [19], changes in snapshot-based versions are
often obscured by other changes. We can expect the refac-
toring masking problem to be more prominent than what we
have inspected. We should also expect different behaviours
when developers commit to SVN or Git. It has been ob-
served that programmers commit more often to Git repos-
itories, resulting also in smaller commits [2]. The need for

a change-recording mechanism might not be so important
in the context of Git repositories, although it also depends
on whether the developers use commit squashing (grouping
several related changes in one single commit).

Reliability – is the result dependent on the tools?. We
used RefFinder to construct the baseline for our experiments.
The tool might have produced false positives and false neg-
atives, wrongly identifying some refactoring while missing
others. On the one hand, this is the best existing tool for
refactoring detection. Therefore, despite of the possible er-
rors, it still serves well as a baseline to compare with. On
the other hand, we have manually verified the refactorings
detected by RefFinder thus, reducing the risk of false posi-
tives.

In order to implement our approach, we relied on tools
of our own making as well as some external tools. Our
ChEOPSJ tool is implemented as an Eclipse plugin and relies
on Eclipse’s internal java model which can be considered to
be a reliable tool. In order to reduce the bias caused by
possible bugs and errors in the tool, we tested it extensively.
Members of the research groups and some developers at
a partner company installed ChEOPSJ and acted as beta-
testers for three months. This resulted in many bug fixes

Figure 8: Top 20 most used edit commands within 5 minutes after an ExtractMethod.

and led to a stable and robust version of the tool. For the
graph pattern matching we used the tool Groove, which is
still actively being developed and improved, but since it has
already evolved to a stable and robust tool it too can be
considered reliable.

6. CONCLUSIONS
In this paper we have shown how a software evolution

history comprised of fine-grained recorded changes can be
exploited to reconstruct refactorings more accurately than
the state-of-the-art snapshot-based technique RefFinder. To
provide a more detailed summary of our findings, we review
the research questions we have addressed:
RQ 1 Under which conditions does a snapshot-based ap-

proach fail to reconstruct refactorings? Snapshot-based
approaches fail when other edit operations act on the
same source code entities. In particular, combinations of
ExtractMethod and MoveMethod confuse a snap-
shot-based approach, since the effect of the former is
concealed by the latter. We then say that the refac-
toring is “masked” by those other changes. Since such
simultaneous edit operations might happen at any time,
it is impossible to determine the optimal window of
changes where snapshot-based reconstruction will still
function properly. Hence, the only alternative to faith-
fully reconstruct refactorings is to have access to the
fine-grained changes applied to the code.

RQ 2 Do fine-grained changes allow us to reconstruct refac-
torings where snapshot-based approaches fail? We sam-
pled the version history of two open source projects
where the developers made an effort to explicitly doc-
ument some of the refactorings applied. In particu-
lar, we made an opportunistic sample, selecting ver-
sions where simultaneous edits on the same entity were
performed. Under these conditions, snapshot-based
approaches indeed fail to reconstruct the refactorings,
while the change-based approach does succeed. Next,
we argued that these conditions occur frequently: we
estimate that for 25% of all the ExtractMethod refac-
torings are followed by either a MoveMethod or by a
Copy, a Paste and a Delete

Contributions. Over the course of this research, we made
the following contributions:
• We implemented a tool prototype named ChEOPSJ

serving as an experimental platform for conducting fea-
sibility studies with first-class representation of changes
in Java.
• We demonstrated how this platform can be used to

reconstruct refactoring operations from a stream of
changes.
• We applied the prototype to two cases — PMD and

CruiseControl — to compare a change-based approach
against a snapshot-based approach.
• We demonstrated that the change-based approach is

more accurate than a snapshot-based approach.
• We argued that this improved accuracy is relevant by

estimating the number of edit operations acting on the
same source code entities within 5 minutes after an
ExtractMethod refactoring.

