
Sentiment Overflow in the Testing Stack:
Analysing Software Testing Posts on Stack Overflow

Mark Swillusa,1, Andy Zaidmana,2

aDelft University of Technology, Van Mourik Broekmanweg 6, 2628XE Delft,
The Netherlands

Abstract

Software testing is an integral part of modern software engineering practice.

Past research has not only underlined its significance, but also revealed its multi-

faceted nature. The practice of software testing and its adoption is influenced

by many factors that go beyond tools or technology. This paper sets out to in-

vestigate the context of software testing from the practitioners’ point of view by

mining and analyzing sentimental posts on the widely used question and answer

website Stack Overflow. By qualitatively analyzing sentimental expressions of

practitioners, which we extract from the Stack Overflow dataset using sentiment

analysis tools, we discern factors that help us to better understand the lived ex-

perience of software engineers with regards to software testing. Grounded in the

data that we have analyzed, we argue that sentiments like insecurity, despair

and aspiration, have an impact on practitioners’ attitude towards testing. We

suggest that they are connected to concrete factors like the level of complexity

of projects in which software testing is practiced.

Keywords: Stack Overflow, software testing, sentiment analysis, grounded

theory

Email addresses: m.swillus@tudelft.nl (Mark Swillus), a.e.zaidman@tudelft.nl
(Andy Zaidman)

1
� 0000-0003-3746-1030

2
� 0000-0003-2413-3935

Preprint submitted to Elsevier 10.5.2023

https://orcid.org/0000-0003-3746-1030
https://orcid.org/0000-0003-2413-3935

1. Introduction

We already know for over 40 years that software testing is one of the most

pragmatic mechanisms by which we can ensure the quality of the software arte-

facts that we engineer [4, 15, 23, 46, 64, 66, 67]. In the light of the unquestionable

growing impact that software and software supported devices are having on our

daily lives, the role of software testing becomes ever more important. Just con-

sider the year 2017, which has been earmarked “The Year That Software Bugs

Ate the World” because of the astonishing software failures that cost the econ-

omy $1.7 trillion in 2017 alone [40]. Crucially, Ko et al. [32] report on software

failures that can be directly linked to the loss of 1,500 human lives. However,

to this day there is a schism between widespread recommendations for software

engineering practice and our knowledge of how software testing actually hap-

pens. The urgency to solve this conflict was also signalled by others with a call

to arms to better understand the testing process [14, 47].

We have recently seen studies emerge that have observed how software devel-

opers test. Beller et al. [11, 12, 13] have investigated when and how developers

write test cases in their Integrated Development Environment. They observed

that around 50% of the studied projects do not employ automated testing meth-

ods at all. But they also found out that for almost all cases testing happens

far less frequently than developers estimate. If testing is truly considered a last

line of defense against software defects, we need to understand why developers

do or do not engineer and execute test cases.

We have already seen glimpses of this in literature. Studies have shown

that company culture or time pressure leads to cognitive biases during test-

ing [44, 69, 55], estimations of the time it takes to write test are often inaccu-

rate [11, 30], availability of documentation shapes the development of tests [3],

and that the cost/benefit of testing is often unclear [10]. Additionally, Kasuri-

nen et al. [30], Runeson [52], and Daka and Fraser [17] highlight issues with

motivating developers to test software: only half of them have positive feel-

ings about testing, and approachability of tools is a major factor. Like Prado

2

and Vincenzi [51] who studied the perspective of developers during the review

process of unit tests to build tools that encourage testing, we follow and put

the human into the center of attention. This paper sets out to investigate the

circumstances that influence software engineers when engineering tests going be-

yond technical aspects of the discipline. Like Sharp et al. [58], we believe that in

order to improve the discipline, it is essential to understand the socio-technical

world in which software engineering is practiced. For example, software devel-

opment practices which form social circumstances, like pair programming, are

very likely to have an impact on testing. To gain a broad overview of what these

circumstances are, we take negative and positive sentiments on the process of

automated testing as a proxy. To gather documents which describe the experi-

ence of software developers from their point of view, we mine the most popular

question and answer platform for software engineers, namely Stack Overflow [6].

RQ1

How do software engineers express sentiment about testing on Stack Over-

flow?

On the Q&A platform Stack Overflow, on which social interaction plays a

key role, practitioners ask questions about software development which are an-

swered by a global community of software developers [45]. Others have used

the Stack Overflow dataset to investigate technical and non-technical aspects

of software engineering. For example, Lopez et al. [38] have analyzed security

questions on Stack Overflow, and provide an overview of the most discussed

topics but also discuss the way in which authors discuss security questions. Our

goal is to identify factors that affect practitioners and influence adoption of, or

attitude towards testing. We hypothesize that an analysis of sentimental content

on Stack Overflow not only reveals technical factors that can influence adoption

or attitudes, but also descriptions of the social or human context of practice.

To identify those socio-technical factors, we deeply examine 200 testing related

questions on Stack Overflow instead of analyzing the whole dataset quantita-

tively. We do not only scrutinize the question asked by the practitioner, but

3

also incorporate answers, comments and the edit history of questions into our

analysis. Going beyond an analysis of questions about technical issues, we focus

on the broader context that causes sentiment in practitioners. We therefore use

the term post instead of question to refer to the documents we analyzed for the

remainder of this paper.

RQ2

Which factors affect sentiment of software engineers towards testing prac-

tices?

From research done by other authors we know that only a small fraction of posts

on Stack Overflow contains strong opinions and emotional statements as they

mostly discuss how to use a piece of technology [35, 56]. This motivates us to

create an emotionally rich subset by filtering the dataset using a semi-automated

approach that employs sentiment analysis tools.

To answer both research questions we apply strategies of Hoda’s basic stage

for socio-technical grounded theory (STGT) [25] with a constructivist stance as

suggested by Charmaz [16]. STGT provides us with a framework to venture into

a broad analysis of testing practice, seen not only as a technical phenomenon,

but as a phenomenon in which social factors play an essential role. We focus our

analysis on the socio-technical dimension of posts on Stack Overflow and show

that such an analysis indeed reveals descriptions of social aspects. Our analysis

informs about issues that contribute to problems and attitudes towards software

testing. More concretely, we analyze the dataset which consists of 200 posts

using initial and focused coding and techniques for systematic comparison of

posts, codes and memos like diagramming and clustering. Concluding this paper

with a presentation of preliminary categories and a preliminary interpretive

theory, we motivate consecutive targeted data collection (theoretic sampling) to

test and extend our analysis and conclusions. Grounded in the data we analyze,

this paper makes the following contributions:

• We discuss preliminary hypotheses which explore stimuli and inhibitors to

4

testing at a socio-technical level

• We present a computer aided approach for qualitative analysis of senti-

mental expressions in big datasets

• We motivate a research agenda that includes concrete ideas for targeted

data collection (theoretic sampling) to develop a mature theory of stimuli

and inhibitors of software testing that go beyond tools and technology

2. Background

2.1. Sentiment Analysis

Sentiment analysis is the computational study of opinions, sentiments and

emotions expressed in text. It essentially tries to infer people’s sentiments based

on their language expressions. Sentiment classification is a widely studied re-

search topic of sentiment analysis that focuses on the classification of opin-

ionated documents as expressing positive or negative opinion [26]. Automatic

classification of sentiment has been applied in various fields of research over the

past 20 years as access to vast amounts of written text about various topics have

become available through the internet. Already in 1999 Wiebe et al. [62] worked

on a dataset for automatic classification of news articles to identify whether in-

formation is being presented as fact or opinion. While sentiment analysis is

still being used to analyze media platforms like those of news agencies [5, 49],

its application today also includes platforms on which a wide variety of peo-

ple contribute content such as social media or internet forums. Here sentiment

analysis has been used recently to identify personal attacks or obscene behavior

of users [53].

Techniques for sentiment analysis have also been applied in the context of

software engineering. Mantyla et al. [39] analyzed sentiment in comments on the

Jira issue tracker to detect burnout among software developers. They calculated

sentiment scores for each sentence using a dictionary that contains ratings for the

affective meaning of 13,915 English words. Despite their positive results, they

have also raised the issue, echoed by others [29], that general purpose sentiment

5

analysis tools lack precision when applied to the domain of software engineering.

Lin et al. [35] even question the validity of all quantitative studies in software

engineering based on sentiment analysis tools as they demonstrate how hard it is

to reproduce results. For example, they judge that there is still a long way to go

before researchers and practitioners can use state-of-the-art sentiment analysis

tools to identify the sentiment expressed in Stack Overflow discussions. To

stimulate more research into the direction of sentiment analysis, they published

the dataset that was developed in [35] which contains 1,500 annotated sentences.

Similarly, to support empirical research in the direction of emotion detection,

Novielli et al. [48] developed a dataset containing 4,800 Stack Overflow posts.

Motivated by these voices of criticism and encouragement, others then tried to

develop tools tailored to the domain of software engineering like Islam et al., who

have developed the dictionary-based tool DEVA [28], and a machine-learning

based tool called MarValous that focuses on emotion detection [27]. In that

same period the SentiStrength tool, which already existed as a general purpose

tool for sentiment classification, was tweaked for an application in the domain

of software engineering by Ahmed et al. [1], who created the tool SentiCR. In

2020 Zhang et al. [68] address the issue again, comparing the accuracy of this

new generation of tailor-made sentiment analysis tools for software engineering

with the accuracy that deep neural network architectures, namely transformer

models, achieve. They suggest that transformer models like RoBERTa [36] are

indeed one big step forward on the long way towards reliable results in sentiment

classification for software engineering. Finally, in 2021, Lin et al. [34] summarize

the knowledge gained in one decade of research for opinion mining tools. Among

other insights into the field they provide a guideline for the selection, usage and

evaluation of opinion mining tools for software engineering research.

2.2. Grounded Theory

Grounded theory (GT) is an analytic approach used to construct ethno-

graphic knowledge [18]. Its framework is made up of data-gathering techniques

and strategies to analyze data. What distinguishes GT from other approaches

6

is its iterative nature. While theory development progresses, the GT approach

alternates between data collection and analysis to sustain a high level of involve-

ment with the data [16].

GT was suggested as an approach for qualitative research by Glaser and

Strauss [21] and has been reinterpreted by different scholars, resulting in the

development of different flavours of GT. Flavours of GT differ in details on

how to execute techniques and how tightly strategies need to be followed3.

Crucially, they also rest on different epistemological stances. Where the original

Glaserian GT takes an objective, positivist stance, Constructivist GT proposed

by Charmaz, for example, acknowledges the researchers’ subjective perspective.

Constructivist GT moves away from positivism, incorporating the beliefs and

preconceptions of the researcher into analysis. Situating the GT approach into

the field of software engineering research, Hoda has recently proposed another

flavour of GT. She designed Socio-technical GT (STGT) to ease application of

GT in her field, where researchers often struggle to understand and apply it [25].

With STGT, Hoda proposes to divide GT into distinct phases. Embracing the

iterative nature of GT, STGT encourages exploration in a Basic Stage and helps

the socio-technical researcher to transition into an Advanced Stage of theory

development. The separation into those two stages, which are accompanied

by lean and focused literature reviews, help the socio-technical researcher to

cover epistemological blind-spots. All flavours of GT use comparative- (e.g.,

clustering, diagramming), and analytical methods (e.g., coding, memo writing),

that are accompanied by a continuous collection of new data samples (theoretical

sampling) to saturate emerging categories that describe data and to enable

the development of mature theories which transparently emerge from the data.

Regarding the analysis of documents, which we set out to do in this paper,

Charmaz states that GT of documents is able to address not only content but

also their audience, production and presentation. Analysis of documents can

3For a more elaborate discussion of the historic development of GT and a complete com-
parison of its flavours see Charmaz [16, p. 4] and Hoda[25, p. 9]

7

reveal what and whom they affect, as they do not only serve as records but

explore, explain, justify and/or foretell actions [16, p. 46].

In this paper we follow Hoda’s STGT and present the results of the Basic

Stage of our STGT study. Publication of emerging results of this exploratory

phase is encouraged by both Hoda and Charmaz. GT guidelines describe steps

and a path through a long research process. Depending on the task and project

at hand, GT invites using those steps flexibly to raise the analysis to the de-

sired level of theory construction [16]. Within the framework of STGT we use

strategies and epistemology from Charmaz Constructivist GT, raising the data

analysis of our dataset that we take from Stack Overflow to a preliminary the-

ory. We present our work following Hoda’s recommendation who states that

publication even of partial results is important to receive feedback from both

practitioners and the research community to assesses relevance and improve

rigour [25].

2.3. Stack Overflow

Stack Overflow is the most popular question- and answer website for soft-

ware developers [6]. The website has become an important resource that often

complements official documentation of software libraries and tools. Its strong

presence on search engines, where a link to the website is very often shown on the

first page of results when searching for software development related topics, in-

dicates its reach that goes far beyond the 17 million registered users [8]. Studies

that often use the official and open Stack Overflow dataset, have underlined the

prominence of Stack Overflow by showing for example that 11% of open source

software projects on GitHub that were analyzed in a large scale field study con-

tain source code snippets that were copied from Stack Overflow [6]. Over 22

million questions that often contain such code snippets were posted by users in

a wide range of topics that are related to software engineering since its launch

in 2008 4. Apart from contributions in the form of questions and answers, users

4
i stackexchange.com/sites

8

https://stackexchange.com/sites?view=list#traffic

are also encouraged to take part in moderation efforts. Up- and down voting,

tagging and editing of questions and answers is rewarded with badges, medals

and reputation points. Questions on Stack Overflow generate living documents,

which are edited by their authors and moderators, updated, and extended with

comments sometimes even a decade after they were asked. Questions and their

answers can thus take the character of knowledge base articles. Barzilay et al.

[8] even argue that the moderation and reward system has transformed Stack

Overflow from a mere Q&A site into a community project that gives users a

sense of belonging which not only generates high quality knowledge but also

trust in the content that is accumulated. To emphasize these traits of the con-

tent on Stack Overflow that goes beyond questions, we refer to the content on

Stack Overflow not as questions but as posts.

Before taking part in the community by asking a question for the first time,

users can take a virtual tour that explicates the goals of Stack Overflow. It is

explained here, that Stack Overflow is “all about getting answers. It’s not a

discussion forum. There is no chit-chat”. Furthermore, it asks users to avoid

questions that are primarily opinion-based, or that are likely to generate discus-

sion5. The platform’s focus to avoid chit-chat is also reflected in what Vadlamani

and Baysal [60], and Zagalsky et al. [65] identified as the primary drivers be-

hind contributions. Going beyond a meta analysis of the platform, scholars used

Stack Overflow to investigate various aspects of software engineering, including

for example the analysis of trends [7, 63] or developers’ interests [33]. Similar to

our aim, the Stack Overflow data set has also been used to investigate challenges

of software developers. Based on the assumption that questions and answers

on Stack Overflow cover a wide range of issues, Alshangiti et al. [2] analyzed

questions in a mixed method study to identified challenges of software engineers

when developing machine learning applications.

5
j stackoverflow.com/tour

9

https://stackoverflow.com/tour

3. Method

To investigate the lived experience of practitioners on Stack Overflow we

take a qualitative approach that aligns with Hoda’s Socio-Technical Grounded

Theory (STGT) [25]. Acknowledging its iterative nature, we focus on what Hoda

defined as STGT’s Basic Stage for data collection and analysis. We take our

initial sample from the Stack Overflow data dump, which we analyze using initial

and focused coding while we write memos to constantly compare documents,

codes and emerging categories. We then present preliminary hypotheses and an

interpretive theory that summarizes our findings. Presenting our findings we

motivate for the next iteration of our STGT study that leads to the collection

of more data (theoretic sampling) to test and extend our findings. As Hoda

[25] suggests, we publish our initial findings to assess the relevance of our work

and to receive feedback from the research community. Successive rounds of data

collection and analysis in future work can then lead to the development of more

mature theories that are valuable for the field.

