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Abstract

Cyber-Physical Systems (CPSs) have gained traction in recent years. A major non-functional quality of CPS is perfor-
mance, since it affects both usability and security. This critical quality attribute depends on the specialized hardware,
simulation engines, and environmental factors that characterize the system under analysis. While a large body of re-
search exists on performance issues in general, studies focusing on performance-related issues for CPSs are scarce. The
goal of this paper is to build a taxonomy of performance issues in CPSs. To this aim, we present two empirical studies
aimed at categorizing common performance issues (Study I) and helping developers detect them (Study II). In the first
study, we examined commit messages and code changes in the history of 14 GitHub-hosted open-source CPS projects
to identify commits that report and fix self-admitted performance issues. We manually analyzed 2699 commits, labeled
them, and grouped the reported performance issues into antipatterns. We detected instances of three previously reported
Software Performance Antipatterns (SPAs) for CPSs. Importantly, we also identified new SPAs for CPSs not described
earlier in the literature. Furthermore, most performance issues identified in this study fall into two new antipattern
categories: Hard Coded Fine Tuning (399 of 646) and Magical Waiting Number (150 of 646). In the second study, we
introduce static analysis techniques for automatically detecting these two new antipatterns; we implemented them in a
tool called AP-Spotter. We analyzed 9 open-source CPS projects not utilized to build the SPAs taxonomy to benchmark
AP-Spotter. Our results show that AP-Spotter achieves 59.49% precision in detecting the antipatterns.

Keywords: Software Performance Antipatterns, Cyber-Physical Systems, Antipattern Detection, Software
Maintenance, Empirical Software Engineering, Static Analysis

1. Introduction

The term CPSs was first coined at the 2006 National
Workshop on Cyber-Physical Systems by Gill [1]. As de-
scribed by Lee and Seshia [2], a CPS is an integration
of computation with physical processes whose behavior is
defined by both cyber and physical parts of the system.
Examples of CPSs are medical devices [3], automation of
industrial manufacturing systems [4], air traffic control and
aircraft avionic systems [5], smart cars [6, 7, 8], and un-
manned vehicles [9, 10].

In recent years, CPSs became of interest across many
industries [11, 12]. The increased adoption of CPSs in-
creases the urgency to tackle CPSs-specific challenges [13].
A key challenge when working with CPSs is that it is dif-
ficult to consider the parts in isolation due to the tight
interactions [14]. As with other real-time systems, CPSs
have a limited time to react to their environment [15]. For
example, a self-driving car needs to react fast if suddenly a
deer wanders on the road. The performance of the system
is a big factor in how well it could respond.
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One of the standard methods for achieving high soft-
ware performance is to use a catalog of Software Perfor-
mance Antipatterns (SPAs) [16, 17]. This catalog doc-
uments the common performance problems in the soft-
ware architecture and design of systems. The descrip-
tion of these antipatterns helps detect bad design/cod-
ing choices that influence performance. A previous study
empirically showed that SPAs are beneficial while provid-
ing reusable solutions applicable in various domains [18].
Moreover, identifying SPAs helps design and inform refac-
toring actions, which ensure that the performance antipat-
terns can be removed from the project’s architecture or
designs [19, 20]. Recent studies identified various perfor-
mance antipatterns that are widespread in classical soft-
ware (i.e., not related to CPSs) [17, 16, 21, 22]. In the con-
text of CPSs, Smith [23] started a CPS-specific SPA cat-
alog in 2020. This catalog describes nine performance an-
tipatterns, three of which are CPS specific, and six are also
applicable to generic software. Although the antipatterns
introduced in Smith’s study facilitate the recognition and
refactoring of CPS performance-related issues and show
the relevance of performance antipatterns in an industrial
context, their work has two main limitations. First, the
proposed catalog was formulated based on the author’s
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experience, rather than empirically collecting and analyz-
ing data from existing and diverse CPSs. Second, their
study did not assess how common and widespread these
antipatterns are.

The aim of this paper is twofold: (1) building an exten-
sive taxonomy (or catalog) of performance antipatterns in
CPSs based on empirical data and evidence collected from
heterogeneous open-source systems; (2) helping develop-
ers detect the most common and widespread antipatterns.
Therefore, this paper presents two studies that cover both
the classification (Study I) and the detection (Study II)
of performance-related antipatterns in CPS.

Study I aims to identify, classify, and categorize per-
formance issues into a taxonomy. Therefore, we investigate
the following research questions

RQ1: Which CPS-specific performance antipat-
terns can we identify in open-source CPSs?

RQ2: How prevalent are CPS-specific perfor-
mance antipatterns in open-source CPS projects?

To answer these two research questions, we analyzed
the code history of 14 open-source CPS projects publicly
available on GitHub and used in prior studies related to
CPSs [24]. We examined commits that reported and fixed
self-admitted performance issues by analyzing (1) commit
messages, (2) code and project documentation, and (3)
code changes. Self-admitted issues are identified based
on performance-specific keywords (e.g., run-time, mem-
ory) using a tool that we implemented and coined PyRock.
This resulted in 1059 candidate commits to validate manu-
ally. Through manual analysis, we identified 530 (81.11%)
commits discussing one or more performance-related is-
sues. We further expanded the keywords by using textual
analysis methods [25] and topic modelling [26], [27]. This
resulted in 1640 additional commits, of which 163 commits
(9.37%) contained one or more self-admitted performance-
related issues. In total, we manually analyzed 2699 com-
mits, labeled them, and grouped the reported performance
issues in common categories (or antipatterns).