Future work. Our plan for the immediate future is to
gather real recorded data and replicate our experiments,
thus moving from In-Vitro to In-Vivo research [4]. We are
currently deploying the change-recording plugin at some
partner companies which should result in detailed streams
of changes where we can interview the developers about
the details of the refactorings. Next we plan to implement
additional detection rules for other refactorings besides the
11 listed under Section 2.2, to investigate other refactoring
masking conditions. Particularly, interesting in that respect
would be a more detailed change model fully representing
AST entities below the method signature level.�

�

�

�

Our findings together with similar results obtained by
others (i.e., Spyware [25], Syde [12], Cheops [9], Oper-
ationRecorder [20]), indicate that it is not only feasible
but also worthwhile to maintain fine-grained evolution
histories of software projects. Given the popularity of
Git, which encourages a fine-grained commit behaviour,
having an explicit representation of the changes is the
natural successor to the current generation of distributed
version control systems.

7. ACKNOWLEDGMENTS
This work has been sponsored by (i) the Interuniversity Attrac-

tion Poles Programme - Belgian State - Belgian Science Policy,
project MoVES; (ii) the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)
under project number 120028 entitled “Change-centric Quality
Assurance (CHAQ)”. We hereby express our gratitude to Arend
Rensink for his quick response on the Groove discussion forum6,
as such helping us out with the Groove Syntax.

8. REFERENCES
[1] A. Abran, P. Bourque, R. Dupuis, J. W. Moore, and L. L.

Tripp. Guide to the Software Engineering Body of
Knowledge - SWEBOK. IEEE Press, 2004.

[2] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig.
How do centralized and distributed version control systems
impact software changes? In Proceedings ICSE, 2014, pages
322–333.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In Proceedings OOPSLA,
2000, pages 166–177.

[4] S. Demeyer, A. Lamkanfi, and Q. D. Soetens. “in vivo”
research in software evolution. ERCIM News, 2012(88),
2012.

[5] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - the
FAMOOS information exchange model. Technical report,
University of Berne, 1999.

[6] S. Demeyer, F. Van Rysselberghe, T. Girba, J. Ratzinger,
R. Marinescu, T. Mens, B. Du Bois, D. Janssens, S. Ducasse,
M. Lanza, M. Rieger, H. Gall, and M. El-Ramly. The
LAN-simulation: a refactoring teaching example. In
Proceedings IWPSE, 2005, pages 123–131.

[7] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings for libraries and
frameworks. In Proceedings WOOR, 2005

[8] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving components.
In Proceedings ECOOP, 2006, pages 404–428

[9] P. Ebraert, J. Vallejos, P. Costanza, E. V. Paesschen, and
T. D’Hondt. Change-oriented software engineering. In
Proceedings ICDL, 2007, pages 3–24.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2001.

[11] C. Görg and P. Weißgerber. Error detection by refactoring
reconstruction. In Proceedings MSR, 2005

[12] L. Hattori and M. Lanza. Syde: A tool for collaborative
software development. In Proceedings ICSE, 2010, pages
235–238.

[13] J. Henkel and A. Diwan. CatchUp!: capturing and replaying
refactorings to support API evolution. In Proceedings ICSE,
2005, pages 274–283.

[14] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-finder:
a refactoring reconstruction tool based on logic query
templates. In Proceedings FSE, 2010, pages 371–372.

[15] H. Liu, Y. Gao, and Z. Niu. An initial study on refactoring
tactics. In Proceedings COMPSAC, 2012, pages 213–218.

[16] A. Murgia, M. Marchesi, G. Concas, R. Tonelli, and
S. Counsell. Parameter-based refactoring and the
relationship with fan-in/fan-out coupling. In Proceedings.
ICST Workshops, 2011, pages 430–436.

[17] E. Murphy-Hill, C. Parnin, and A. P. Black. How we
refactor, and how we know it. IEEE TSE, 38(1):5–18, 2012.

[18] S. Negara, N. Chen, M. Vakilian, R. Johnson, and D. Dig. A
comparative study of manual and automated refactorings. In
G. Castagna, editor, ECOOP, 2013, volume 7920 of LNCS,
pages 552–576.