Our stance with regard to our research questions is that the reality of test-

ing practices and the experience of practitioners in a complex socio-technical

environment is highly individual and not reflected by a Stack Overflow post

in its entirety. Within the framework of Hoda’s STGT we adopt a subjective,

constructivist epistemology. Therefore, we follow Charmaz’s version of construc-

tivist Grounded Theory [16] to provide our interpretation of these complex mat-

ters. Despite our awareness of the limitations that an analysis of non-reactive

documents has as they can only provide thin descriptions that lack contextual

cues [24], we hypothesize that observation and thorough investigation of atti-

tudes and sentiments expressed by practitioners in posts on Stack Overflow can

yield valuable insights into practice. Furthermore, we claim that our analysis

contributes to a better understanding of socio-technical dynamics in the context

of software testing.

To analyze the Stack Overflow dataset for our specific purpose of investi-

gating the sentiment associated with software testing, we first retrieve Stack

10

2: Filtering by Sentiment
1: Filtering by Tags

Stack Overflow
Post Dataset

0

 testing

testing
functional-testing

e2e-testing
unit-testing

Sentiment Analysis Tools

Positive

Negative

CAQDA

Software

1

3

7

134,109 Posts

147,833 Posts

label z
label y

label x

2

Training Data

4

Select Samples

6

Neutral

Random

Both

53,086,328

Posts

NL
TK

5 Se
nt

iC
RR
oB

ER
Ta

Initial

Coding

feeling exha

expressing st

expressing desp.14

Analytic

Categories 8

17

Writing Analytical MemosDeveloping Hypothesis

Accuracy

Focused Codes

feeling exha

"is my code?"

being stuck
Initial Codes

9Clustering

21 20
Diagraming

CodebookMemos

Preliminary

Hypothesis

Interpretive

Theory

22

12

13

- expressing despair
+ acknowledging value

Sentimental Expressions

10

16

Overall
Sentiment

Memos

Focused
Coding

18
Evaluation

Se
m

i-A
ut

om
at

ed
 F

ilt
er

in
g

Q
ua

lit
at

iv
e

D
at

a
A

na
ly

si
s

15

11

19

Figure 1: Filtering and annotating Stack Overflow posts using a semi-automated approach,
followed by systematic qualitative data analysis process that leads to the construction of
preliminary hypotheses and an interpretive theory.

Overflow posts related to testing. We then use sentiment analysis tools to iden-

tify posts that contain negative and positive sentimental expressions. The whole

process, which starts with this filtering process of the Stack Overflow data dump

0 and ends with the construction of preliminary hypotheses and an interpretive

theory 22 , is visualized in Figure 1. Grounded theory studies usually undergo

a phase of piloting and study preparation as a means to verify that the chosen

tools like questionnaires or interview questions are appropriately configured and

comprehensible to the studies’ subjects. As our study is only involving the anal-

ysis of non-interactive documents such a verification process is not applicable.

Study preparation in our case is thus limited to the extraction of a subset of

posts that we take from the Stack Overflow data dump and the configuration

of the sentiment analysis tools that we use (1 to 5).

3.1. Filtering by tags

The Stack Overflow dataset contained 53,086,328 posts concerning all do-

mains of software development when we obtained it in August 2021 6. To extract

a subset with a size that is appropriate for manual analysis, we filter all posts

6
j archive.org/details/stackexchange

11

https://archive.org/details/stackexchange

using a 2-step process that is outlined in this section. As illustrated in Fig-

ure 1, we begin with the full Stack Overflow Post-dataset 0 on the left side

and end this process with importing post-documents into a CAQDA-software7

7 on the right side. To extract posts related to automated software testing,

we first filter the dataset using tags. One or more tags are assigned to every

post by their authors. The list of tags is then often edited by moderators to

facilitate categorization. Tags represent categories that among others include

general concepts or methods (e.g., testing, tdd), technologies like program-

ming languages (e.g., java, python), or specific frameworks and tools (e.g.,

codecov, mockito, reactjs). Posts are usually tagged with multiple, com-

plementary tags (e.g., post 878848 is tagged with 5 tags: java, unit-testing,

ibdc, mocking and resultset). Similar to Yang et al. [63], we utilized a

two-step process to extract posts by searching for tags which represent general

concepts and methods related to software testing. We first select all posts from

the dataset that are assigned a tag that contains the word testing, which pro-

duces a set of 134,109 posts 1 . We choose the term testing as it is used as a

suggestion on the Stack Overflow platform whenever the tag test is used and

because the tags testing and unit-testing are the two most prominent tags

when searching for test using the tag-search.8 We then manually analyze the

list of 13,006 tags that were assigned to those posts and remove tags that were

used less than 6 times, or were not directly referring to general concepts of au-

tomated software testing 2 . The tag codecov for example was removed from

the list because it only occurred 5 times, and reactjs was removed as it relates

to a programming framework that is not directly related to automated software

testing. We also exclude tags that are related to testing but focus on a partic-

ular technology or tool (e.g., mockito), as we try to remain testing tool- and

development language agnostic. Following this procedure, we have produced a

list of 30 tags that all refer to conceptual aspects of automated software test-

7CAQDA = Computer-Assisted Qualitative Data Analysis software; we have mostly used
ATLAS.TI, see: https://atlasti.com

8
j stackoverflow.com/tags

12

http://stackoverflow.com/questions/878848
https://atlasti.com
https://stackoverflow.com/tags

ing, like unit-test, mocking, or tdd. Using this list we again extracted posts

from the original dataset. We extract all posts that contain at least one tag that

is present on the tag list and obtain a set of 147.833 posts 3 . Post 878848

which is tagged with java, unit-testing, ibdc, mocking and resultset was

for example selected because the presence of tags mocking and unit-testing.

We provide the source code of the program that we used to filter posts and the

filtered dataset in our replication package [59, filter-by-tags.zip].

3.2. Filtering by sentiment

We aimed to examine posts deeply instead of quantitatively which limits

our investigation to an analysis of a small subset of the 147,833 posts. From

research done by other authors we know that only a small fraction of content

posted on Stack Overflow contains strong opinions and emotional statements

as they mostly discuss how to use a piece of technology [35]. Sengupta et al.

report that only every 10th comment on Stack Overflow expresses some stan-

dalone form of emotion [56]. This motivated us to create an emotionally rich

subset by filtering the dataset using a semi-automated approach that employs

sentiment analysis to select posts that contain sentimental expressions. Fol-

lowing the advice of Zhang et al. [68] to not rely on a single tool we used the

transformer model RoBERTa [36] in combination with the SentiCR tool [1].

We trained both tools with a labeled dataset of Stack Overflow provided by Lin

et al. [35] 4 9. Their dataset contains 1,500 sentences from Stack Overflow posts

discussing Java libraries which were manually labeled by the authors with sen-

timent polarities positive, negative and neutral [35]. We then used the trained

tools, to automatically annotate sentiment polarities to every paragraph of ev-

ery post of our tag-filtered dataset 5 . From this annotated dataset we then

randomly extracted posts from 5 categories, using a simple condition for each

category 6 .

9Replication package from Lin et al. [35] containing training data: B https://sentiment-
se.github.io/replication.zip

13

http://stackoverflow.com/questions/878848
https://sentiment-se.github.io/replication.zip
https://sentiment-se.github.io/replication.zip

Positive: both tools classified at least one paragraph as positive and none as

negative

Negative: both tools classified at least one paragraph as negative and none

as positive

Both: both tools classified at least one paragraph as positive and at least one

as negative

Neutral: both tools classified all paragraphs as neutral

Random: randomly selected independent of classification

Especially because of concerns raised by Lin et al. [35] and Jongeling et

al. [29] who state that sentiment analysis tools often do not provide good re-

sults for software engineering texts, we used the last two categories Neutral and

Random in a later stage of our analysis to validate our semi-automated filtering

approach. We evaluate whether filtering posts with the tools RoBERTa and Sen-

tiCR provides a dataset with more sentimental posts than a random selection.

We choose paragraphs instead of finer grained sentence-level separation because

we hypothesise that a paragraph is more likely to hold a comprehensive and con-

clusive thought as compared to short sentences that are taken out of context.

We argue that sentiment classification done on that level better supports our

goal to group posts into categories of positive and negative posts. Contrarily to

what we want to achieve, one short and slightly negative remark in a post of an

otherwise very positive paragraph, is much more likely to determine a wrong re-

sult in a finer grained sentence-level classification. The sentiment analysis tools

we used in this study both support the approach of classifying text with multiple

sentences. The posts obtained by our semi-automated filtering approach were

imported into a CAQDA software 7 that was used to aid all further steps of

the data analysis. To avoid bias during our manual assessment of a post’s senti-

ment, we did not include the tool’s classification result in those imported posts.

Automatically assigned sentiment was not visible to the authors during manual

analysis. Initially we analyzed 25 posts from each category (Random, Neutral,

14

Positive, Negative and Both). We then added another 25 posts from each sen-

timental category (Positive, Negative and Both), to reach a point at which the

analysis of additional posts did not provide new insights or perspectives in the

form of new codes. After adding the second batch of 75 posts, and before reach-

ing the 200th post we reached saturation. Posts did not provide new content

that did not fit into the categories which had emerged already at this point.

We therefore analyzed a total amount of 200 posts. Figure 2 shows the 20-most

occurring tags that were assigned by authors and moderators to those 200 posts.

When creating our dataset and selecting the posts, we looked for sentimental

discussions about testing without selecting or excluding specific technologies.

We do not focus on how practitioners sentimentally evaluate specific tools, e.g.,

the Java unit testing library junit. We instead take a broader, tool agnostic

perspective. Nevertheless, to provide context to our dataset, it is interesting

to observe which tags (both tool agnostic and tool specific) are assigned to the

questions that are included in our dataset. In particular, these tags indicate

that our dataset transcends a particular programming language or technology

stack. The replication package we provide contains the source code of our im-

plementation of the sentiment analysis pipeline [59, filter-by-sentiment.zip].

3.3. Data Analysis

We employed strategies from grounded theory as recommended by Hoda [25]

and Charmaz [16] to analyze the filtered Stack Overflow dataset. To begin

the iterative process of constructing abstract analytic categories out of which

we formulated preliminary hypotheses as illustrated in Figure 1, we use initial

coding 8 , applying codes to the dataset line by line in three rounds. We

started without any preliminary codes, remaining open to all possible theoretical

directions especially during the first coding cycle. In addition to coding posts

with gerunds (e.g., describing instead of description), we use In-Vivo codes,

which are quotations of what the author of a post wrote in their own language.

In-Vivo codes are put in between quotation marks and used whenever authors

express themselves in a strong and emotionally rich way (e.g., “is my code

15

A
m

ou
nt

 o
f d

oc
um

en
ts

0
20

40
60

80
10

0 positive
both
negative
neutral
random

un
it−

te
st

in
g

te
st

in
g c# ja

va

au
to

m
at

ed
−t

es
ts

ja
va

sc
rip

t
m

oc
kin

g

td
d

py
th

on .n
et

an
dr

oi
d

se
le

ni
um

je
st

js
m

oq
ju

ni
t

sp
rin

g
ph

p

ru
by

−o
n−

ra
ils c+
+

m
oc

kit
o

Figure 2: 20 most occurring tags of the 200 posts we analyzed. The most occurring tags include
technology-agnostic tags like testing and technology specific tags like junit. Technology
specific tags are assigned to posts complementary to the 30 more general tool agnostic tags
that we selected during the filtering process.

just bad?”) 9 . In order to provide basic statistical information about the

occurrences of negative and positive sentiment in the dataset, we use magnitude

coding as suggested by Saldaña [54], adding the symbols + and – to codes where

applicable 10 . Negative expressions are coded with a minus (e.g., –Reflecting

unclean approach), and positive sentiments with a plus (e.g., +Embracing

change) respectively. We write memos during all stages of our data analysis 11

which we use at a later stage to develop preliminary hypotheses 12 .

After three rounds of initial coding, we reassess the significance of all codes

to decide which ones contribute most to an incise and complete categorization.

As Charmaz suggests, we use this technique to condense the work of the initial

coding phase to advance the theoretical direction of the work and to begin with a

second cycle of focused coding 13 [16]. During focused coding cycles we develop

focus codes 14 and categorize documents while we construct and continuously

refine a codebook 15 . In our codebook we spell out details like inclusion- and

exclusion criteria, descriptions, and examples for each focused code. Because of

suggestions made by Lopez et al. [37], who have shown that comments on Stack

Overflow can reveal expressions of pride and emotional involvement, we also

16

incorporate comments made on Stack Overflow into our analysis. Other addi-

tional information obtainable via the Stack Overflow website, like the history of

changes made by the original author or a moderator are also considered during

focused coding. We understand a post as a potential entryway into a deeper and

richer context of an author’s question. Details including the sentimental activity

in comments, the editing history of a post both by the author and moderators,

the reasons for a moderator to close a post, the time it took the community to

answer the question or the fact that it was never answered. Where a post offers

these details (not all of them do), we capture the information by writing ana-

lytical memos. One memo about post 55357595 with the title Fruitless pursuit

written by one of the authors for example reads:

S Memo: Fruitless Pursuit

The author of this post did not receive any feedback from the community.

But almost a month after posting this question, the author just comments:

“Ended up setting up a webpack from the ground up” Which I think indi-

cates that this person has gone through quite some torment. However, they

do not express this explicitly.

During the process of focused coding, we also assign a sentiment of positive,

negative, both, or neutral to each post. Here the assigned sentiment represents

the overall attitude of the author towards testing practices 16 . We use both

the coding of sentiment 10 and assignment of the overall sentiment 16 , to

determine the accuracy of the sentiment analysis pipeline 17 and to evaluate

its use in our filtering process 18 . During the focused coding cycles, preliminary

analytic categories became visible to us 19 . A large amount of negative posts

containing expressions of desperation for example, developed into the category

Discouragement early on. We refine categories that become visible through the

process of coding, using a diagramming technique described by Saldaña [54] 20 .

Starting with a code like Expressing desperation or a post that creates ambiguity

when assigned with a category, we sketch a network of connections to other

17

http://stackoverflow.com/questions/55357595

posts, categories or codes on paper to explore detailed features of the coded

dataset from different angles. We then use the clustering strategy as described

by Charmaz [16], grouping posts together and writing memos, concentrating

on commonalities and differences among those groups of posts 21 . Taking a

different perspective each time, we find different explanations for the meaning

and context of sentiment expressed by practitioners in posts. We continue the

process of analyzing the dataset using these strategies, until they no longer yield

new perspectives and we were able to formulate preliminary hypothesis and an

interpretive theory that emerged from the process 22 .

3.4. Constructing Interpretive Theory

Synthesizing the insights and hypothesis we obtained by engaging with the

data through the whole data analysis process described above, we formulate an

interpretive theory. Interpretive theory aims to offer accounts for what is hap-

pening, how it arises and explains why it happens [16, p. 230]. In this work we

approach interpretive theory and its construction from a pragmatist viewpoint.

We recognize that our statements can only correlate our interpretation of the

experience of individuals with our own experience, and the body of knowledge

from the field that is available and known to us [42]. Taking this viewpoint we

emphasize practice and action rather than trying to explain the empirical phe-

nomena described in the analyzed data by providing laws that are testable by

empirical objective observation. Concretely, interpretive theory in this paper

concerns what authors of posts assume about what they describe, how these

assumptions or views might have been constructed, and how the authors seem

to act on their views. By taking this approach of theory construction, we want

to make phenomena and relationships between them visible in order to open up

new vantage points for our own and the future work of others. We understand

theorizing as an ongoing activity that can be continued through this future

work [16].