In this final set of 2699 commits, we found eight in-
stances of Smith’s [23] CPS-specific antipatterns. Inter-
estingly, we identified six potential new CPS-specific per-
formance antipatterns with 638 instances in total. As this
is exploratory research, we decided that for them to be
confirmed as antipattern, they needed to occur in more
than two projects. Following this criterion, we confirmed
four antipatterns:

� Magical Waiting Number. (9 projects, 150 instances)
Lack of proper waiting time, the potential of being
often manually changed due to adding support for
slower/faster hardware platforms.

� Hard Coded Fine Tuning. (6 projects, 399 instances)
Variables that are closely related to hardware sup-
port, which keeps being changed throughout the proj-
ect’s history.

� Fixed Communication Rate. (5 projects, 66 instances)
Frequent changes are made to the communication
rate of the hardware modules, as the minimum la-
tency is hard-coded (the same for all platforms in all
situations) instead of dynamically.

� Rounded Numbers. (5 projects, 10 instances) Math-
ematical errors made due to type usage for situations
requiring high accuracy.

Study II aims at helping developers identify and de-
tecting the two most frequently occurring new antipatterns
(Magical Waiting Number and Hard Coded Fine Tuning).
To this aim, we present and assess a novel tool, named
AP-Spotter, that detects these antipatterns based on static
analysis methods. The benefit of using a static analysis
technique is that it is fast, compared to dynamic analysis,
so it can give timely feedback to the developer. We imple-
mented this technique with the AP-Spotter tool. There-
fore, we formulated the following research question:

RQ3: How precise can our approach detect
performance antipatterns?

To answer this research question, we ran AP-Spotter

against a benchmark of 9 additional open-source CPS proj-
ects not utilized to build the new SPAs taxonomy (i.e.,
not considered in Study I). We manually validated the
instances detected by AP-Spotter and reached a precision
of 62.02% for Magical Waiting Number, and 58.98% for
Hard Coded Fine Tuning.

Paper Structure The remainder of the paper is struc-
tured as follows: Section 2 provides background and re-
lated work. Section 3 is the repository mining study on
Performance Antipatterns. Section 4 discusses the new
potential antipatterns from our study. In Section 5, we ex-
plore automatically detecting CPS antipatterns and evalu-
ate our approach empirically in our second study. Further,
Section 6 discusses the threats to the validity of our stud-
ies. And finally, Section 7 presents our conclusion.

2. Background and Related Work

In this section, we give a brief overview of research
relevant to our studies.

2.1. Software Performance Antipatterns

The concept of design patterns for software was intro-
duced in 1994 by Gamma et al. [28], as a schematic to
follow for designing software components or subsystems.
Software antipatterns stand opposite to design patterns, in
that they describe patterns to be avoided because of poten-
tial issues in the software’s security, performance, stability,
or maintainability [29, 30].

The specific subcategory of antipatterns in which we
conduct our study is called Software Performance Antipat-
terns (SPAs). SPAs focus on common patterns in software
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architecture and design, which lead to performance issues
in the system [17].

These antipatterns have been introduced by Smith and
Williams [17] and were later extended for pipe-and-filter
architectures [21] and concurrent programs [22]. Various
studies have contributed towards defining SPAs for other
application domains (e.g., databases [31]), and provided
solutions to tackle them [32].

2.2. Known SPAs for CPSs

To the best of our knowledge there is only one prior
study that has identified SPAs specific to CPSs, this study
was conducted by Smith [23]. In particular, Smith’s [23]
recent study carried out a preliminary investigation into
Performance Antipatterns for CPS. She identified three
new SPAs specific to CPS and also recognized six other
SPAs specific to CPS. Based on industrial experience in
the field, Smith [23] introduced three new SPAs specific to
CPS and also recognized six other SPAs specific to CPS.
These antipatterns are described in Table 1.

Despite the undisputable contribution by Smith [23],
the study did not provide any empirical data to support
the findings. Therefore, our goal is to shed light on the
prevalence of SPAs in CPSs by performing an empirical
study on a large set of CPSs, eventually extending the
existing SPAs taxonomy.

2.3. From Automatic Detection of Performance Issues to
CPS Performance Antipatterns (CPS-PAs)

Performance issues in a system can i.a., negatively im-
pact its security [34, 35] and usability [36]. Therefore, de-
tecting performance problems has been of interest among
researchers [37], from researching Machine Learning meth-
ods for performance prediction [38] to the creation of sev-
eral tools to aid in detecting performance issues earlier on.
Some of the available tools are: i) PerformanceHat [39]
(This tool aids to bring awareness to development choices
and its impact on performance.) and ii) Toddler [40] (An
automated oracle to detect redundant and inefficient use
of loops, causing unnessesary performance degradation.).
Applying performance models for analysis is a popular re-
search area, examples of different approaches in this field
are: i) detecting performance regression using the system’s
history [41], and ii) the interactions between configurations
options towards performance [37]. Research into the dif-
ferent modelling options also resulted in the creation of
PUMA [42], a tool architecture aiming to bridge the dif-
ferent available design- and performance-tools. In another
work, Pinciroli and Trubiani investigate how architectural
patterns in cyber-physical systems can influence different
performance metrics, e.g., the system response time [43].
Their approach relies on stochastic performance models
and enables software architects to quantitatively evaluate
architectural patterns in terms of performance.