6http://sourceforge.net/p/groove/discussion/407076/
thread/8eb1f2c4/

[19] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig.
Is it dangerous to use version control histories to study
source code evolution? In Proceedings ECOOP, 2012, pages
79–103.

[20] T. Omori and K. Maruyama. A change-aware development
environment by recording editing operations of source code.
In Proceedings MSR, 2008, pages 31–34.

[21] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex refactorings. In
Proceedings ICSM, 2010, pages 1–10.

[22] N. Rachatasumrit and M. Kim. An empirical investigation
into the impact of refactoring on regression testing. In
Proceedings ICSM, 2012, pages 357–366.

[23] V. Rajlich. Modeling software evolution by evolving
interoperation graphs. Ann. Softw. Eng., 9(1-4):235–248,
Jan. 2000.

[24] A. Rensink. The groove simulator: A tool for state space
generation. In AGTIVE, 2004, volume 3062 of LNCS, pages
479–485.

[25] R. Robbes and M. Lanza. SpyWare: A change-aware
development toolset. In Proceedings ICSE, 2008, pages
847–850.

[26] P. Runeson, M. Höst, and M. Alshayeb. Guidelines for
conducting and reporting case study research in software
engineering. Empirical Software Engineering, 2009.

[27] C. Schofield, B. Tansey, Z. Xing, and E. Stroulia. Digging
the development dust for refactorings. In Proceedings ICPC,
2006, pages 23–34.

[28] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian,
K. Damevski, A. R. Nair, and D. Shepherd. Analyzing
Software Data, chapter A Practical Guide to Analyzing IDE
Usage Data. Morgan Kaufmann, 2015.

[29] Q. D. Soetens. Groove Refactoring Reconstruction Rules, 06
2014, Retrieved 09:48, Jul 06, 2015 (GMT), figshare
http://dx.doi.org/10.6084/m9.figshare.1070082

[30] Q. D. Soetens. LAN Simulation Fine Grained Changes
Repository, 11 2014, Retrieved 09:49, Jul 06, 2015 (GMT),
figshare http://dx.doi.org/10.6084/m9.figshare.1237061

[31] Q. D. Soetens. Results for Reconstruction on Cruisecontrol
and PMD, 06 2014, Retrieved 09:41, Jul 06, 2015 (GMT),
figshare http://dx.doi.org/10.6084/m9.figshare.1080418

[32] Q. D. Soetens and S. Demeyer. Studying the effect of
refactorings: a complexity metrics perspective. In
Proceedings QUATIC, 2010, pages 313–318.

[33] Q. D. Soetens and S. Demeyer. ChEOPSJ: Change-based
test optimization. In Proceedings CSMR, 2012 pages
535–538.

[34] Q. D. Soetens, S. Demeyer, and A. Zaidman. Change-based
test selection in the presence of developer tests. In
Proceedings CSMR, 2013 pages 101–110.

[35] Q. D. Soetens, J. Pérez, and S. Demeyer. An initial
investigation into change-based reconstruction of
floss-refactorings. In Proceedings ICSM, 2013, pages
384–387.

[36] K. Stroggylos and D. Spinellis. Refactoring–does it improve
software quality? In Proceedings WoSQ, 2007, page 10.

[37] F. Van Rysselberghe and S. Demeyer. Reconstruction of
successful software evolution using clone detection. In
Proceedings IWPSE, 2003, pages 126–130.

[38] P. Weißgerber and S. Diehl. Are refactorings less error-prone
than other changes? In Proceedings MSR, 2006, pages
112–118.

[39] Z. Xing and E. Stroulia. Refactoring detection based on
UMLDiff change-facts queries. In Proceedings WCRE, 2006,
pages 263–274.

[40] R. K. Yin and M. Alshayeb. Case Study Research: Design
and Methods, 3 edition. Sage Publications, 2002.