18

4. Results

In this section we describe our findings and offer an interpretation of the

data we analyze to answer the research questions. We first discuss the result of

applying sentiment analysis tools to create a dataset that is rich in sentimental

expression. We then present the results of our qualitative data analysis of this

dataset to first show how software engineers express sentiment about testing

and which underlying factors contribute to their sentiment. We then present a

preliminary interpretive theory that synthesizes our findings. The data in which

this preliminary theory is grounded, and all artefacts that are discussed in this

section are contained in our replication package [59, coded-dataset.qdpx].

We invite the reader to import the dataset contained in the replication pack-

age in the CAQDA-Software of their choice, and we also want to invite the reader

to follow our analysis by using the online content on Stack Overflow. We enable

this by providing a link to the original post on the Stack Overflow website that

can be followed by clicking on the ID next to the quotation of a post. Example

quotation: “This is all working as I would expect”(3340677).

4.1. Sentiment analysis for qualitative research

Our sentiment analysis pipeline takes a Stack Overflow post as its input,

classifies each paragraph of the post independently using two different senti-

ment analysis tools and takes the result of both tools into account to indicate

if a post is likely to be positive, negative, neutral, or mixed in sentiment. Us-

ing this pipeline we created buckets of positive, negative and mixed sentiment

posts, containing 50 documents each and added 25 neutral and 25 randomly

selected posts to our analysis in order to validate our method. Our motivation

to filter the dataset using sentiment analysis tools stems from research by Sen-

gupta and Haythornthwaite [56], which indicates that randomly selecting posts

from the Stack Overflow dataset will only provide few sentimental posts, as the

majority of posts is objective or focused on technical issues. Our approach relies

on multiple sentiment analysis tools to address a problem that was identified

by Lin et al. [35] demonstrating that sentiment analysis can introduce a strong

19

http://stackoverflow.com/questions/3340677

Both(50)

Negative(50)

Neutral(25)

Positive(50)

Random(25)

Both(22)

Negative(30)

Neutral(24)

Positive(20)

Both(6)

Negative(35)

Neutral(19)

Positive(22)

Too Short

Unrelated

Buckets Expressions Overall

Figure 3: Visualisation of flows that display how our manual classification of posts (column
two and three) matches with the automatic classification of our sentiment analysis pipeline
(column one). The numbers in brackets in column two and three indicate the agreement of
our manual classification with the automatic classification (first column)

bias when relying on a single tool. In Figure 3 we compare the classification

of our sentiment analysis pipeline (left column) with the sentiment that we ac-

tually identified in posts during initial coding (center and right column). We

differentiate between occurrences of sentimental expressions in documents (cen-

ter column) and the overall sentiment of a document (right column). Using the

metrics which are visualized in Figure 3 we evaluate, how suitable our method

is to create a dataset that can be used to find answers for our research questions

and if it is applicable for other qualitative studies on Stack Overflow.

4.1.1. Occurrences of sentimental expressions in posts

Occurrences of sentimental expressions in posts were identified and anno-

tated during the first coding cycle when posts were coded line by line. The

line “I understand that using aunit can be a time-saver”(3412892)

was classified as positive for example, but the same post also contains the ex-

pression “I looked at the aunit manual and I didn’t find easy exam-

ples to start with”, which was classified as negative. Post 3412892 , which

we took from the positive bucket, was therefore assigned the category of both

sentiments at the level of expressions. The flow from the first to the second

20

http://stackoverflow.com/questions/3412892
http://stackoverflow.com/questions/3412892

column in Figure 3 shows this relation, presenting which posts from each of

the sample buckets contained expressions of the respective sentiment. 20 posts

from the bucket of positive posts for example indeed contained one or more

positive sentimental expressions and no negative ones. In Figure 3 this relation

is represented by the flow from positive in column one to positive in column

two, highlighted in green. However, 2 of the 50 posts from the same bucket

did not contain a positive expression but at least one negative expression (flow

from positive to negative), 7 posts contained at least one expression of each sen-

timent (flow from positive to both) and 21 posts from the positive bucket did

not contain any sentimental expressions (flow from positive to neutral). Flows

from the negative and positive buckets to the neutral category in column two

indicate that a lot of posts identified as positive or negative by our pipeline in

fact did not contain any sentimental expressions. Comparing this lack of accu-

racy with the results for documents that we obtained from the random bucket

suggests however that our sentiment analysis pipeline indeed managed to select

more sentimental posts than a random selection would have. Crucially, we did

not find a single positive expression in the set of 25 randomly selected posts.

Additionally, comparing the remaining flows between column one and two in

Figure 3, we see that the majority of posts that turned out to contain sentimen-

tal expressions were indeed extracted from the respective bucket. The findings

of this first analysis of the accuracy of the sentiment analysis pipeline therefore

supports our hypothesis that a semi-automated approach proves beneficial when

used to create and analyze a subset of Stack Overflow posts with both negative

and positive sentiment.

4.1.2. Overall sentiment of posts

In Figure 3 the last column shows the conformity or difference of the over-

all sentiment of posts determined manually by us in comparison with our tool

pipeline. We determined the overall sentiment of a user towards software test-

ing during the second, focused coding cycle and assigned a polarity of neutral,

positive, negative, or both to each post. During this analysis, we realized that

21

39 posts were not usable for further inquiry. The majority of those posts were

too short (34); one author simply asks “Which is the best framework for

automatic testing in octave? Why?”(2073244). The other five of those

unusable posts were identified as unrelated to our work, like a post in which a

practitioner asks “How to use Jquery Ajax Cache”(2398092), mentioning

testing but referring to something that is unrelated to automated testing. The

dark green and dark red flows in Figure 3, from column one via column two

to column three show that posts from the positive and negative buckets that

contain expressions with that sentiment were mostly leaning into that direction

overall as well. There are only a few outliers of posts that were for example

classified as negative by our pipeline and indeed only contained negative ex-

pressions but were found to express an overall positive sentiment. One such

post contains the negative expression that “[it] is copy-paste code, which

I thought was generally not recommended”(9271925), not mentioning

anything positive or negative apart from that. However, the overall sentiment

of the post was interpreted as positive as the author shows a constructive will-

ingness to improve while being open and concious of their own mistakes. In

total, there were only 12 such cases where the sentiment classification of the

pipeline completely diverged from our classification. Documents from the both

bucket of our dataset, even when they indeed contained expressions of both sen-

timents were in most cases negative overall. The analysis also shows that the

both bucket contributed the most sentimental posts to our dataset. Our analysis

of the overall sentiment of posts indicates that subtle remarks and the context

of a sentimental expression makes the overall classification of posts difficult.

Subtracting unrelated (5) posts, randomly selected posts (25) and those that

were too short for analysis (34), we can report that the sentiment prediction

was correct for 46% of all documents (65 of 141). Overall our approach yielded

a dataset in which approximately half of all documents were sentimental (108 of

200). We provide an annotation file with our replication package that contains

sentiment annotations for each post that we analyzed on both the level of ex-

pression and overall, including the source code to generate graphs and statistics

22

http://stackoverflow.com/questions/2073244
http://stackoverflow.com/questions/2398092
http://stackoverflow.com/questions/9271925

from that annotation file [59, data/annotations.json].

4.2. Sentiments that affect attitudes

Before describing and comparing occurrences of sentimental expressions which

we identify in the dataset by presenting focused codes and analytical categories,

we provide examples which demonstrate how we moved from the data, through

codes, towards a more abstract interpretive theory. Document 878848 was

first coded line by line and was assigned, among others, the initial code –Ex-

pecting a lot of Work From Mocking. The code with the prefix “–”,

which indicates that the expression reflects negative sentiment, was assigned to

the following line: “Use EasyMock, write looooong mocking sequence. VERY

BAD solution: hard to add initial data, hard to change data, big test debugging

promices.”. During the second and third initial coding cycle the code was then

changed to –Expecting Mocking to be Bad Solution. Other posts hold

similar notions and were coded with the same code (e.g., “There is no point

in mocking out a whole ngrx entity store, so I would just like

the selector to return exactly that object and be done with it.”

(58840818)). During focused coding, the code changed once again and became

more abstract and analytical: “Judging subjectively”. The comparison of

posts with similar codes revealed that expectations which are expressed senti-

mentally, like the examples above, are not based on objective observations but

on subjective perceptions often connected to personal experience. The intention

(or action) of the author here does not seem to be the objective revelation of

their expectations, but the subjective judgement in order to position themselves.

In one memo titled Experienced ambiguity this notion of subjective judgement

and ambiguity was noted by one of the authors during focused coding.

23

http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/58840818

S Memo: Experienced ambiguity

The practitioner is struggling with adopting a new framework. Some things

are easy and some are challenging. The practitioner is faced with a situ-

ation in which there is no easy or obvious way forward. They are stuck

and forced to make an uncomfortable decision. However the willingness to

24

resolve the ambiguity here still reflects a very positive attitude. The prac-

titioner already has some clues and they are reasoning from experience.

Looking at the comments, I realized that the post was closed quite quickly.

It only took about 10 hours and the issue was solved by a maintainer of

the framework project which is mentioned in the post. The fact that the

author of the post reacts very enthusiastically supports my hunch that their

attitude was actually quite positive all along.

The memo was originally created when analyzing another post (823276),

but was then connected to post 878848 as well. Later, during a diagramming

session, the aforementioned memo, some related focused codes and both posts

(823276 and 878848) were assigned to a collection labeled Confidence which

generated new memos and more abstract perspectives. Both this collection and

the memo mentioned above also contributed to the forming of the categories

Aspiration and Exploration. Post 878848 , which ultimately ended up in the

category Aspiration and was categorized to reflect both positive and negative

sentiment, further revealed what might be the conditions for aspiration to arise

in the context of software testing. We compared the post with others of the

same category and identified that knowledge and experience seems to enable

practitioners to stay positive despite being stuck in situations where there is no

obvious way forward. Concretely, we hypothesize that the notion of explicitly

comparing capabilities of approaches, not only in terms of features, but also

in terms of maintainability, indicates confidence and experience of the author

on Stack Overflow. Ultimately, memos written about those considerations and

others enabled us to construct the preliminary interpretive theory which we

present at the end of this section. Specifically, the aforementioned post 878848

supports the hypothesis that experience and knowledge can give practitioners

an extra degree of trust and confidence, from which an aspirational attitude

towards testing seems to emerge.

25

http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/878848

4.2.1. Focused codes

Using focused coding techniques as recommended by Charmaz [16], we iden-

tified 22 codes that were assigned to a total of almost 700 different text sections

of the 200 posts that we analyzed. Table 1 lists all codes, a description for

each, and a diagram that indicates how many posts that contained the code

were identified to be either positive, negative, neutral or of both sentiments.

The full codebook that we provide as part of the replication package of this

paper contains inclusion and exclusion criteria, and examples for each code [59,

codebook.ods].

Table 1: Focused codes, their description and the co-occurrences with respective sentiments.
The co-occurrence bar-chart indicates in how many documents of the overall sentiments pos-
itive, negative, neutral or both the respective code was identified. Codes are ordered by the
amount of documents in which they were found.

Focused Code (F.X) Sentiment occurrence

Description Positive Both Negative Neutral (Σ)

Observing Unexpected Behaviour (F.1) 1 41 20 (62)

An expression that reveals that something does not work as the author expects.

Like a dump of error logs that seem to be nonsensical to the author.

Reassuring the Reader (F.2) 13 4 26 18 (61)

Making a statement to restore confidence. Like a claim that a manual has been

read, or a tutorial has been followed.

Pursuing Ambition (F.3) 13 4 15 15 (47)

Constructive attitude to achieve a goal. The implementation of something,

extension of knowledge or something else that goes beyond just getting the job

done.

Willing to Improve (F.4) 14 4 11 13 (42)

Author indicates that they have an ambition to change and improve something.

Facing Uncertainties (F.5) 10 9 16 8 (43)

Expression of insecurity through description of ambivalence or doubt.

Expressing Desperation (F.6) 31 7 (38)

26

Author expresses their desperation directly, either by asking a question or by

indicating that they are clueless.

Judging Subjectively (F.7) 14 6 12 2 (34)

Explicit subjective valuation of the apparent characteristics, behaviour or value

of something.

Admitting Lack of Knowledge (F.8) 5 6 16 9 (36)

Direct or indirect expression of a lack of knowledge.

Searching for a New Path (F.9) 10 5 5 14 (34)

The goal or approach has been thought through but the author hunches that

there is another, better way.

Contemplating Complexity (F.10) 7 5 10 9 (31)

Author is describing something that has to do with the complexity of a setup

or use-case. Complexity is either highlighted reflected implicitly.

Missing Capability (F.11) 2 4 13 11 (30)

Description of issues, circumstances, hurdles or other discomforts that stop one

from reaching a goal. Capabilities can be the capabilities of a software, its

limitations, but also the own capabilities to solve an issue.

Referring to External Information (F.12) 8 3 10 8 (29)

Reference is made to a resource that is accessible to the author. Documentation,

blog posts, books etc.

Contemplating Failure / Difficulties (F.13) 5 3 15 4 (27)

Author shares their opinion about what they find difficult or failure they are

facing.

Looking for Starting Point (F.14) 7 1 11 8 (27)

Request for a starting point to tackle something that is unknown or unclear.

Facing an Obstacle (F.15) 11 14 3 (19)

An obstacle makes it impossible to continue with a task. The author is stuck

because of the obstacle.

Reflecting Experience (F.16) 6 4 4 1 (15)

Positive or negative reflection which is related to past experience.

27

Struggling to Understand (F.17) 1 3 9 2 (15)

Author is struggling to grasp the meaning of a faced problem or a concept they

want to learn. Like admitting that they are not able to comprehend something

or that something is hindering them to learn something.

Seeing Own Mistakes (F.18) 4 1 3 7 (15)

Realization of an error or a misconception. Revelation of having done something

in the wrong way or in a way that can be improved.

Comparing Different Approaches (F.19) 6 2 2 5 (15)

Description of multiple angles to solve an issue or a task.

Trial and Error (F.20) 7 5 (12)

Describing different attempts to get to a solution which are all unsuccessful.

Aiming at a workaround (F.21) 6 5 (11)

Practitioner identifies that a situation can be solved by using some workaround

which is probably not the ideal solution.

Excluding Solution (F.22) 2 2 (4)

There is a solution for a problem but the author does not want or cannot use

it.

Comparing the codes and corresponding posts with each other reveals un-

derlying sentiment of practitioners that relate to testing practice. The codes

reveal patterns that affect attitude and testing practices of software engineers

and allow us to propose answers to RQ1.

RQ1

How do software engineers express sentiment about testing on Stack Over-

flow?

In total, the dataset that we have analyzed contains 108 sentimental posts. In

32 posts, practitioners expressed positive sentiments, 63 posts were negative,

and 13 contain both sentiments.

28

Total amount of sentimental posts:

32 13 63 (108)

To highlight some of the patterns which show how sentiment is expressed, we

elaborate on the eight most occurring codes from Table 1 and explain with

examples what was captured with those codes.

Judging Subjectively (F.7). About one third of sentimental posts (32 of

108) contained an explicit subjective statement about apparent characteristics

or value. Subjective expressions like that of one practitioner who “fell in love

with the crisp syntax [of a framework] immediately”(1072952) under-

line the attitude of the author. Negative attitudes connected to judgement like

one practitioner reflecting on a specific practice which “seems like a waste of

time”(29894788) were rarer in the dataset than positive attitudes. One practi-

tioner for example reflects positively “that [running tests concurrently]

will force [them] to refactor some code to make it thread-safe,

but [they] consider that to be a good thing :-)”(4970907). In total,

more than one third of all positive posts (14 of 32) contained a subjective judge-

ment compared to only every fifth negative post (12 of 63).