As manually detecting antipatterns is tedious, time-
consuming, and requires expert developers [44] [45], auto-
matic detection of antipatterns has also become a popular

research topic. Multiple approaches have been proposed in
the literature to identify generic performance antipatterns,
such as approaches based on first-order logic representa-
tion [46], decision trees [47], multivariate analysis [48], and
load testing [49]. Examples of tools that have been cre-
ated to automatically detect antipatterns are: i) DECOR [50]
(Detects antipatterns such as The Spaghetti Code and The
Blob antipatterns) and ii) PMD [51, 52] (A static code ana-
lyzer that can be used to detect Code Duplication and the
Leak Collection antipattern).

To the best of our knowledge, a recent article by Pin-
ciroli et al. [53] is the only study that focused on detecting
CPS-PAs. The authors modeled the performance antipat-
terns for CPSs that have been introduced by Smith [23],
by utilizing queuing networks. Then, their tool monitors
the components’ states dynamically to identify the perfor-
mance antipatterns in the CPS’s operation.

While their focus is on dynamically identifying perfor-
mance antipatterns, we approach this detection with static
analysis and rely on the project’s historical development.
Dynamic analysis can have the benefit of getting a rich
insight into the antipatterns impact on the system’s per-
formance. For the static analysis method, the code does
not need to be run, therefore it can provide faster feedback
to the CPS developers [54].

3. Study I — Commit-Message Based Search for
Performance Antipatterns

In our first study, we aim (1) to empirically establish
how widespread the antipatterns from the existing catalog
created by Smith [23] are, and (2) to potentially identify
any previously undocumented antipatterns across open-
source CPS projects.

Our investigation is steered by the following two re-
search questions:

RQ1: Which CPS-specific performance antipat-
terns can we identify in open-source CPSs?

RQ2: How prevalent are CPS-specific perfor-
mance antipatterns in open-source CPS projects?

This section is structured as follows: first, we discuss
the projects selected for this study (Section 3.1), followed
by a description of how we searched for performance is-
sues (Section 3.2), the analysis (Section 3.3), and results
(Section 3.4). We discuss the results from this study in
Section 4.

3.1. Subjects

To derive a taxonomy of antipatterns in CPS projects,
we selected a set of 14 open-source CPS projects hosted on
GitHub. We selected these projects based on the following
criteria:

� Relevance: the project must be related to a CPS
domain, such as robotics, drones, or automotive.
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Table 1: Exisiting catalog of SPAs for CPSs by Smith [23].

Name Type Description

Are We There Yet? CPS-specific Over-checking whether an event occurred. This problem usually stems from a polling
procedure in CPS with small checking intervals, compared to the frequency of event
occurrences. This Performance Antipatterns leads to overusing system resources.

Is Everything OK? CPS-specific constantly checking the status of the system (e.g., storage space, battery usage). This
performance issue happens when the status checker threads and processes are triggered
too often.

Where Was I? CPS-specific Processes that lost information about the system’s state, such as a system restart. It
can also happen if too much time (i.e., more than 1 minute) is given to processes that
keep the user waiting. This type of antipattern leads to execution overheads to perform
required calculations to drive the CPS back to the desired status.

Unnecessary Pro-
cessing

Generic Heavy and unnecessary processes are executed in critical scenarios [22]. To tackle
this antipattern, the execution of processes whose outputs are not required in critical
scenarios should be postponed.

How Many Times
Do I Have to Tell
You?

Generic Invoking a method many times in scenarios in which the CPS could call the method
only once and store and reuse the returned outputs for the following processes. To
address this antipattern, redundant calls should be removed.

More is Less Generic A CPS has access to too many resources that negatively impact the system’s overall
performance [23]. Adding too many resources (such as threads and processes) may lead
to extra overheads for tasks like scheduling and context switching

The Ramp Generic The performance and efficiency of the CPS are exponentially reduced as the processing
time linearly increases [21]. This type of performance issue can occur in CPS for various
reasons, such as changes in the environment or processing a large amount of historical
information [23].

Museum Check-
room

Generic A CPS uses a simple First Come First Serve (FCFS) queue to manage resource alloca-
tion to processes [33]. This can lead to performance issues in cases where this resource
management system needs to handle too many processes. To resolve it, CPS developers
should implement priority queuing.

Falling Dominoes Generic A failure of a module leads to more failures in other modules [23]. Since CPSs includes
many small interacting hardware pieces with various software modules, this common
antipattern can also occur in a CPS. Developers must ensure that modules are as
isolated as possible to prevent this antipattern from occurring.

� Activity : the project must have a minimum of 50
commits as we have to identify self-admitted perfor-
mance issues. This lower limit was chosen to be in-
clusive of less active projects while excluding projects
that did not use GitHub to track and resolve issues.

� Popularity : a selection of popular and less popular
projects must be made; We selected the two most
popular projects in the CPS domain, i.e., the projects
with the most stars and forks; nine relatively pop-
ular projects; and an additional four projects with
less than 100 stars, as we are interested in antipat-
terns that arise independently of the maturity of a
project. From the most and least popular projects,
one project with a high star rating and one with
a high fork rating was selected. For the less pop-
ular project, we selected two additional projects as
this category of projects were shown to have a low
number of commits. The other eight projects are se-
lected to range between the least and most popular

projects.