Lack of Knowledge (F.8), Facing Uncertainties (F.5) and Reassur-

ing the Reader (F.2). Outlining the limits or lack of their own knowledge and

abilities by stating for example that they are “a newbie”(29894788), or indi-

rectly pointing out that they are “stuck trying to [...] test an extremely

simple project”(62177256) occurs both in positive and negative posts in

around a quarter (27 of 108) of all sentimental posts. In addition to describing

their own limits by admitting a lack of knowledge, we identified descriptions

of ambivalence (“Which is the correct way?”(41262775)), doubt (“Has

anyone done anything similar before or is this crazy?”(7213917)), or

uncertainty (“It seems to me that, I maybe should be creating a Fake

MaterialRepository, rather than mocking it?”(23534123)) expressing

insecurity in around a third (35 of 108) of all sentimental posts. We also found

statements indicating that the author is trying to maintain or restore their con-

fidence by reassuring the reader in more than a third of sentimental posts (43 of

29

http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/4970907
http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/62177256
http://stackoverflow.com/questions/41262775
http://stackoverflow.com/questions/7213917
http://stackoverflow.com/questions/23534123

108). One author for example is stuck in a situation where they observe some-

thing unexpected and they “want to understand why that is like this”

(39592949), wondering if “there is a better way”, even being afraid that

their “code is just bad” but still holding on to their approach as they reassure

the audience that “When [they] change [something,] everything works

fine”.

Pursuing Ambition (F.3) and Willing to Improve (F.4). Uncer-

tainties and a lack of knowledge were found equally frequent in negative and

positive posts, but descriptions of constructive attitudes to achieve a goal that

goes beyond just getting the job done were mostly found in positive posts, or

posts that contain both sentiments. We identified direct expressions of ambition

by practitioners for example “to create a support library that could

be used by all test projects”(18399610), or mentioning the context of

a challenge that underlines its ambitious nature like “writing acceptance

tests for a single feature of a large App [, needing] a lot of data

for this and [having] a lot of scenarios to test”(28129825). Those

expressions were found in over a third of positive posts (13 of 32) but contrary

only in around one fourth of negative posts (15 of 63). Related, and very sim-

ilar to these expressions are verbalized intentions to improve, for example by

wanting to “structure [a] unit test in a better way”(43275116) or by

asking for “the best practice in [a particular] case”(46177956). Just

like mentions of ambitions, expressions of a willingness to improve occurred in

more than one third of all positive posts (14 of 32), and contrarily only in less

than a fourth of negative posts (11 of 63). Together, expressions of ambition

and willingness to improve cover almost three quarters of all positive posts (23

of 32).

Expressing Desperation (F.6) and Unexpected Behaviour (F.1).

Contrarily to ambitions we also found expressions of despair by practitioners

who are stuck saying that they for example “googled wide and far, but

did not get any answer”(58840818), or remain completely helpless, begging

for support like one practitioners who asks: “Can somebody please, please,

30

http://stackoverflow.com/questions/39592949
http://stackoverflow.com/questions/18399610
http://stackoverflow.com/questions/28129825
http://stackoverflow.com/questions/43275116
http://stackoverflow.com/questions/46177956
http://stackoverflow.com/questions/58840818

please for Pete’s sake [...] fix this bug that thousands are having?”

(44762082). We did not observe expressions of desperation in positive posts or

posts with both sentiments, but we did find them in almost half (31 of 63) of

negative posts. Additionally, we identify descriptions of unexpected behavior

in more than half of negative posts (41 of 63). Covering a big fraction of the

dataset, unexpected behavior is experienced by practitioners in many different

contexts, referring to testing practices or the development environment (“When

I test it in browser, everything is OK, because App\User exists,

but when I test my plugin, App\User doesn’t exists”(52760148)), or

referring to something that is not directly related to testing but discovered

through it like facing a floating point precision error for the first time, noticing

that “When I’m running the tests it’s broken because 0.1 is not equal

to 10%”(63886733).

4.2.2. From Codes to Categories

We use codes to compare posts with each other in a structured way. Codes

enable us to scrutinize the dataset from different perspectives. Co-occurrences of

codes within posts for example reveal patterns in the data that can be indicators

for categories. We identified four major factors that describe the non-technical,

situational context of sentimental posts with which we can categorize the posts.

In this section we present each category and their characteristics, highlighting

key insights that emerged from the data during our analysis when categories

were outlined. The categories reveal underlying currents that affect the testing

practices of software engineers. Categories which highlight what influences their

attitude and motivation are the basis of what we propose as answers to RQ2.

RQ2

Which factors affect sentiment of software engineers towards testing prac-

tices?

31

http://stackoverflow.com/questions/44762082
http://stackoverflow.com/questions/52760148
http://stackoverflow.com/questions/63886733

Discouragement (C.1) 42 10 (52)

We found that attitude in negative sentimental posts is often (42 out of 63)

expressing discouragement (C.1) from testing. Unexpected behavior (F.1) can

bring efforts to a halt [6441026 , 37439708 , 53935108 , 44095109 , 31052776 , 32408965 , 55644155 , 56577906], some-

times made explicit in posts by references to an obstacle that is faced (F.15)

[8338348 , 32622060 , 20480791 , 38932495 , 6376925 , 6376925]. Expressions of despair (F.6) underline

the weight of these setbacks in those posts [3736614 , 58840818 , 67734277 , 53935108 , 17068154 , 33607092 ,

44762082 , 61782427]. When authors sentimentally express discouraging setbacks in

their testing efforts by contemplating difficulties or failure (F.13) they are at the

same time often reassuring the reader (F.2), implying that the problem cannot

be blamed on them [63795587 , 14942409 , 19490583 , 18083834 , 19799393 , 25264248 , 26370705]. Statements

that a tutorial or documentation (F.12) was followed and thoroughly read, or

reports of elaborate debugging (F.20) demonstrate the confidence of the author

[13309278 , 32009877 , 34889215 , 6579379 , 14701609]. A complex development environment (F.10),

including company policies or unique infrastructure configuration is mentioned

in the context of such cases [6475042 , 42211311 , 14554366 , 18038203 , 17068154 , 43435227]. In com-

plex situations, even a small step, like writing a unit test, can cause a lengthy

and often fruitless pursuit [52760148 , 37527179 , 55357595 , 36608077 , 67734277 , 14942409]. When tools,

methods, and concepts are not easily understandable (F.17), especially when

documentation is not extensive enough (F.11), practitioners are discouraged to

hold on to their ambition [44010437 , 63795587 , 61769730 , 19799393 , 43435227 , 7292700 , 62177256].

Recapitulation: Emergent Category Discouragement

32

http://stackoverflow.com/questions/6441026
http://stackoverflow.com/questions/37439708
http://stackoverflow.com/questions/53935108
http://stackoverflow.com/questions/44095109
http://stackoverflow.com/questions/31052776
http://stackoverflow.com/questions/32408965
http://stackoverflow.com/questions/55644155
http://stackoverflow.com/questions/56577906
http://stackoverflow.com/questions/8338348
http://stackoverflow.com/questions/32622060
http://stackoverflow.com/questions/20480791
http://stackoverflow.com/questions/38932495
http://stackoverflow.com/questions/6376925
http://stackoverflow.com/questions/6376925
http://stackoverflow.com/questions/3736614
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/67734277
http://stackoverflow.com/questions/53935108
http://stackoverflow.com/questions/17068154
http://stackoverflow.com/questions/33607092
http://stackoverflow.com/questions/44762082
http://stackoverflow.com/questions/61782427
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/14942409
http://stackoverflow.com/questions/19490583
http://stackoverflow.com/questions/18083834
http://stackoverflow.com/questions/19799393
http://stackoverflow.com/questions/25264248
http://stackoverflow.com/questions/26370705
http://stackoverflow.com/questions/13309278
http://stackoverflow.com/questions/32009877
http://stackoverflow.com/questions/34889215
http://stackoverflow.com/questions/6579379
http://stackoverflow.com/questions/14701609
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/42211311
http://stackoverflow.com/questions/14554366
http://stackoverflow.com/questions/18038203
http://stackoverflow.com/questions/17068154
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/52760148
http://stackoverflow.com/questions/37527179
http://stackoverflow.com/questions/55357595
http://stackoverflow.com/questions/36608077
http://stackoverflow.com/questions/67734277
http://stackoverflow.com/questions/14942409
http://stackoverflow.com/questions/44010437
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/61769730
http://stackoverflow.com/questions/19799393
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/7292700
http://stackoverflow.com/questions/62177256

Discouragement
Missing

Capability

Struggling to
Understand

Unexpected
behavior

Despair

Obstacles

Reassuring

Contemplating
Difficulties

Referring to External
Information

Trial and Error

Contemplating
Complexity

Figure 4: Focused codes and
how they are related to the an-
alytical category Discourage-
ment

Discouraging sentiment about testing is pro-

voked in complex development environments.

This includes company policies or unique in-

frastructure configuration. When such fac-

tors combine with technical issues, experi-

enced by the practitioner as unexpected be-

havior, they create obstacles that discourage

practitioners from testing. A complex envi-

ronment makes the usage of a standard test-

ing tool chain unexpectedly challenging, es-

pecially when practitioners lack experience

in testing. Documentation or other exter-

nal resources do not help in these cases and

long fruitless pursuits of trial and error are

reported.

Exploration (C.2) 13 5 10 16 (44)

Contrary to posts in which a discouraging sentiment is expressed, posts of

practitioners who approach testing with an exploratory (C.2) sentiment, reflect

both positive and negative attitudes. In the context of exploration, reaching

out to the Stack Overflow community is motivated by an ambition (F.3) to

overcome difficulties or failure (F.13). [57299238 , 29305776 , 53376098 , 3340677]. We observe

that practitioners have a positive attitude when they indicate a willingness to

improve(F.4), [53657417 , 41135403]especially if they are searching for a new path (F.9)

[14602848 , 946069 , 6022092 , 7213917]to solve a problem by asking for available best practices

in a particular situation. Resources (F.12) like a blog post or documentation

or other external factors seem to trigger positive ambitions of practitioners in

those cases [67709670 , 32046670 , 4659714]. When practitioners are struggling with basic

concepts however, for example by looking for a starting point (F.14), they show

a negative attitude [61342139 , 55176792 , 3412892 , 57609818]. Exploration with this negative

33

http://stackoverflow.com/questions/57299238
http://stackoverflow.com/questions/29305776
http://stackoverflow.com/questions/53376098
http://stackoverflow.com/questions/3340677
http://stackoverflow.com/questions/53657417
http://stackoverflow.com/questions/41135403
http://stackoverflow.com/questions/14602848
http://stackoverflow.com/questions/946069
http://stackoverflow.com/questions/6022092
http://stackoverflow.com/questions/7213917
http://stackoverflow.com/questions/67709670
http://stackoverflow.com/questions/32046670
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/61342139
http://stackoverflow.com/questions/55176792
http://stackoverflow.com/questions/3412892
http://stackoverflow.com/questions/57609818

attitude is connected to acknowledgement of a lack of knowledge (F.8) [59729159 ,

46713912], or uncertainties (F.5) about practices. [12659810 , 7960832 , 4288448 , 2894608 , 823276].

Crucially, in cases where practitioners that explore testing report unexpected

behaviour (F.1), their attitude is exclusively negative [49480999 , 37439708 , 29305776].

Recapitulation: Emergent Category Exploration

Exploration
Willingness to

improve

Searching for a
new path

Pursuing
Ambition

Contemplating

Failure/Difficulties

Looking for a

starting point

Facing
Uncertainties

Lack of knowledge

Unexpected
Behaviour

Referring to
External Information

Figure 5: Focused codes and
how they are related to the an-
alytical category Exploration

Exploratory sentiment to discover and learn

is expressed both positively and negatively

by practitioners. Trust into method or tech-

nology based on experience or inspiring ex-

ternal impulses arouses positive attitudes.

When exploration serves clarification in sit-

uations of uncertainty, it is the experience

of unexpected behaviour of technology that

causes negativity especially when practition-

ers lack experience.

Reflection (C.3) 8 3 11 8 (30)

We identify negative and positive posts in which practitioners sentimentally and

critically reflect on their testing practices or understanding. Reflection of expe-

riences (F.16) and expressions of an ambition to improve (F.4) when they are

facing uncertainties (F.5) form the baseline of this category [398004 , 59781140 , 49713083].

Similar to the posts we categorized as exploration, uncertainties of practition-

ers (F.5) are directly expressed or indicated through attempts to reassure the

reader (F.2) [41262775 , 58684292 , 687748 , 29894788]. In this category however, we observe

that practitioners are more aware of their mistakes (F.18) or their struggle to

understand (F.17) aspects of testing [42275344 , 4991264 , 4970907 , 67746901 , 39892949]. Posts that

reflect a positive attitude contain analysis and comparisons of approaches (F.19)

[46177956 , 41816229]. In contrast, when practitioners contemplate failure (F.13) or com-

34

http://stackoverflow.com/questions/59729159
http://stackoverflow.com/questions/46713912
http://stackoverflow.com/questions/12659810
http://stackoverflow.com/questions/7960832
http://stackoverflow.com/questions/4288448
http://stackoverflow.com/questions/2894608
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/49480999
http://stackoverflow.com/questions/37439708
http://stackoverflow.com/questions/29305776
http://stackoverflow.com/questions/398004
http://stackoverflow.com/questions/59781140
http://stackoverflow.com/questions/49713083
http://stackoverflow.com/questions/41262775
http://stackoverflow.com/questions/58684292
http://stackoverflow.com/questions/687748
http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/42275344
http://stackoverflow.com/questions/4991264
http://stackoverflow.com/questions/4970907
http://stackoverflow.com/questions/67746901
http://stackoverflow.com/questions/39892949
http://stackoverflow.com/questions/46177956
http://stackoverflow.com/questions/41816229

plexity (F.10) their attitude is almost exclusively negative [64464005 , 1064403 , 18941509 ,

25325133 , 42374231].

Recapitulation: Emergent Category Reflection

Reflection

Seeing own

Mistakes

Willing to
improve

Facing
Uncertainties

Reflecting

Experience

Contemplate
Failure/Difficulties

Comparing
Approaches

Struggling to
understand

Reassuring
the Reader

Figure 6: Focused codes and
how they are related to the an-
alytical category Reflection

Application of testing practices can lead to

ambiguity. Applying the right method in a

particular situation for example can be chal-

lenging. Awareness of blind spots and knowl-

edge of the great variety of tools and meth-

ods, is a factor that allows practitioners to

keep a positive attitude. Variety and ambigu-

ity can than even be appreciated. When fail-

ure or complications cause ambiguity how-

ever, sentimental reflection is negative.

Aspiration (C.4) 11 3 5 (19)

Opposite to posts from the category of discouragement, we identify aspira-

tion in posts which express almost exclusively positive attitudes towards testing.

Specifically, aspiration reflects a degree of freedom that allows exploration and

discovery in a constructive way. In particular, the motivation is not to find a

workaround or to overcome an obstacle, nor do authors elaborate on extensive

debugging or trial and error. Instead, authors pursue ambitions (F.3) that go be-

yond a particular situation [34657563 , 22246656]and express intentions to improve (F.4)

their testing practices [16938742 , 14961412 , 48113464 , 6684337 , 878848]. Facing complex situations

(F.10) is here not a cause for distress, but rather a motivation to improve test-

ing practices [28129825 , 1072952 , 23062243]. Motivation is expressed by authors through

explicit positive judgments of value (F.7) of testing [280645]. The post on Stack

Overflow can in those cases be an attempt to find a new way (F.9) to tackle a

problem [9271925]or to probe for a starting point (F.14) [1006189 , 52539907].

35

http://stackoverflow.com/questions/64464005
http://stackoverflow.com/questions/1064403
http://stackoverflow.com/questions/18941509
http://stackoverflow.com/questions/25325133
http://stackoverflow.com/questions/42374231
http://stackoverflow.com/questions/34657563
http://stackoverflow.com/questions/22246656
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/14961412
http://stackoverflow.com/questions/48113464
http://stackoverflow.com/questions/6684337
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/28129825
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/23062243
http://stackoverflow.com/questions/280645
http://stackoverflow.com/questions/9271925
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/52539907

Recapitulation: Emergent Category Aspiration

Aspiration

Looking for a
starting point

Pursuing

Ambition

Willingness to
improve

Contemplating
Complexity

Judging

Subjectively

Searching for a new
path

Figure 7: Focused codes and
how they are related to the an-
alytical category Aspiration

Understanding of long term goals and the

value of testing arouses aspirational senti-

ment. Not being trapped in a problem-

atic or complicated situation and not having

to deal with an immediate obstacle creates

space that is required for this aspirational

attitude. It allows practitioners to build es-

sential knowledge before their ignorance pro-

duces problems.

4.2.3. Factors that arouse sentiment

To answer RQ2 (Which factors affect sentiment of software engineers to-

wards testing practices?), we summarize key insights we gained by developing

the above categories. We identify that practitioners on Stack Overflow ex-

press sentiments when they are either discouraged (C.1) from pursuing their

goal, aspiring (C.4) towards something that goes beyond their usual practice,

reflect (C.3) on their testing experience and knowledge, or when they are ex-

ploring (C.2) what is still unfamiliar to them. Posts which indicate aspira-

tion (C.4) are positive in sentiment, and posts that describe notions of discour-

agement (C.1) from testing mostly reflect negative sentiment. Common factors

can be identified even among those two almost inverse categories. Concretely, we

identify that the experience of unexpected behavior is an important factor that

leads to negative sentiment expressed through discouragement. Even when ex-

ploring (C.2) or reflecting on (C.3) testing practices to learn and gain knowledge

practitioners express negative sentiments when they face unexpected behavior

that causes ambiguity. Additionally, data suggests that an absence of those

36

unexpected setbacks enables conditions for practitioners to aspire. Through re-

flection and exploration, these conditions allow them to build knowledge and

experience. Experience, which is likely to prevent those unexpected setbacks in

the future. Trust in testing practices that is established through these experi-

ences contributes to positive sentiments when new practices are explored. We

find the same to be the case for an awareness of blind spots. Reflection (C.3) on

their testing practices that express an awareness of blind spots reflects positive

sentiment and attitude. Uncertainty in those cases inspire practitioners instead

of discouraging them.

4.3. Trust, Complexity and Testing - Preliminary Theory

We set out to discover what makes practitioners sentimental about testing

by looking at how they express sentiment on Stack Overflow. We want to know

which factors and situations contribute to sentiment. By analyzing, categoriz-

ing, and comparing the dataset, we got a glimpse of what the experience of

practitioners, who ask questions on Stack Overflow must be like. Codes and

categories described in the previous sections enabled us to analyze the dataset

systematically using techniques like clustering and diagramming. In this sec-

tion we present a preliminary interpretive theory that describes what became

visible from our perspective, which is grounded in the analyzed dataset. To let

the data speak for itself, we provide references to the original posts on Stack

Overflow immediately in the text. With each quotation from posts, we also

provide a reference to the code that was assigned to the respective text section

where applicable. Figure 8 illustrates our preliminary theory as an interplay of

the most crucial factors which we identified to have an influence on sentiment

towards testing on Stack Overflow. We first elaborate on the right side of the

figure, which shows discouragement (C.1) in the context of software testing, and

how the negative sentiment around it is aroused in situations where complexity

plays a central role. We then turn to the left side of the figure, elaborating

which role exploration (C.2), reflection (C.3) and aspiration (C.4) play in the

context of testing.

37

Project Complexity

Ambition to Test Discouragement

Unexpected
Behavior, Obstacles,

Despair

Testing Complexity

Knowledge &

Experience
Reflection

Exploration

Facing

Insecurity &
Ambiguity

Aspiration

Trust &
Confidence

Searching for New
Path

RequiresIncrease

Requires

ReduceIncrease
C.1C.4

C.2

C.3

F.9, F.4, F12

F.15,F.1 → F.6, F.21
F.8, F.16

F.3

F.2,F.4, F.5,

F.17, F.18

Increase
High Low

F.10

F.11

Trial and error,
Reassuring

F2,F12,F13,F20Uncertainties,
Looking for Starting

Point

F1,F.5,F.8,F.22→ F.14

F.16

Contemplate
Failure/Complexity

Comparing

Approaches

F.10, F13, F.22

F.19

F4.F9,F14

F.7

Figure 8: Interdependence of factors which lead to sentiments around testing and how they
are aroused and amplified in the context of complexity, trust and confidence through (the lack
of) knowledge and experience.

“I was starting to break as much as I was fixing. So I decided

I’ll start from scratch, with TDD this time”(29894788) (F.3). Testing

practices and approaches are multi faceted. Even in cases where practitioners

are just “having a play with testing”(28129825) (F.4) to improve their

code base, or just to “understand the essence of it”(44202672) (F.3),

they are quickly faced with multiple tools and have to make difficult choices

regarding the technique or tools to adopt for a use-case. The dataset that we

analyzed demonstrates that testing software is not a single tool or single method

practice. We observe that the big landscape of software testing tools and the

resulting diversity of possibilities to practice testing amplifies ambivalence when

practitioners lack experience and knowledge [878848 , 1006189 , 12950163 , 601973 , 17320143]. The

question whether or not “I [am] missing something in my pursuit of cool

and trendy stuff [...] ditching the old proven [ways]”(2894608) (F.5)

expresses the lingering insecurities of practitioners who are plunging into a world

where many and often unexpected aspects of software engineering suddenly

come together [823276 , 43435227 , 1454949]. As software projects get more complex, the

ambition “to fully automate testing [...] in the most simple way pos-

sible”(16938742) (F.3) using advanced practices that are able to tackle this

38

http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/28129825
http://stackoverflow.com/questions/44202672
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/12950163
http://stackoverflow.com/questions/601973
http://stackoverflow.com/questions/17320143
http://stackoverflow.com/questions/2894608
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/1454949
http://stackoverflow.com/questions/16938742

increased complexity grows as well. Our investigation indicates that this clash

of lack of experience in testing on the one hand, and complicated challenges on

the other hand drives attitudes around software testing [4991264 , 43435227]. As shown

in Figure 8, as a circular pattern, we identify that a growth in complexity of

either the development environment or the software project itself makes practi-

tioners ambitious to learn (more) about software testing [1072952 , 16938742 , 1006189]. But

a high level of complexity of production code (top of Figure 8) also requires com-

plex testing code which in turn requires more than basic knowledge of testing

(bottom of Figure 8). The interplay of growing ambition, a complex environ-

ment, and a lack of knowledge is reflected in a question about an easy way to

write a unit test. The practitioner asks: “I’m refactoring one big compli-

cated piece of code [...]. So, I need to write a unit test” (F.3) “[...].

After googling I came up with 2 ideas” (F.8) “[...]. Am I missing some

silver bullet? Possibly, DBUnit is the tool for this?”(878848) (F.9).

Unfortunately, practitioners only start to face their ambiguities and insecurities

around testing when they are “starting a new project, that promises to

be much bigger and more involved than anything [they] have done

in the past”(6684337) (F.4). In other words: instead of learning testing prac-

tices, starting with simple comprehensible setups and then iteratively building

knowledge as the complexity of test suites and source code under test grow simul-

taneously, practitioners throw themselves into cold water when it is too late for

simple, approachable solutions [19490583 , 6475042 , 53657417 , 4659714]. When the silver bullet

is not found, they get discouraged to continue with their ambition [878848 , 63795587 ,

14942409 , 7960832]. Our data analysis suggests that discouragement (C.1) is often con-

nected to this phenomenon as expressions of desperation (F.6) indicate strong

negative sentiment when practitioners are stuck (F.15), sometimes after they

already “googled wide and far”(58840818)(F.6), “searching for days

to find an answer”(43435227)(F.6). Unhelpful gathered information (F.12)

which is often referenced in Stack Overflow posts only increase negative senti-

ment, and sometimes leads practitioners to identify unexpected behavior (F.1)

of testing tools and libraries as weird or “strange behavior, because doc-

39

http://stackoverflow.com/questions/4991264
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/6684337
http://stackoverflow.com/questions/19490583
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/53657417
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/14942409
http://stackoverflow.com/questions/7960832
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/43435227

umentation says [that something should work. But:] Well, this

is not happening.”(63795587) (F.7) [19490583 , 26370705]. An explanation for this

could be that documentation of testing tools and tutorials for beginners are

more likely to focus on simple and standard use-cases [57609818 , 6475042 , 13309278 , 37527179 ,

34889215 , 14701609]. Based on our anecdotal experience as software engineers using

testing practices, we hypothesize that a divergence from best-practices in both

software design and development environment, requires practitioners to rely on

testing experience. In the context of highly inventive or original approaches,

simple tutorials for testing are not applicable. It is very likely that more than

one testing library is required in those complex non-standard software environ-

ments.

Complexity in Testing Practice

Before we set out to investigate what lies behind sentiment around software

testing on Stack Overflow, we assumed that it will mostly be connected to

tool failure or bugs. We expected to find sentimental complaints about

specific (missing) features in a specific version of libraries for example.

Our analysis shows however that it is more likely to be a struggle in over-

coming overwhelming complexity with methods or combinations of tools

that practitioners are not experienced enough with which causes negative

sentiment.

Testing software can confront practitioners with misconceptions or flaws of

their software projects. One practitioners asks: “Is this a valid unit test?

If not, is it because I have bad design [...]? Because currently, I

see absolutely no benefit in writing this test”(44202672) (F.5). Even

as the majority of sentimental post that we analyzed reveal discouragement

and negativity as described in the preceding paragraphs, some authors main-

tain a constructive and even aspirational attitude (C.4), even when they are

facing difficulties (F.15). We observe that positive posts rarely contain de-

scriptions of unexpected behavior or expressions of desperation. In contrast,

even in difficult situations, practitioners even express hope [59729159 , 1072952 , 34657563 ,

40

http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/19490583
http://stackoverflow.com/questions/26370705
http://stackoverflow.com/questions/57609818
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/13309278
http://stackoverflow.com/questions/37527179
http://stackoverflow.com/questions/34889215
http://stackoverflow.com/questions/14701609
http://stackoverflow.com/questions/44202672
http://stackoverflow.com/questions/59729159
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/34657563

53376098 , 41135403]. In a post of a practitioner looking for a way to test a WebAPI,

they contemplate that “Back when WCF was the coolest thing, I did

tests like this [...]. All programatically. It worked like a charm”

(25325133) (F.16). Even though they experience difficulties (F.13), explain-

ing that “for some reason [it] is REALLY hard to get to work (as

in, I haven’t succeeded yet)” (F.13), they do not seem to be discour-

aged and eventually find a solution that works for them. Another practitioner

mentions that “in Katalon [there] is a very nice way to parameter-

ize the selectors for GUI elements”(52539907) (F.16), searching for a

way (F.9) to make their testing code cleaner. Yet another practitioner judges

enthusiastically (F.7) that “[validating the correctness of every compo-

nent in their system is] obviously going to be quite a lot of work!

It could take years, but for this kind of project it’s worth it”

(1006189) (F.7), also emphasizing that they already “have a very compre-

hensive unit-test suite” (F.7) and going so far as defining what they believe

to be meaningful tests (F.10). We find that a commonality of positive posts

is a sign of confidence of practitioners, or a trust in tools or methods that is

grounded in positive experience (F.16) [67709670 , 46177956 , 14961412 , 1072952]. We also iden-

tify that ambition (F.3) and aspiration (C.4) in positive posts is connected by

practitioners to their long term goals. One practitioner contemplates that “the

code works ‘properly’ [...] but [they] think automated tests would

be good for the longevity of the program”(48113464) (F.7), and an-

other reports that they are “starting a new project, that promises to be

much bigger and more involved than anything [they] have done in

the past.”(6684337) (F.4), which motivates them to “keep a good work-

flow with [their] test and make sure [they are] not creating gaps

in [their] testing as [they] go” (F.9). As indicated in Figure 8, it is ex-

perience and knowledge that gives those practitioners an extra degree of trust

and confidence, from which an aspirational attitude (C.4) towards testing seems

to emerge. Their attitude enables them to reflect (C.3) on and explore (C.4)

solutions for long term goals [4659714]. They build knowledge proactively with-

41

http://stackoverflow.com/questions/53376098
http://stackoverflow.com/questions/41135403
http://stackoverflow.com/questions/25325133
http://stackoverflow.com/questions/52539907
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/67709670
http://stackoverflow.com/questions/46177956
http://stackoverflow.com/questions/14961412
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/48113464
http://stackoverflow.com/questions/6684337
http://stackoverflow.com/questions/4659714

out experiencing setbacks that discouraged (C.1) practitioners report [57609818].

On the left side in Figure 8 we visualize that exploration (C.2) and reflec-

tion (C.3) contribute to building knowledge that will eventually allow them to

build trust and confidence. But, more crucially, seen at the top of the figure,

we indicate that it is the context in which the ambition to test arises, that

determines the sentiment towards testing when they engage in this process of

building up knowledge. More concretely, when their environment and experi-

ence gives them confidence and if their ambition is grounded in an aspirational

attitude, they remain positive [1006189 , 3340677 , 23062243 , 16938742 , 53657417 , 1072952 , 4659714]. But

when their ambition to test emerges in situations when the complexity of their

software projects begins to overwhelm them, the process of reflection (C.3) and

exploration (C.2) is negative [37527179 , 67746901 , 58840818 , 4991264 , 7960832 , 25325133 , 6475042 , 18941509].

Testing is then perceived as an obstacle that might even push complexity further

and not as something that is good for the future of a project.

Trust and Confidence - Degrees for Aspiration

Knowledge and experience in testing practices allow practitioners to as-

pire and enables them to consider and realize long term goals. It also

enables them to reflect on their practice and explore new possibilities in

a positive light. When exploration and reflection of testing practices are

however motivated by pressure, for example an increase in complexity of

a project, which rendered manual testing impossible, their ambition might

be abandoned. Testing then turns into yet another obstacle.

5. Discussion

The qualitative analysis of 200 Stack Overflow posts revealed many different

facets of software testing to us. In this section, we revisit our research questions

in the light of these observations, their implications, and the recommendations

we draw from them. We then present threats to the validity of these findings

and close the chapter elaborating future work, that will open the next stage

of our grounded theory research. Before revisiting our research questions and

42

http://stackoverflow.com/questions/57609818
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/3340677
http://stackoverflow.com/questions/23062243
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/53657417
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/37527179
http://stackoverflow.com/questions/67746901
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/4991264
http://stackoverflow.com/questions/7960832
http://stackoverflow.com/questions/25325133
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/18941509

elaborating future work, we want to turn the focus once more on the filtering

process that yielded the dataset that was analyzed in this paper.

5.1. Semi-automated filtering of datasets for qualitative and quantitative re-
search

To narrow down our qualitative analysis of the Stack Overflow dataset we

have used a semi-automated two-step process. We first filtered the dataset using

tags and then employed sentiment analysis tools to extract posts which contain

sentimental expressions. We therefore consider the first, tag based filtering

approach that is inspired by Yang et al. [63] suitable for qualitative studies like

ours. The low failure rate of the method in our case suggests that the approach

is also suitable for quantitative studies of testing posts on Stack Overflow.