� Programming language: the project must be written
in C, C++, Java, JavaScript, or Python. While C,
C++ are the most common programming languages
for CPS [24], we also consider other programming
languages to increase the generalizability of our re-
sults. Therefore, the resulting selection of projects
must be a diverse selection of programming languages
used.

This resulted in 14 projects, which are described in
Table 2. Notice that the projects written in C, C++, and
Python have also been used in a prior study [24] aimed
at characterizing CPSs according to the type of functional
bugs/issues they contain. Our selection comprises projects
with various maturity levels: PX4-Autopilot and Vacuum
Robot Mark II have the highest and lowest contributions,
with 35,537 and 54 commits to the main branch, respec-
tively. Furthermore, these projects reflect different ap-
plications of CPS, such as software for controlling drones,
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vacuum cleaners, or small robot kits. Table 2 also indicates
the number of stars and forks for each of the CPS projects.
The most popular projects in this dataset are Johnny-Five
with 12.4K stars and PX4-Autopilot with 4.8K stars. This
diversity in projects aims to ensure that we find antipat-
terns not specific to one CPS domain, a programming lan-
guage, or the maturity projects.

3.2. Analysing Self-admitted Performance Issues

To build our taxonomy of antipatterns, we manually
analyzed and classified self-admitted performance issues,
i.e., issues related to performance aspects (e.g., memory
usage) that are mentioned by the developers in the com-
mit messages, or source code changes and comments. Our
main methodology is, therefore, based on manual analy-
sis of structured (source code) and unstructured (commit
messages) data, which we manually classified into cate-
gories of antipatterns.

There are two ways to build a taxonomy [55]: (1) top
down (also called enumerative), where the categories are
predefined, or (2) bottom up (or faceted), where the cat-
egories are created by analyzing the data. Since we have
a pre-existing catalog by Smith [32], we used a hybrid ap-
proach: for every commit we analyzed, we checked if it
matched any of the categories in Smith’s taxonomy; in
case of no match, we marked them and later clustered
them into new categories.

As reported in Table 2, there are 52,318 commits in
total to analyze across all projects. Since manually ana-
lyzing all commits in our dataset would be infeasible, we
combined (1) keywords search, (2) information retrieval,
and (3) topic modeling techniques to extract a subset of
commits that are likely to contain performance-related is-
sues. This “candidate” list of commits was then manually
analyzed for validation (to check for their relevance) and
classification (for the creation of the taxonomy).

The next subsections detail the steps of our method-
ology as well as the semi-automated tools we employed to
identify the relevant commits.

3.2.1. Initial Keyword Selection

We relied on a keyword search to extract the list of
candidate commits for the manual analysis. That is, we
manually selected a set of keywords likely to be used in
performance-related issues, and we searched for commits
containing at least one of these keywords. We created an
initial set of keywords based on the authors’ experience.
Further, we expanded the list of keywords by including
keywords from the literature related to embedded systems
and performance, i.e., [32, 17]. We then manually ana-
lyzed a sample set of commits and added any keywords
we also deemed relevant. Table 3 reports the resulting list
of 22 keywords. These keywords were also validated with
domain experts from the H2020 COSMOS project [56].

3.2.2. Keyword Set Expansion with Information Retrieval
and Topic Modeling

To ensure we gathered all performance-related commits
from each project, we applied both Information Retrieval
(IR) and Topic Modeling (TM) techniques to expand our
initial keyword set.

Data preprocessing. For each project, we down-
loaded all commit messages and code changes. Then, we
pre-process these artifacts by tokenizing the commit mes-
sage, removing stop words, and stemming. First, tok-
enization aims to extract words in the text and remove
non-relevant characters, such as punctuation marks, spe-
cial characters, and numbers [27]. As commit messages
can contain code snippets, we split compound names (i.e.,
identifiers) into tokens using camel case and snake case
splitting [57]. For example, the method name get data

will be split into the two tokens get and data.
We further applied stop-word list and function to re-

move words that do not contribute to the semantic content
of the analyzed text [58, 59]. The former is a list of generic
words (i.e., prepositions, articles, auxiliary verbs, and ad-
verbs) that are commonly found in any text, thus, not pro-
viding any useful information. Our stop-list includes the
standard list for the English language [59], plus a list of
words that are specific to the programming languages (i.e.,
reserved keywords like class in Java). The stop-word
function instead removes words that are too short [58],
i.e., that contain less than three characters.

Finally, we applied stemming algorithms to reduce the
words to their root form. To this aim, we used the Porter
stemming algorithm [60].

Topic modeling. To better understand the context
in which the keywords are also used, we also applied topic
modeling [61] [27], specifically Latent Dirichlet Allocation
(LDA), to each project separately. Figure 1 depicts the
overall process. Given a software project A 1O, we apply
LDA 2O on all commit messages after the pre-processing
steps described above.

LDA requires setting three hyperparameters, namely
α, β, and the number of topics k [61]. For this study,
we performed unsupervised hyper-parameter tuning using
genetic algorithms based on the silhouette coefficient, as
suggested by literature [26, 27]. The resulting parameter
values are as follows: k = 20, α = 0.5, and β = 0.2. To
address the probabilistic nature of LDA, we ran Gibb’s it-
erative process 10 times with different random seeds [27].
Therefore, the topics obtained are the average across the
repetitions. The topic modeling returned a list of 20 topics
per project, each containing 20 words 3O that are statisti-
cally related to one another according to LDA.