Regarding the second step, for which sentiment analysis tools were used, our

evaluation is more differentiated. Our analysis supports previous observations

by Lin et al. [35] and Sengupta and Haythornthwaite [56]: authors on Stack

Overflow indeed tend to discuss technology in an objective, non-sentimental

way. Our analysis of 25 randomly selected (only tag-filtered) posts indicates

that authors who express sentiment when asking questions about testing topics

on Stack Overflow are more often expressing negative sentiment than positive.

Out of those 25 posts, not a single one contained positive sentiment. In the light

of those observations we argue that sentiment analysis indeed supported the goal

to extract a subset of posts that contains both positive and negative sentiment.

Deliberately extracting positive and negative sentimental posts provided an im-

provement in terms of balance in sentiment. In other words: a random selection

would have only provided very few positive posts. However, we do not consider

our approach applicable for quantitative studies where results and implications

are directly discerned from the output of sentiment analysis tools. The accu-

racy of predictions for sentiment was simply not accurate enough to provide

meaningful insights when only evaluating numbers. Posts predicted as positive

and negative only turned out to be correct in 50% of all cases (50 out of 100).

In 5 cases the sentiment was even the opposite of what was predicted. We

also learned that the sentiment analysis pipeline is most accurate in identifying

43

neutral posts. Out of 25 samples that were predicted to be neutral only 2 con-

tained sentiment. Depending on the research question, an approach to identify

content with neutral sentiment could therefore yield good results. We identified

that 28 posts of our dataset were too short for meaningful analysis. For studies

similar to ours we recommend to exclude short posts. Posts are more likely to

contain subjective opinions and valuable content, when they contain more than

2 paragraphs of text. Our experience with analyzing the dataset by focusing on

sentiment taught us that finding the right approach and selecting the right tools

is challenging. We acknowledge that low accuracy of the tools we used is also

due to the choices we made. For example, instead of using a training dataset

containing sentences, we could have used a dataset with paragraphs [61], and in-

stead of focusing on sentiment we could have focused on emotion detection [48].

The choices we made were founded on the literature that was known to us at

the time. In the meantime however, Lin et al. [34] published a literature review

that contains a guideline for the appropriate usage of tools and approaches for

opinion mining in software engineering. We can only encourage using their rec-

ommendations to navigate the field and to gain confidence in making the right

choices.

5.2. How and why is sentiment expressed

We set out with our analysis of Stack Overflow posts to investigate how

practitioners express sentiment in the context of software testing and which

factors play a role when sentiment is expressed. We identified 22 codes which

describe different expressions that are used by practitioners on Stack Over-

flow.

RQ1

How do software engineers express sentiment about testing on Stack Over-

flow?

In sentimental posts on Stack Overflow practitioners are referring to exter-

nal information like blogs or documentation, they reassure readers, share

44

their ambition and subjective judgement of the value of testing practices

and tools, compare different approaches, inquire for workarounds or new

ways to solve a problem, admit their own lack of knowledge and their

mistakes, reflect experiences, contemplate failure and sometimes exclude

solutions that could solve their issues. Sentiment is expressed when des-

peration, unexpected behavior, uncertainties, complex issues, missing ca-

pabilities, or a willingness to improve is described.

The categorization of posts has allowed us to take our analysis beyond the

level of expressions. We developed the four mayor categories discouragement,

exploration, reflection, and aspiration, which illuminate factors that can lead to

sentimentality.

RQ2

Which factors affect sentiment of software engineers towards testing prac-

tices?

Lack of experience and knowledge, especially in complex environments is

often indicated in posts with negative sentiment on Stack Overflow, when

practitioners describe discouraging experiences. Trust and confidence into

practice and understanding of long term goals on the other hand gives

practitioners space for aspiration, expressed with positive sentiment. Prac-

titioners who explore testing express negative sentiment when they expe-

rience unexpected behavior and positive sentiment when they are inspired

by resources like books and blog entries. When reflecting on their practice,

an awareness of their own blind-spots allows practitioners to be positive,

while ambiguity, when practitioners are completely in the dark, is reflected

negatively.

Going beyond this analysis which highlights factors that lead to sentiment,

we presented a preliminary theory that suggests how those factors go hand in

hand in manifesting sentiment around testing. The preliminary theory also

45

describes situational elements that seem to lead to sentiment.

Preliminary Interpretive Theory

On Stack Overflow we see complexity and aspiration as important factors

that make people ambitious about testing. Complexity of projects can

make manual testing impossible and motivates (or forces) practitioners to

use testing. Trust and confidence in testing practices on the other side

makes people aspire to pursue long term goals using testing practices. In

both cases experience and knowledge influences whether this ambition leads

to a positive or negative experience.

5.3. Implications

The results of our analysis of Stack Overflow posts about software testing

carries implications for education of software developers, and management of

software development teams. Based on the data we have seen, we hypothesize

that the implementation of automated testing practices in simple projects, when

manual testing is still possible, could allow an iterative development of testing

skills while reducing the likelihood of discouraging experiences. Having obtained

these skills, we argue, would then also influence the experience of testing com-

plex systems in a positive way. Rejecting or approving this hypothesis could

help to clarify the role that teaching of software testing can have in the early

stages of software engineering careers (e.g., in undergraduate courses of uni-

versities). Connected to this hypothesis, our preliminary theory suggests that

on Stack Overflow, testing practices are perceived as especially valuable when

the complexity of a software project grows. Refining and testing this theory in

other contexts could generate new insights into how practitioners and students

of software engineering can be motivated to learn software testing. Pham et al.

[50] for example identify the same issue in a study with bachelor students. Their

study confirms that the perception of the complexity of code affects students’

motivation to practice testing. They also report that students see the cost of

testing but fail to understand its benefit as projects are often not critical or

46

complex enough. (Re-)introduction of testing practices, when complex software

development methods are taught, so we hypothesize, could teach students the

value of software testing. Introducing testing practices like mocking in the con-

text of distributed systems and socket programming is one example. Regarding

managers of software engineering teams, our preliminary theory implies that

giving employees time and space to develop simple test cases for simple projects

is beneficial. Being comfortable with simple test practices, practitioners seem to

gain confidence and trust. As a recommendation that should be tested in future

work, we suggest that the development process should allow a steady increase

of complexity instead of tackling huge challenges directly. The words of one

author reflecting his work in a project where they introduced testing echoes this

last implication of our interpretation: “While I no longer work on this

project [...], I think it gave me some enormous insight into how bad

some projects can be written, and steps one developer can take

to make things a lot cleaner, readable and just flat out better

with small, incremental steps over time.”(1064403)

5.4. Threats to validity

Our systematic analysis of 200 Stack Overflow posts has led to insights that

have enabled us to formulate preliminary hypotheses to answer our research

questions and an interpretive theory. In this section we present the threats to

the validity of our findings.

5.4.1. Internal Validity

To select samples from the Stack Overflow dataset we filtered using user-

assigned tags and the sentiment analysis tools SentiCR and RoBERTa. The

dataset from Lin et al. [35], which we used to train the tools, was evaluated

by Zhang et al. [68], who report macro- and micro-averaged F1-scores of 0.59

and 0.82 for SentiCR and 0.80 and 0.90 for RoBERTa respectively. However,

their evaluation was done with a dataset of sentences and not at the level of

paragraphs. We do not know if applying the tools on paragraphs, like we did,

leads to poorer performance. We combined both tools to reduce inaccuracy as

47

http://stackoverflow.com/questions/1064403

suggested by Zhang et al. [68]. We only selected posts that were classified with

the same sentiment polarity by both tools. We checked the accuracy of the

filtering approach by including and evaluating two groups of test samples in our

analysis (25 random and 25 neutral posts) and classifying the sentiment of each

post. Even though the precision of the tools combined provided only a 50%

accuracy for positive posts, we argue that the inaccuracy does not pose a threat

to our results. The results presented in this paper were produced by deep and

thorough qualitative analysis for which the sentiment analysis was only a tool

to narrow down the focus. The accuracy has no direct influence on the results of

our analysis. To avoid mistakes in the implementation of the sentiment analysis

tools, we used the open-source implementation of SentiCR from the replication

package of Zhang et al. [68] 10, and the open-source library PyTorch 11 which

provides an implementation of roBERTa.

To extract posts from the dataset that are relevant to software testing we

extended an existing open-source tool 12. With our extension of the tool we first

filtered for all post with a tag that includes the word testing. We then generated

an include list of tags by manually removing all irrelevant tags that occurred in

this subset of posts. Starting with a generic wild-card and then snowballing to

generate a more accurate list of tags was found to be a valid method by Yang

et al. [63]. Errors in the implementation of the filtering tool and mistakes during

the manual selection of tags pose a possible threat to the validity of our results.

To reduce the chance of implementation errors we only made minimal changes

to the open-source software that was used for filtering. To minimize errors in

the manual tag selection process, the final list was reviewed by two software

engineering researchers who were otherwise not involved in this study.

10
§ GitHub sorasmu/SA4SE

11
3 PyTorch fairseq/roberta

12
§ GitHub SkobelvIgor/stackexchange-xml-converter

48

https://github.com/soarsmu/SA4SE
https://pytorch.org/hub/pytorch_fairseq_roberta/
https://github.com/SkobelevIgor/stackexchange-xml-converter

5.4.2. Experimenter Bias

We took measures to ensure that the influence of the authors’ subjectiveness

on the results of this paper stays within the boundaries of what is reasonable

and expected in the context of a constructivist GT study. It is possible that

the authors made mistakes in the interpretation of the dataset. To reduce the

likelihood of a misinterpretation that would pose a threat to the validity of our

results, the interpretation of the data recorded in memos and developed into

sentiment classification, codes, categories and theory was discussed between the

first and second author. Disagreements were resolved in a cooperative manner.

We do not provide a quantitative analysis of this process of reliability verification

as such an analysis would suggest a level of objectivity that we do not want to

claim [41]. Aligned with our epistemological stance and the interpretive nature

of constructivist GT, we instead acknowledge our biased perspective. Instead

of claiming a high level of absolute objectivity, we argue that taking the view

from nowhere, would not be appropriate to answer the research question that

we propose. Instead, we present a transparent account of the grounds on which

our interpretation rests. We use pertinent quotes and provide references to

original documents whenever we explain our interpretations. The reader is

invited to go through all the references in the text and the analyzed material

that we provide with our replication package. Inspection of the material should

reveal to the reader that we only make the material to speak for itself [59,

coded-dataset.qdpx]. High involvement with the data, enabled by following the

systematic strategies of constructivist GT, and not our preconceptions led to

what we present in this paper.

We use sentiment analysis tools to filter the Stack Overflow dataset. It

allowed us to narrow down the dataset to what is relevant for our study. To

ensure that our own, manual evaluation of sentiments of posts and expressions

is not biased by the outcome of this tool-based classification, documents were

analyzed in random order and the results of the tool’s classification were hidden

during analysis.

49

5.4.3. External Validity

Qualitative research searches for a deep understanding of the particular.

Knowledge generated from such research is context dependent. We therefore

can not claim that the preliminary result that our analysis produces has a high

external validity that goes beyond the scope of the Stack Overflow community.

Stack Overflow posts, which are non-interactive documents, cannot provide a

full or thick description of sociological circumstances [20, 24]. In other words:

Stack Overflow posts only provided us a shallow view of the circumstances that

practitioners experience; there are many things we are unable to see through an

analysis of Stack Overflow posts. By sharing our preliminary interpretive theory

we motivate inquiries that add more depth. More in-depth inquiries that either

challenge the generalizability of what we have learned on Stack Overflow, or ex-

tend on it to fit a broader context than the one we investigated. To broaden the

context of the posts, we considered comments, edits, and links that are referred

to in posts and evaluated post’s edit-history and the profiles of users that posted

content. Further, the conclusions that allowed us to construct the results of this

paper are based on the qualitative analysis of a small part of the full Stack

Overflow dataset. As analyzing the full dataset is not feasible, we choose to fo-

cus our analysis on a fraction of sentimental posts. By not analyzing the whole

dataset we risk missing details that could lead to different interpretations and

hence different theories. We reduced this risk by consecutively adding posts to

our analysis until we reach a point, when the analysis of further posts does not

reveal any new answers to the research questions we pose. We are aware that

reaching such a point does not rule out the possibility that adding more posts

can reveal new insights. It only signals that the effort required to obtain these

insights gets disproportionate. Instead, concluding at this point allows moving

forward to obtain insights from richer sources of data. Our analysis concluded

in this way after reviewing 200 posts.

50

5.4.4. Construct validity

We investigate the role of sentiment in software testing posts to learn about

the experience of software developers when they practice software testing. We

use sentimentality as a construct and proxy to analyze content that goes beyond

technical discussions and touches on this experience. By analyzing sentimental

Stack Overflow posts we infer interpretations about how sentiments come about

and how they affect testing practices. The root causes for sentiment of practi-

tioners are manifold and might be due to variables which we were not able to

consider in our investigation. This poses a threat to the validity of our results.

We reduced this threat by analyzing the data qualitatively, taking contextual

information of posts like comments, edit history and the time it took for the

question to be answered into account. We are therefore not only relying on

sentimentality as a variable to understand what affects practitioners.

5.5. Future Work

The analysis described in this paper brought us closer to understanding

what arouses sentiment in practitioners in the context of testing. However, as

mentioned in the threats to external validity, the implications we present need

to be taken with a grain of salt. Before suggesting which steps can be taken to

raise our work to a higher level of maturity, we reflect on the limitations of the

analysis presented in this paper.

5.5.1. Limitations

Stack Exchange, the parent website of Stack Overflow, provides insights

about Stack Overflow by conducting an annual user survey. Their surveys’ re-

sults and independent research about diversity on the platform reveals that the

user base lacks diversity when it comes to ethnicity and gender [19]. In their

own report it is stated that people of color are underrepresented among pro-

fessional developers on Stack Overflow and that the company has considerable

work to do, to ensure the platform is inclusive13. According to Vadlamani and

13
j insights.stackoverflow.com/survey/2021#section-demographics-gender

51

https://insights.stackoverflow.com/survey/2021#section-demographics-gender

Baysal [60], and Zagalsky et al. [65] it is not only ethnicity and gender, but

also professional factors that are strong reasons for (a lack of) engagement in

the community. They lead to an expert-bias as novice contributers may even

be confronted with subtle or overt bullying on Stack Overflow. Another bias is

introduced through strict community guidelines14. During our investigation we

were directly confronted with this limitation. Two posts that were rich in senti-

ment were closed because they violate the community guidelines. In one of those

post, the message posted by a moderator reads: “as it currently stands,

this question is not a good fit for our Q&A format. We expect

answers to be supported by facts, references, or expertise, but

this question will likely solicit debate, arguments, polling, or ex-

tended discussion”(16938742). In the other post, an author who has “been

banging [their] head against the wall trying to understand [...]

concepts for a week”(2978843) simply suggested a “very understand-

able and simple” explanation so that others can also enjoy an ‘aha’ moment.

Examples like this make it evident that practitioners cannot express themselves

freely on Stack Overflow. When they post exclusively sentimental content or

ask questions that provoke discussion, they are sanctioned. The aforementioned

post also suggests another limitation: practitioners posting on Stack Overflow

are biased towards negativity. What is discussed on Stack Overflow are prob-

lems. If there is no problem to solve, the post is closed. Success stories or

exclusively positive accounts of practitioners on Stack Overflow are therefore

rare.

5.5.2. Theoretic sampling

Early stages in grounded theory are supposed to open up discussion and

motivate for focused inquiries to follow. Theories mature as they are refined

and backed by collection and analysis of more data. In grounded theory, this

crucial process is called theoretic sampling [16]. Apart from refining, verifying or

14
j stackoverflow.com/help/how-to-ask

52

http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/2978843
https://stackoverflow.com/help/how-to-ask

rejecting our theory, such a focused collection of samples can answer questions

that we derive directly from our analysis.

1. If ambition to test arises when practitioners are suddenly confronted with

overwhelming project complexity, how do project management frameworks

like Agile affect adoption of testing methods compared to projects that use

long term fixed planning?

2. How are practitioners first confronted with testing practices? How does

this first encounter with testing in a professional setting influence their

ambitions to adopt testing in other contexts?

3. If the complexity of projects under test and the required complexity of

techniques to test them grows proportionally like our preliminary theory

suggests, how do developers of testing tools relate to this connection in

terms of provided documentation and design of tools?

4. The analysis showed that sentiment around testing highly depends on

context. In this study we looked at expressions of practitioners. How

do researchers and educators in software engineering relate to testing in

comparison to what we observed in our study? How does ambition differ,

especially in cases where they have not been confronted with the factors

that cause discouragement which we described in this paper?

As we highlight in Section 5.5.1, the dataset which was analyzed in this pa-

per only provides a narrow perspective on the lived experience of practitioners.

While Stack Overflow provides insights into what testers do outside their In-

tegrated Development Environment (IDE), it only rarely provides insights into

what testers do when they are not working on their computer. Posts rarely

describe the social world in which testing is practiced. Derived from the things

we did not see in the dataset, we propose the following questions for future

inquiries:

1. How does the social context of individuals affect sentiment of testers when

they are exploring or reflecting experiences?

53

2. Which role does the experience of peers play in shaping the testing expe-

rience of individual practitioners?

3. How do practitioners express sentiment about testing in informal settings?

4. How do practitioners express sentiment online, when ambiguous and sen-

timental content which provokes discussion is not sanctioned but encour-

aged?

In order to investigate the above questions, we propose different approaches.

Through a quantitative analysis of Stack Overflow, Alshangiti et al. [2] revealed

that different challenges in the field of machine learning are present because

implementation of application requires a wide set of skills. More concretely,

they suggest that data preprocessing is especially challenging as it is often over-

looked in education of practitioners. A quantitative content analysis like the

one of Alshangiti et al. [2] about testing posts on Stack Overflow could iden-

tify aspects of testing that are difficult to handle for practitioners on a more

technical level. Further qualitative studies of non-interactive documents from

platforms like Reddit15 or Twitter16, which encourage sentimental and ambigu-

ous content, can complement our analysis on a non-technical level. Conducting

a meta analysis of publications on socio-technical aspect of software testing is

another way of grounding our work in more theoretical and empirical data that

others investigated in the past. But most crucially, we want to meet practi-

tioners where they are confronted with testing practices. Field studies in which

individuals or groups of practitioners are observed and interviewed during prac-

tice can provide insights that go beyond what non-interactive documents can

reveal. Direct observations of practitioners will provide crucial insights into

lived experience that allow the formulation of a mature theory.

15
= Reddit /r/softwaretesting

16
� Twitter #softwaretesting

54

https://reddit.com/r/softwaretesting
https://twitter.com/search?q=%23softwaretesting

6. Related Work

With our investigation of sentimental posts on Stack Overflow, the catego-

rization of posts and the development of a preliminary theory we highlighted

different aspects that influence motivation of practitioners, the effect of emotions

on practice, and the role of software testing as a part of software development.

In this section we relate our findings to what others have uncovered in relation

to those topics.

A study by Graziotin et al. [22] emphasizes the detrimental effects that un-

happiness can have on software engineering practitioners. Some of what they

describe what happens when developers are (un)happy is relevant to our paper.

According to their report, developers distance themselves from tasks to which

their unhappiness relates. Our analysis reveals that confrontation with test-

ing can under some circumstances cause negative feelings of discouragement.

Discouragement can thus lead to withdrawal from testing resulting in process

deviation and reduced code quality. On the positive side, findings of Graziotin

et al. [22] show that emotions related to happiness like aspiration increase pro-

cess adherence and stimulate creativity, leading to a stronger commitment to

writing tests.

A literature review by Beecham et al. [9] compares the findings of 92 papers

about the topic of motivation of software engineers from the 1980s to 2006. The

review highlights that software engineers display a very high need for growth

and that they are concerned about learning new technology. Software engineers

are motivated by the exploration of new techniques and want to work on identi-

fiable pieces of quality work. According to the review, problem-solving and the

confrontation with challenges can be an enhancing factor for motivation. While

those factors are present in many studies, the literature review concludes that

the needs of software engineers are highly dependent on the context of individ-

uals. Our study confirms this conclusion. Exploration can increase motivation

or ambition in the case of software testing, but we indeed see that whether chal-

lenges or exploration lead to increased motivation highly depends on context.

55

Contrary to the studies included in the review, we see that a confrontation with

challenges can also lead to discouragement. Our results on this aspect are more

aligned with the results of a qualitative study by Sharp et al. [57], that suggests

that challenges, even when mentioned as a reason to stay in the job, are not

so much a factor that gives practitioners satisfaction. Not challenges, but cre-

ativity and being able to make a difference is what makes software engineering

worthwhile [57]. Similarly, Meyer et al. [43] found out that on good workdays,

developers make progress and create value for projects they consider meaning-

ful. On good days, they spend their time efficiently, with little administrative

work, and infrastructure issues; what makes a workday typical and therefore

good is primarily assessed by the match between developers’ expectations and

reality [43]. Two things here relate to our own findings. First, we also find

that practitioners who already identify testing as good and meaningful prac-

tice, for example because they are motivated by books or blogs about testing,

are indeed ambitious and aspirational about testing. Second, we also see that

challenges created by infrastructure issues, for example in complicated devel-

opment environments lead to discouragement because of unexpected behavior.

With a survey study conducted in multiple companies Runeson [52] also found

supporting evidence for the negative impact of unexpected challenges caused by

complexity. A good integration of unit testing into the internal tool landscape

that is provided by the company is key for the adoption of testing. However,

this integration is especially hard when the modules under test interact with

a complex system state or a complex system environment [52]. When an in-

tegration of testing into practice is too challenging it is mostly perceived as

de-motivating for software developers. In this context, Daka and Fraser [17]

report that practitioners rank the isolation of testing code as one of most chal-

lenging tasks. Crucially, it is perceived as a difficult challenge more often by

novice software developers. We see the same in our investigation. Our analy-

sis suggests that inexperienced practitioners are often discouraged from testing

by complicated environments in which an isolation of the method under test

becomes difficult. On the other hand, aligned with our results, Pham et al.

56

[50] identified that novice developers adjust their testing effort according to the

perceived complexity of code. A project has to be complex to warrant testing

to be beneficial. Complexity can thus, as we saw on Stack Overflow as well, be

a motivating factor. Pham et al. [50] and Daka and Fraser [17] also report that

developers’ feelings about unit testing are often negative. Concretely, only half

of the practitioners interviewed by Daka and Fraser [17] had positive feelings

about testing and students interviewed by Pham et al. [50] were not fond of

testing because to them writing tests did not feel like an accomplishment. Some

students even developed an anxious attitude towards testing. This aligns with

our observation in so far that we saw an overwhelming amount of negative posts

in random samples. A general negative bias towards testing could therefore also

be an explanation for the high amount of negative post that we saw in our

dataset.

In relation to Sharp et al. [57] and Meyer et al. [43] and their finding that

meaningful contributions and being able to make a difference are important.

However, from our own work it is not evident that testing in itself is always

recognized as a meaningful contribution to projects by practitioners and their

peers. Positive ambitions mentioned in posts on Stack Overflow mostly seem

to be self-aroused for example through engagement with inspiring resources like

books or blogs. Daka and Fraser [17] indeed identified that peer pressure is only

rarely mentioned as a motivating factor to write unit tests; the driving force for

a developer to use unit testing is supposedly their own conviction.

Finally, Kasurinen et al. [31] investigated how new testing practices are

adopted by companies and found out that when confronted with new techniques

that could improve testing processes, most companies are not interested in adop-

tion if there is no first-hand knowledge in the team or company. Only rarely they

do give new practices a try, and if they do, they only evaluate new techniques in

small projects. However, Kasurinen et al. [31] also report that companies adopt

new techniques when clear need arises. According to the theory they propose in

their study, development of processes only happens when the existing process

obviously has a need to develop; required resources for adoption of new prac-

57

tices like testing need to be justified. Our preliminary theory has at its core this

very point. We observe on Stack Overflow, that an increase of complexity of a

project leads to spontaneous adoption of testing practices. While it is not clear

from the report of Kasurinen et al. [31], what the motivation or rational reason

of a company that evaluates testing practices in small projects is, a suggestion

could be taken from our own study. We suggest that evaluation of techniques

in small projects leads to an advantage when the need for those techniques can

no longer be ignored. In other words, first-hand knowledge should develop in a

company before it is really needed.

7. Conclusion

In this study we set out to understand the sentiments of software engineers

regarding software testing in the context of the popular question and answer

platform Stack Overflow. In order to do so, we have used a semi-automated

approach to detect sentiment in Stack Overflow posts. In particular, we start

out by using automatic sentiment analysis tools to classify posts, after which

we perform an in-depth, qualitative analysis.

Through this in-depth study of 200 posts we find that developers are in fact

sentimental about software testing on Stack Overflow; we find that they express

their sentiment when unexpected behavior, uncertainties, complex issues, miss-

ing capabilities, or a willingness to improve is part of the post. Additionally,

we have observed that lack of experience and knowledge, especially in complex

environments can lead to a negative sentiment. On the other hand, software

engineers express positive sentiment when they have trust and confidence in

their practice, especially if they have an understanding of long term goals of

their projects.

Through the observations that we have made, we construct a preliminary

interpretive theory that explains how a projects’ complexity and the tacit knowl-

edge of individuals shapes the experience and attitude of practitioners in the

context of software testing. Practitioners, we argue, get motivated to practice

software testing as the complexity of their project increases. Reaching that

58

point without enough knowledge of testing practices leads to discouraging ex-

periences. We argue that testing practices are also seen by practitioners as

something to aspire to, especially when considered for example in the context

of long term goals. This has implications for both the education of software

engineers, and for managing software development teams that engineer complex

software. Our findings suggest that taking both motivation and complexity into

account in future studies of software testing practices can reveal more about

practitioners’ sentimental perspectives. Our preliminary results show that an

investigation of the motivation and capabilities of software engineers to engage

in effective testing practices needs to go beyond the analysis of technical tools

and their usage.

We acknowledge that we need to extend and deepen our interpretive theory,

and our overall understanding of software engineers’ sentiments towards testing.

In particular, in our future work we envision to study the social context and

its relation to sentiment, the connection to the experience levels of software

engineers, their sentimental expressions in informal settings, and finally how

project management culture influences attitudes and motivation of individual

software engineers in the area of testing.

Acknowledgements

This research was partially funded by the Dutch science foundation NWO

through the Vici “TestShift” grant (No. VI.C.182.032).

References

[1] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi.

2017. SentiCR: A customized sentiment analysis tool for code review in-

teractions. In 2017 32nd IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE). IEEE, 106–111. https://doi.org/

10.1109/ASE.2017.8115623

59

https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.1109/ASE.2017.8115623

[2] Moayad Alshangiti, Hitesh Sapkota, Pradeep K. Murukannaiah, Xumin

Liu, and Qi Yu. 2019. Why is Developing Machine Learning Applications

Challenging? A Study on Stack Overflow Posts. In 2019 ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement

(ESEM). IEEE, 1–11. https://doi.org/10.1109/ESEM.2019.8870187

[3] Mauŕıcio Aniche, Christoph Treude, and Andy Zaidman. 2022. How De-

velopers Engineer Test Cases: An Observational Study. IEEE Transac-

tions on Software Engineering 48, 12 (Dec. 2022), 4925–4946. https:

//doi.org/10.1109/TSE.2021.3129889

[4] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman.

2014. Test Code Quality and Its Relation to Issue Handling Performance.

IEEE Transactions on Software Engineering 40, 11 (Nov. 2014), 1100–1125.

https://doi.org/10.1109/TSE.2014.2342227

[5] Alexandra Balahur and Ralf Steinberger. 2009. Rethinking Sentiment Anal-

ysis in the News: from Theory to Practice and back. Proceeding of WOMSA

9 (2009), 1–12.

[6] Sebastian Baltes and Stephan Diehl. 2019. Usage and attribution of

Stack Overflow code snippets in GitHub projects. Empirical Software

Engineering 24, 3 (June 2019), 1259–1295. https://doi.org/10.1007/

s10664-018-9650-5

[7] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What

are developers talking about? An analysis of topics and trends in Stack

Overflow. Empirical Software Engineering 19, 3 (June 2014), 619–654.

https://doi.org/10.1007/s10664-012-9231-y

[8] Ohad Barzilay, Christoph Treude, and Alexey Zagalsky. 2013. Facilitat-

ing Crowd Sourced Software Engineering via Stack Overflow. In Finding

Source Code on the Web for Remix and Reuse. Springer New York, 289–

308. https://doi.org/10.1007/978-1-4614-6596-6_15

60

https://doi.org/10.1109/ESEM.2019.8870187
https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/978-1-4614-6596-6_15

[9] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen

Sharp. 2008. Motivation in Software Engineering: A systematic literature

review. Information and Software Technology 50, 9-10 (Aug. 2008), 860–

878. https://doi.org/10.1016/j.infsof.2007.09.004

[10] Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 ques-

tions for data scientists in software engineering. In Proceedings of the 36th

International Conference on Software Engineering. ACM, 12–23. https:

//doi.org/10.1145/2568225.2568233

[11] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch,

Sven Amann, and Andy Zaidman. 2019. Developer Testing in the IDE:

Patterns, Beliefs, and Behavior. IEEE Transactions on Software Engineer-

ing 45, 3 (March 2019), 261–284. https://doi.org/10.1109/TSE.2017.

2776152

[12] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman.

2015. When, how, and why developers (do not) test in their IDEs. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2015). ACM, 179–190. https://doi.org/10.

1145/2786805.2786843

[13] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do

Developers Test?. In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, Vol. 2. IEEE, 559–562. https://doi.org/10.

1109/ICSE.2015.193

[14] Antonia Bertolino. 2007. Software Testing Research: Achievements, Chal-

lenges, Dreams. In Future of Software Engineering (FOSE ’07). IEEE, 85–

103. https://doi.org/10.1109/FOSE.2007.25

[15] Peter H. Carstensen and Carsten Sørensen. 1995. Let’s Talk About Bugs!

Scandinavian Journal of Information Systems 7, 6 (1995), 1–22.

61

https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1109/TSE.2017.2776152
https://doi.org/10.1109/TSE.2017.2776152
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/ICSE.2015.193
https://doi.org/10.1109/ICSE.2015.193
https://doi.org/10.1109/FOSE.2007.25

[16] Kathy Charmaz. 2014. Constructing grounded theory (2nd edition ed.).

Sage.

[17] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices

and Problems. In 2014 IEEE 25th International Symposium on Software

Reliability Engineering. IEEE, 201–211. https://doi.org/10.1109/

ISSRE.2014.11

[18] Andrew Deener. 2018. The Architecture of Ethnographic Knowledge: Nar-

rowing Down Data and Contexts in Search of Sociological Cases. Socio-

logical Perspectives 61, 2 (April 2018), 295–313. https://doi.org/10.

1177/0731121418755121

[19] Denae Ford, Justin Smith, Philip J. Guo, and Chris Parnin. 2016. Paradise

unplugged: identifying barriers for female participation on stack overflow.

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 846–857. https://doi.

org/10.1145/2950290.2950331

[20] Clifford Geertz and Robert Darnton. 2017. The interpretation of cultures:

selected essays (3rd edition ed.). Basic Books.

[21] Barney G. Glaser and Anselm L. Strauss. 2010. The discovery of grounded

theory: strategies for qualitative research (5. paperback print ed.). Aldine

Transaction.