Using this methodology, we could quickly analyze each
project’s topics and words that might be of interest for
further analysis. We reviewed each word 4O and identified
words that are related to performance issues. These words
were then added to the list of keywords for the next step
of the methodology.
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Project Name Language Nr. of commits Stars Forks Domain

PX4-Autopilot C++ 35,537 4.8K 11.3K Automotive
Andruino-esp32 C 1747 8.5k 5.4k Arduino
Grbl C 699 3.2k 1.4k Arduino
DroneKit Android Java 5,810 211 217 Drones
Node AR Drone JavaScript 281 1.7K 446 Drones
Android App Manager Java 231 10 12 Robotics
Cylon JavaScript 1,323 3.8K 367 Robotics
Johnny Five JavaScript 3,355 12.4K 1.8K Robotics
Robonomics-JS JavaScript 68 13 8 Robotics
Robonomics-Contracts JavaScript 502 78 31 Robotics
Vacuum Robot Mark II Java/C++ 54 28 3 Wheeled Robot
TurtleBot C++ 1,142 236 280 Wheeled Robot
TurtleBot 3 Python 526 770 637 Wheeled Robot
Valetudo JavaScript 1,043 2.5K 258 Wheeled Robot

Table 2: Projects selected for Study I

Project C

Project B

Project A

Project C

Project B

Project A

Apply Topic Modelling, 
for each project seperately.

Latent Dirichlet Allocation 
(LDA)

Manual Analysis

 Topic 3 
[1] ... 
. 
[18] dynamic Project 

4

Topics & Words

(20 topics each 20 words)

 Topic 1 
[1,] "readmemd" 
[2,] "node" 
[3,] "slam" 
[4,] "request" 
[5,] "algorithms"

2

3

All Commits

Project A

Commits

1

5

Project A

Interesting Commits

Figure 1: Topic-Modelling process

While we started with an initial set of 22 keywords,
this procedure led us to add 28 additional keywords af-
ter applying stemming. This means that keywords like
“time” will be used to represent all words (in the commit
messages) with the same root, such as “timing”, “timed”,
“timer”, and so on.

For the sake of brevity, we do not report the full list of
keywords in this paper. However, interested readers can
find the list of keywords in our online appendix [62].

3.2.3. Extraction of Candidate Commits

The keywords from the previous steps have then been
used to extract commits that should be manually analyzed.
To this aim, we created the tool PyRock. It mines the
history of a Git project and returns all commits whose
message contains one of the targeted keywords. Figure 2
visualizes the tool’s architectural design.

PyRock requires two input parameters: (1) the repos-
itories list and (2) the local/remote flag. The former is
a list of repositories on which we want to perform the
automated code history analysis. The latter parameter
indicates whether the repositories are available locally or
PyRock needs to fetch them remotely. For the local mode,

Local / 
Remote flag

Repositories 
list

Validate

Repositories 
Selection

Match

PyDriller

Results

Keywords

1

2

3

4

Repository 1 Repository n........

Commit 1 Commit n........

Local

Remote

Repositories

Figure 2: PyRock Architecture

the user also needs to provide the directory in which the
local repositories are stored.

These user inputs are first validated by PyRock’s Vali-
date module (see 1O in Figure 2). This module checks that
the user has indicated which mode (local/remote) to run
and which repositories to analyze. In local mode, PyRock
will only check locally stored repositories; in remote mode,
PyRock will only check remotely located repositories. Fur-
ther, it is possible to run PyRock with one or a full list of
repositories.

After verification, PyRock selects each repository with
the Repositories Selection module, see 2O in Figure 2,
for initiating the next step. In local mode, this module
validates the input data and checks whether the given
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Keywords Explanation

performance, runtime As the focus of the research is performance, the keywords ‘performance’ and
‘runtime’ link directly to any commit that is related to this area.

slow, slower, slowing, fast, faster, increase, de-
crease

These adjectives are used to indicate a change in the commit in the described
way. This could indicate a performance improvement or decrease.

memory, memory-heap, memory-leak, mem-
ory leak, bottleneck, overhead, deadlock, live-
lock, infinite, speed, impasse, hang, stuck

These keywords are chosen based on previous experience, books regarding
performance, and found during the analysis phase.

Table 3: Keywords in our initial steps along with their description

repositories’ location contains the projects presented in
the repository list. In remote mode, it checks whether
the repositories’ remote addresses are reachable.

To mine the history of the repositories ( 3O in Fig-
ure 2), PyRock utilizes PyDriller [63], a commonly used
open-source Python framework for mining Git reposito-
ries. PyRock passes the information to PyDriller regarding
each repository one at a time.

In the next step, the commit messages returned by Py-
Driller are passed through the Match module, see 4O in
Figure 2. This module utilizes a keyword file containing
a list of keywords that could indicate a potential perfor-
mance antipattern and formed using IR and TM as de-
scribed in Section 3.2.2. See Table 3 for the keywords
used in this analysis. This module considers any commit
message containing at least one of the performance-related
keywords as a candidate commit for further analysis. Fi-
nally, this module stores and returns the list of collected
candidate commits, which are then considered for manual
validation.

3.3. Manual Analysis

As a result of the previous steps, we obtained a list of
2699 commits potentially related to self-admitted perfor-
mance issues. Out of these, 1059 commits are related to
the keywords in our initial set (see Section 3.2.1). In con-
trast, the remaining 1640 commits are related to the key-
words found by applying information retrieval and topic
modeling techniques (see Section 3.2.2).