[22] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abra-

hamsson. 2018. What happens when software developers are (un)happy.

Journal of Systems and Software 140 (June 2018), 32–47. https://doi.

org/10.1016/j.jss.2018.02.041

[23] William C. Hetzel. 1988. The complete guide to software testing (2nd ed

ed.). QED Information Sciences.

62

https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1177/0731121418755121
https://doi.org/10.1177/0731121418755121
https://doi.org/10.1145/2950290.2950331
https://doi.org/10.1145/2950290.2950331
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1016/j.jss.2018.02.041

[24] Christine Hine. 2008. Virtual Ethnography: Modes, Varieties, Affordances.

In The SAGE Handbook of Online Research Methods. SAGE Publications,

Ltd, 257–270. https://doi.org/10.4135/9780857020055.n14

[25] Rashina Hoda. 2022. Socio-Technical Grounded Theory for Software Engi-

neering. IEEE Transactions on Software Engineering 48, 10 (Oct. 2022),

3808–3832. https://doi.org/10.1109/TSE.2021.3106280

[26] Nitin Indurkhya and Fred J. Damerau (Eds.). 2010. Handbook of Natural

Language Processing (0 ed.). Chapman and Hall/CRC. https://doi.

org/10.1201/9781420085938

[27] Md Rakibul Islam, Md Kauser Ahmmed, and Minhaz F. Zibran. 2019.

MarValous: machine learning based detection of emotions in the valence-

arousal space in software engineering text. In Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing. ACM, 1786–1793.

https://doi.org/10.1145/3297280.3297455

[28] Md Rakibul Islam and Minhaz F. Zibran. 2018. DEVA: sensing emotions in

the valence arousal space in software engineering text. In Proceedings of the

33rd Annual ACM Symposium on Applied Computing. ACM, 1536–1543.

https://doi.org/10.1145/3167132.3167296

[29] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Sere-

brenik. 2017. On negative results when using sentiment analysis tools for

software engineering research. Empirical Software Engineering 22, 5 (Oct.

2017), 2543–2584. https://doi.org/10.1007/s10664-016-9493-x

[30] Jussi Kasurinen, Ossi Taipale, and Kari Smolander. 2009. Analysis of Prob-

lems in Testing Practices. In 2009 16th Asia-Pacific Software Engineering

Conference. IEEE, 309–315. https://doi.org/10.1109/APSEC.2009.17

[31] Jussi Kasurinen, Ossi Taipale, and Kari Smolander. 2011. How Test Organi-

zations Adopt New Testing Practices and Methods?. In 2011 IEEE Fourth

63

https://doi.org/10.4135/9780857020055.n14
https://doi.org/10.1109/TSE.2021.3106280
https://doi.org/10.1201/9781420085938
https://doi.org/10.1201/9781420085938
https://doi.org/10.1145/3297280.3297455
https://doi.org/10.1145/3167132.3167296
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1109/APSEC.2009.17

International Conference on Software Testing, Verification and Validation

Workshops. IEEE, 553–558. https://doi.org/10.1109/ICSTW.2011.63

[32] Amy J. Ko, Bryan Dosono, and Neeraja Duriseti. 2014. Thirty years of soft-

ware problems in the news. In Proceedings of the 7th International Work-

shop on Cooperative and Human Aspects of Software Engineering (CHASE

2014). ACM, 32–39. https://doi.org/10.1145/2593702.2593719

[33] Roy Ka-Wei Lee and David Lo. 2017. GitHub and Stack Overflow: Ana-

lyzing Developer Interests Across Multiple Social Collaborative Platforms.

In Social Informatics, Giovanni Luca Ciampaglia, Afra Mashhadi, and

Taha Yasseri (Eds.). Springer International Publishing, 245–256. https:

//doi.org/10.1007/978-3-319-67256-4_19

[34] Bin Lin, Nathan Cassee, Alexander Serebrenik, Gabriele Bavota, Nicole

Novielli, and Michele Lanza. 2022. Opinion Mining for Software Develop-

ment: A Systematic Literature Review. ACM Transactions on Software

Engineering and Methodology 31, 3 (March 2022), 38:1–38:41. https:

//doi.org/10.1145/3490388

[35] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta,

Michele Lanza, and Rocco Oliveto. 2018. Sentiment analysis for soft-

ware engineering: how far can we go?. In Proceedings of the 40th Inter-

national Conference on Software Engineering. ACM, 94–104. https:

//doi.org/10.1145/3180155.3180195

[36] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.

http://arxiv.org/abs/1907.11692

[37] Tamara Lopez, Thein Tun, Arosha Bandara, Levine Mark, Bashar Nu-

seibeh, and Helen Sharp. 2019. An Anatomy of Security Conversations in

64

https://doi.org/10.1109/ICSTW.2011.63
https://doi.org/10.1145/2593702.2593719
https://doi.org/10.1007/978-3-319-67256-4_19
https://doi.org/10.1007/978-3-319-67256-4_19
https://doi.org/10.1145/3490388
https://doi.org/10.1145/3490388
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1145/3180155.3180195
http://arxiv.org/abs/1907.11692

Stack Overflow. In 2019 IEEE/ACM 41st International Conference on Soft-

ware Engineering: Software Engineering in Society (ICSE-SEIS). IEEE,

31–40. https://doi.org/10.1109/ICSE-SEIS.2019.00012

[38] Tamara Lopez, Thein T. Tun, Arosha Bandara, Mark Levine, Bashar Nu-

seibeh, and Helen Sharp. 2018. An investigation of security conversations in

stack overflow: perceptions of security and community involvement. In Pro-

ceedings of the 1st International Workshop on Security Awareness from De-

sign to Deployment. ACM, 26–32. https://doi.org/10.1145/3194707.

3194713

[39] Mika V. Mantyla, Nicole Novielli, Filippo Lanubile, Maelick Claes, and

Miikka Kuutila. 2017. Bootstrapping a Lexicon for Emotional Arousal in

Software Engineering. In 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR). IEEE, 198–202. https://doi.

org/10.1109/MSR.2017.47

[40] Harry McCracken. 2017. The Year That Software Bugs

Ate The World. https://web.archive.org/web/

20230307155438/https://www.fastcompany.com/40505226/

the-year-that-software-bugs-ate-the-world

[41] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability

and Inter-rater Reliability in Qualitative Research: Norms and Guidelines

for CSCW and HCI Practice. Proceedings of the ACM on Human-Computer

Interaction 3, CSCW (Nov. 2019), 72:1–72:23. https://doi.org/10.

1145/3359174

[42] George Herbert Mead, Charles W. Morris, Daniel R. Huebner, and Hans

Joas. 2015. Mind, self, and society (the definitive edition ed.). University

of Chicago Press.

[43] André Meyer, Earl T Barr, Christian Bird, and Thomas Zimmermann.

2021. Today was a Good Day: The Daily Life of Software Developers.

65

https://doi.org/10.1109/ICSE-SEIS.2019.00012
https://doi.org/10.1145/3194707.3194713
https://doi.org/10.1145/3194707.3194713
https://doi.org/10.1109/MSR.2017.47
https://doi.org/10.1109/MSR.2017.47
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174

IEEE Transactions on Software Engineering 47, 5 (2021), 863–880. https:

//doi.org/10.1109/TSE.2019.2904957

[44] Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodriguez, and Paul

Ralph. 2020. Cognitive Biases in Software Engineering: A Systematic Map-

ping Study. IEEE Transactions on Software Engineering 46, 12 (Dec.

2020), 1318–1339. https://doi.org/10.1109/TSE.2018.2877759

[45] Sohaib Mustafa, Wen Zhang, and Muhammad Mateen Naveed. 2022. What

motivates online community contributors to contribute consistently? A case

study on Stackoverflow netizens. Current Psychology (June 2022), 14 pages.

https://doi.org/10.1007/s12144-022-03307-4

[46] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2012. The art of

software testing (3rd ed ed.). John Wiley & Sons.

[47] Mika V. Mäntylä, Juha Itkonen, and Joonas Iivonen. 2012. Who tested my

software? Testing as an organizationally cross-cutting activity. Software

Quality Journal 20, 1 (March 2012), 145–172. https://doi.org/10.

1007/s11219-011-9157-4

[48] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. 2018. A gold standard

for emotion annotation in stack overflow. In Proceedings of the 15th Inter-

national Conference on Mining Software Repositories (MSR ’18). ACM,

14–17. https://doi.org/10.1145/3196398.3196453

[49] Andraž Pelicon, Marko Pranjić, Dragana Miljković, Blaž Škrlj, and Senja

Pollak. 2020. Zero-Shot Learning for Cross-Lingual News Sentiment Clas-

sification. Applied Sciences 10, 17 (Jan. 2020), 5993. https://doi.org/

10.3390/app10175993

[50] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt

Schneider. 2014. Enablers, inhibitors, and perceptions of testing in novice

software teams. In Proceedings of the 22nd ACM SIGSOFT International

66

https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/TSE.2018.2877759
https://doi.org/10.1007/s12144-022-03307-4
https://doi.org/10.1007/s11219-011-9157-4
https://doi.org/10.1007/s11219-011-9157-4
https://doi.org/10.1145/3196398.3196453
https://doi.org/10.3390/app10175993
https://doi.org/10.3390/app10175993

Symposium on Foundations of Software Engineering (FSE 2014). ACM,

30–40. https://doi.org/10.1145/2635868.2635925

[51] Marllos Paiva Prado and Auri Marcelo Rizzo Vincenzi. 2018. Towards

cognitive support for unit testing: A qualitative study with practitioners.

Journal of Systems and Software 141 (July 2018), 66–84. https://doi.

org/10.1016/j.jss.2018.03.052

[52] P. Runeson. 2006. A survey of unit testing practices. IEEE Software 23, 4

(July 2006), 22–29. https://doi.org/10.1109/MS.2006.91

[53] Hafiz Hassaan Saeed, Khurram Shahzad, and Faisal Kamiran. 2018.

Overlapping Toxic Sentiment Classification Using Deep Neural Architec-

tures. In 2018 IEEE International Conference on Data Mining Workshops

(ICDMW). IEEE, 1361–1366. https://doi.org/10.1109/ICDMW.2018.

00193

[54] Johnny Saldaña. 2013. The coding manual for qualitative researchers (2nd

ed ed.). SAGE.

[55] Iflaah Salman, Pilar Rodriguez, Burak Turhan, Ayse Tosun, and Arda

Gureller. 2022. What Leads to a Confirmatory or Disconfirmatory Be-

haviour of Software Testers? IEEE Transactions on Software Engineering

48, 4 (2022), 1351–1368. https://doi.org/10.1109/TSE.2020.3019892

[56] Subhasree Sengupta and Caroline Haythornthwaite. 2020. Learning with

comments: An analysis of comments and community on Stack Overflow.

In Proceedings of the 53rd Hawaii International Conference on System Sci-

ences. 2898–2907. https://core.ac.uk/reader/286030414

[57] Helen Sharp, Nathan Baddoo, Sarah Beecham, Tracy Hall, and Hugh

Robinson. 2009. Models of motivation in software engineering. Infor-

mation and Software Technology 51, 1 (Jan. 2009), 219–233. https:

//doi.org/10.1016/j.infsof.2008.05.009

67

https://doi.org/10.1145/2635868.2635925
https://doi.org/10.1016/j.jss.2018.03.052
https://doi.org/10.1016/j.jss.2018.03.052
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/ICDMW.2018.00193
https://doi.org/10.1109/ICDMW.2018.00193
https://doi.org/10.1109/TSE.2020.3019892
https://core.ac.uk/reader/286030414
https://doi.org/10.1016/j.infsof.2008.05.009
https://doi.org/10.1016/j.infsof.2008.05.009

[58] H. Sharp, H. Robinson, and M. Woodman. 2000. Software engineering:

community and culture. IEEE Software 17, 1 (Feb. 2000), 40–47. https:

//doi.org/10.1109/52.819967

[59] Mark Swillus and Andy Zaidman. 2022. Replication Package for Senti-

ment Overflow in the Testing Stack. https://doi.org/10.5281/zenodo.

6595110

[60] Sri Lakshmi Vadlamani and Olga Baysal. 2020. Studying Software De-

veloper Expertise and Contributions in Stack Overflow and GitHub. In

2020 IEEE International Conference on Software Maintenance and Evolu-

tion (ICSME). IEEE, 312–323. https://doi.org/10.1109/ICSME46990.

2020.00038

[61] Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. 2019. Ex-

tracting API Tips from Developer Question and Answer Websites. In 2019

IEEE/ACM 16th International Conference on Mining Software Reposi-

tories (MSR). IEEE, 321–332. https://doi.org/10.1109/MSR.2019.

00058

[62] Janyce M. Wiebe, Rebecca F. Bruce, and Thomas P. O’Hara. 1999. Devel-

opment and use of a gold-standard data set for subjectivity classifications.

In Proceedings of the 37th annual meeting of the Association for Compu-

tational Linguistics on Computational Linguistics -. Association for Com-

putational Linguistics, 246–253. https://doi.org/10.3115/1034678.

1034721

[63] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016.

What Security Questions Do Developers Ask? A Large-Scale Study of

Stack Overflow Posts. Journal of Computer Science and Technology 31, 5

(Sept. 2016), 910–924. https://doi.org/10.1007/s11390-016-1672-0

[64] Edward Yourdon. 1988. Managing the system life cycle (2nd ed ed.). Your-

don Press.

68

https://doi.org/10.1109/52.819967
https://doi.org/10.1109/52.819967
https://doi.org/10.5281/zenodo.6595110
https://doi.org/10.5281/zenodo.6595110
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/MSR.2019.00058
https://doi.org/10.1109/MSR.2019.00058
https://doi.org/10.3115/1034678.1034721
https://doi.org/10.3115/1034678.1034721
https://doi.org/10.1007/s11390-016-1672-0

[65] Alexey Zagalsky, Carlos Gómez Teshima, Daniel M. German, Margaret-

Anne Storey, and Germán Poo-Caamaño. 2016. How the R community

creates and curates knowledge: a comparative study of stack overflow and

mailing lists. In Proceedings of the 13th International Conference on Min-

ing Software Repositories. ACM, 441–451. https://doi.org/10.1145/

2901739.2901772

[66] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen.

2008. Mining Software Repositories to Study Co-Evolution of Production

& Test Code. In 1st International Conference on Software Testing, Verifi-

cation and Validation 2008. IEEE, 220–229. https://doi.org/10.1109/

ICST.2008.47

[67] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge De-

meyer. 2011. Studying the co-evolution of production and test code in

open source and industrial developer test processes through repository

mining. Empirical Software Engineering 16, 3 (June 2011), 325–364.

https://doi.org/10.1007/s10664-010-9143-7

[68] Ting Zhang, Bowen Xu, Ferdian Thung, Stefanus Agus Haryono, David

Lo, and Lingxiao Jiang. 2020. Sentiment Analysis for Software Engineer-

ing: How Far Can Pre-trained Transformer Models Go?. In 2020 IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME).

IEEE, 70–80. https://doi.org/10.1109/ICSME46990.2020.00017

[69] Gül Çalıklı and Ayşe Başar Bener. 2013. Influence of confirmation biases

of developers on software quality: an empirical study. Software Qual-

ity Journal 21, 2 (June 2013), 377–416. https://doi.org/10.1007/

s11219-012-9180-0

69

https://doi.org/10.1145/2901739.2901772
https://doi.org/10.1145/2901739.2901772
https://doi.org/10.1109/ICST.2008.47
https://doi.org/10.1109/ICST.2008.47
https://doi.org/10.1007/s10664-010-9143-7
https://doi.org/10.1109/ICSME46990.2020.00017
https://doi.org/10.1007/s11219-012-9180-0
https://doi.org/10.1007/s11219-012-9180-0