Two authors of this paper manually analyzed these
commits independently following an open coding proce-
dure. The authors followed a rigorous procedure to ensure
the quality of the analysis, handling potential conflicts and
disagreements. In particular, each validator separately
read and analyzed each commit by reading the commit
message. If a commit was unclear, the validators further
analyzed the code changes, the associated issues, pull re-
quests, and documentation when needed. This allowed us
to: (1) identify and remove false positives, (2) check even-
tual matches with the existing catalog by Smith [17], and
(3) identify self-admitted performance issues that do not
belong to any of the existing CPS antipatterns.

Therefore, our manual analysis process required to fol-
low seven steps as described below:

1. Check the commit message for the developer’s ex-
planation of what has been done.

2. Code changes in the commit. Can we find any
of Smith’s [23] CPS antipatterns? Do we see other
potential antipatterns?

3. Check if the commit is mentioned in any issue or
pull request, to understand if the changes are linked
to any other changes.

4. In case it is relevant, read comments and notes
mentioned in the issues and pull requests. What
were the design considerations discussed in the com-
ments? More information received regarding the orig-
inal issue?

5. Read the documentation of the changed classes to
obtain more information regarding the developers’
design considerations potentially.

6. Analyze the final version of the file in the main
branch to check if the CPS developers modify/revert
the changes in the commit under analysis. This can
reveal if the changes were accepted or if other issues
were found with the proposed solution.

7. In case it is relevant, read the documentation regard-
ing the software and hardware architecture of
the projects under analysis. To understand the rea-
soning for changes to the design due to added hard-
ware support.

To further increase the reliability of our analysis, 38%
of the commits were cross-reviewed by two external val-
idators (students) that are not authors of this paper. The
overall agreement among the validators was 93.88%. In
case of disagreements, the validators discussed the reasons
for the disagreement and reached a consensus on whether
the commit should be considered a performance issue or
not and whether it fits in the existing taxonomy or not. In
total, the manual analysis took 904 hours, including the
cross-review process and disagreement resolution.

The complete list of commits analyzed and the re-
sults of the manual analysis are available in our GitHub
project 1.

1https://github.com/ciselab/CPS_repo_mining
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Android App Manager 7 6 (85.71%) - - 1 - - - - - - - - - - - - - - - - - 1 2
Arduino-esp32 140 114 (81.42%) - - 1 2 - - - - - - - - - - 2 - - 1 - 8 15 29
Cylon 21 21 (100.00%) - - - - - - - - - - - - - - - - - - - - 0 0
DroneKit Android 99 88 (88.89%) - - - 1 - - - - - 1 - - 1 1 - - - - 1 - 6 11
Grbl 217 199 (91.71%) - - - 1 - - - - - - - - - - - - - - - - 26 27
Johnny Five 147 131 (89.12%) - - - - - - - - - 2 - - - - - - - - - - 12 14
Node AR Drone 48 47 (100.00%) - - - - - - - - - - - - - - - - - - - - 2 2
PX4-Autopilot 1869 1297 (69.40%) 1 3 1 12 1 - - - - 2 - - 1 - 55 1 2 5 - 18 551 653
Robonomics-Contracts 7 7 (100.00%) - - - - - - - - - - - - - - - - - - - - 0 0
Robonomics-JS 0 0 (0.00%) - - - - - - - - - - - - - - - - - - - - 0 0
Turtlebot 24 20 (83.33%) - 1 - - - - - - - - - 1 - - 1 - - - - - 1 4
Turtlebot 3 27 10 (37.04%) - - - - - - - - - - - - - - - - - - - - 21 21
Vacuum Robot Mark II 2 2 (100.00%) - - - - - - - - - - - - - - - - - - - - 0 0
Valetudo 91 84 (92.31%) - - - - 1 - - - 1 - 1 - - - - - - - 1 - 3 7

Total 2699 2026 (75.06%) 1 4 3 16 2 0 0 0 1 5 1 1 2 1 58 1 2 6 2 26 638 770

Table 4: Number of manually analyzed commits and their classification in false positives (commits not related to performance issues) and
true positives. The latter are classified based on the existing performance antipattern catalogs. The column Performance Issues To Further
Analyze denotes the performance issues that do not match any of the existing antipatterns.

3.4. Results

Table 4 reports the results of our manual analysis for
the 2699 commits that are potentially related to perfor-
mance issues. It reports (1) the number of false positives
(e.g., commits not actually related to performance issues),
(2) commits related to performance issues that are further
categorized based on the existing catalogs. In particular,
we clustered the manually-validated (true positives) per-
formance issues based on whether they are related to the
antipatterns in the existing catalog by Smith [32] (columns
marked with 1O), generic performance antipatterns that
occur in both traditional software and CPS as suggested by
Smith (columns marked with 2O), generic antipatterns re-
ported in the literature for traditional software only (colum-
ns marked with 3O), generic performance issues (columns
marked with 4O), and performance issues that do not match
any of the existing antipatterns 5O.

As we can observe, the number of false positives (i.e.,
commits not related to actual performance issues) is quite
high, being 75.06% on average. This result was expected
since some keywords (e.g., increase) can be used in the
commit message for different purposes, such as increas-

ing the number of features or increasing the waiting time
for concurrency issues. However, we have kept ambiguous
keywords in the search query to avoid missing relevant
commits.

First and foremost, we can observe that performance
issues are widely-common in the analyzed projects. Only
four out of 14 analyzed projects do not have any per-
formance issues. The project with the highest number
of performance issues is PX4-Autopilot, with 653 perfor-
mance issues out of 1869 analyzed commits. Note that this
project has the largest code history among all projects in
our study. Nevertheless, instances of performance issues
can be found in the other nine projects as well.

Finding 1. Self-admitted performance issues are widely-
common in 71% of analyzed projects. Their frequency of
occurrence in these projects ranges from 2 up to 653.

With regard to the antipatterns, we could find instances
of antipatterns by Smith in the selected projects. However,
they are not the most common, representing only 8 out
of 770 performance issues identified in our manual analy-
sis. Generic performance issues (e.g., not specific to CPS)
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cover in total 124 of the 770 performance issues. Finally,
638 performance issues (97.70%) are not covered by any of
the existing catalogs within CPS and traditional software.

Finding 2. The existing catalog of antipatterns for CPS
by Smith [32] characterizes only 8 out of 770 performance
issues identified in our manual analysis.

CPS projects are often characterized by other perfor-
mance issues that are not specific to CPS projects and
that occur in more traditional software projects. The most
common generic performance issues are related to unnec-
essary processing, memory, and network usage. However,
they characterize only 16.10% of the total number of per-
formance issues.

Finding 3. 97.70% of the identified self-admitted per-
formance issues are not covered by any of the existing
catalogs within CPS and traditional software.

4. Extending the taxonomy of CPS antipatterns

Given the large percentage of performance issues that
do not match existing antipatterns, we manually analyzed
these instances in order to identify common patterns and
characteristics. To this aim, two authors (hereafter re-
ferred to as annotators) of this paper manually analyzed
the 689 performance issues that remained unclassified

after the first manual analysis (see Section 3.3). Each an-
notator manually analyzed each of the 638 performance
issues by inspecting (1) the commit message, (2) the code
changes, and (3) the documentation of the source software
project (if available). The annotators were asked to iden-
tify the main reason/cause for the performance issue and
to provide a short description of the antipatterns and the
reason why it was identified. At the end of this procedure,
the two annotators compared their results, discussed the
differences and agreed on a final classification.

The resulting classification is reported in Table 5. The
table also includes the occurrence of each category across
all projects in our study. In reporting our results, we dis-
tinguish between performance issues and performance an-
tipatterns based on the number of projects in which their
instances occur. We consider reoccurring performance is-
sue patterns confirmed as an antipattern if they are found
in more than two projects. This is critical to discrimi-
nate between issues specific to a single project (project-
specific) from issues that can occur in CPS systems in
general (common anti-patterns). Instead, performance is-
sues that have a negative effect on the system but occur in
only one project are not considered a confirmed antipat-
tern. Further studies are needed to confirm whether these
project-specific issues might be common in other CPS sys-
tems or not.

In the remaining parts of this section, we discuss six
identified performance issues: Magical Waiting Number,
Hard Coded Fine Tuning, Fixed Communication Rate, Bad
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Android App Manager - 1 - - - - 1
Arduino-esp32 8 5 1 1 - - 15
Cylon - - - - - - 0
DroneKit Android 2 1 1 2 - - 6
Grbl 14 9 1 2 - - 26
Johnny Five 4 6 - 1 1 - 12
Node AR Drone - 2 - - - - 2
PX4-Autopilot 363 122 51 4 10 1 551
Robonomics-Contracts - - - - - - 0
Robonomics-JS - - - - - - 0
Turtlebot - - - - - 1 1
Turtlebot 3 8 1 12 - - - 21
Vacuum Robot Mark II - - - - - - 0
Valetudo - 3 - - - - 3

Total 399 150 66 10 11 2 638

Table 5: Number of instances of Potential new CPS-PA from the
manually analyzed commits.

Noise Handling, Rounding Errors, and Delayed Sync with
Physical Events. We discuss each of these identified perfor-
mance issues by providing (1) an explanation of the poten-
tial antipattern, (2) providing an example found in the Git
history of one of the projects in our dataset, (3) discussing
whether such an issue can be considered an antipattern,
and (4) proposing a solution to mitigate the issue.

4.1. Magical Waiting Number

This SPA refers to the lack of a proper waiting time
in the CPS when interacting with hardware. When the
CPS sends a request or invokes a module in the hardware,
it needs to correctly estimate the time it takes for the
hardware to finish the task and, if applicable, return the
response. We detected many scenarios in our analysis in
which the CPS developers either (i) mistakenly did not
consider adding a waiting time when sending a request to
hardware, or (ii) put a hard-coded incorrect global value
for the time it expected the hardware devices to respond.

Example As an example, a reported issue in the Vale-
tudo project 2 exposes a bug in which sending a request
to the Viomi robot vacuum cleaner 3 to change the time

2https://github.com/Hypfer/Valetudo/issues/799
3https://www.viomi.com
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zone, takes the entire connection between the robot and
the controller down. The root cause of this performance
bug is the little timeout considered by the CPS to complete
the setting time zone task. According to the discussions
about this bug in the Valetudo repository 4, this task can
take about 10 seconds. Hence, as presented in Listing 1,
this bug is fixed by increasing the timeout to 12000 mil-
liseconds.

1 this.sendCommand("get_prop", ["timezone"],

2 {timeout: 12000}).then((res) => {

3 if (res.length > 0) {

4 const timezone = res [0];

5 if (timezone !== 0) {

6 // Set timezone to UTC

7 this.sendCommand("set_timezone",

[0],

8 {timeout: 12000}).then(_ => {

9 Logger.info(

10 "Viomi timezone adjusted to UTC

");

11 });

12 }

13 }

14 });

Listing 1: Solution implemented

Figure 3 shows a visualization of this potential antipat-
tern. Here two different hardware targets are shown, each
with a different amount of time needed to complete their
calculations. If only one waiting time is manually set, no
matter what type of hardware is used, a waiting time of
10 seconds will be used for both of them.

From this example in Figure 3, when used in com-
bination with hardware that could have handled a one-
second waiting time, there is a nine seconds unnecessary
delay. This could slow down the system in multiple ways,
for example: the information from the hardware arrives
slower than it could, resulting in other processes waiting
for this information before continuing. As another exam-
ple, a thread could be blocked, waiting for this information
for an unnecessary duration. Depending on how often this
information from the hardware is required, the system’s
performance will be more heavily influenced.

Is it a performance antipattern? As presented
in Table 5, we have detected Magical Waiting Number in-
stances in 150 commits that we have manually analyzed in
this study. These commits are from nine different projects:
PX4-Autopilot, Valetudo, Johnny Five, Node AR Drone,
Grbl, Arduino-esp32, Android App Manager, DroneKit
Android, and Turtlebot 3. The projects are developed in
four different programming languages and used for various
applications (e.g., controlling drones, vacuum cleaners, or
robotic programming). Hence, given that this kind of bad
coding practice is frequently found in various projects in
our analysis, we consider Magical Waiting Number as a
new CPS-Performance Antipattern (PA).

4https://github.com/Hypfer/Valetudo/pull/806

Software

10s

Hardware

return

call

(a) Setup A (10s)

Software

5s

Hardware

return
call

(b) Setup B (5s)

Figure 3: Magical Waiting Number, visualization of two hardware
targets with different durations needed to complete calculations.

Proposed solution(s) The refactoring solution should
aim to assign the waiting times dynamically according to
the target hardware module.

4.2. Hard Coded Fine Tuning

This potential antipattern occurs when a setting or
value is manually tweaked to improve the CPSs perfor-
mance. In these cases, the result of the software perfor-
mance is verified by seeing the end result of the change,
rather than a calculated or documented reason. Making
a potential performance improvement with such a method
can be a slow process, as an adjustment to the same value
is done over multiple commits. We observed this antipat-
tern based on the comments in the connected issues and
assumed from the changes made to the same variable with
the time/date of the changes.

Example In PX4-Autopilot, we detected two linked
commits 56 where multiple stack sizes are reduced to free
up some memory. However, one of the software modules in
this CPS (sdlog) needed that amount of memory. There
is no test to ensure the resources required by sdlog are
upheld, and thereby the build process did not fail after this
memory reduction, the developers noticed the performance
issue after implementation. These changes show that they
are tweaking the settings manually to see the results to
free up some memory.

Is it a performance antipattern? As the examples
show, manual adjustments do not prove that these values
are the most optimal setting for the system. The process
of manual adjustments does indicate that an adjustment
could positively impact the performance of the CPS. Out-
side of the area of CPS, a similar phenomenon could be
adjustments of stack size. The reason we consider this an-
tipattern as CPS specific, is the core challenge with CPSs:
their real-time response in a real environment. Every time
new hardware is added to the system, the hardcoded val-
ues need to be fine-tuned to include the new hardware.
With an increasing range of hardware, the system needs

5https://github.com/PX4/PX4-

Autopilot/commit/ab63a77edf78a198117757a1d5e2dbe34cde1263
6https://github.com/PX4/PX4-

Autopilot/commit/edd2715f84532f6c4c748cc97f0fe8a2982aa885
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Figure 4: High-level overview of hardware and software modules for a
typical PX4 Autopilot system. This figure is taken from the project’s
guide page7

to support, the constant adjustments could become more
difficult to manage.

As reported in Table 5, we detected 399 commits in
our manual analysis that strive to set the most optimum
setting for the CPS. Given these findings, we consider the
Hard Coded Fine Tuning as a new CPS-PA.

Proposed solution(s) The refactoring solution should
aim to identify the values that have been tuned for each
hardware argument, before the subsequent releases. And
adjust these values such that they are easily adjustable
based on the build target. Avoid having to use the slowest
setting for the list of supported targets.

4.3. Fixed Communication Rate

Many CPS projects contain multiple hardware modules
working synchronously together. These hardware modules
need to communicate with the minimum latency to make
sure that the CPS performs as expected. As an exam-
ple, Figure 4 presents the general hardware and software
architecture for PX4-Autopilot (one of the CPS projects
in our analysis). This CPS provides a framework to con-
trol different vehicles automatically or manually. This sys-
tem contains a hardware module for controlling the flights
and, in general, movements (Flight Controller), and an-
other hardware element for providing advanced features,
such as collision prevention and object avoidance (Mission
Computer in Figure 4). Also, these two main modules
communicate with various other small hardware devices,
such as sensors, cameras, and actuators. In these projects,
the CPS developers should make sure that this communi-
cation happens with the minimum latency to ensure the
performance and efficiency of the CPS. However, setting
an excessively high communication rate leads to a higher
usage rate of resources (for instance, higher energy con-
sumption), which is especially unfavorable for devices with
limited energy resources (e.g., drones, robots, and smart
vacuum cleaners).

In our analysis, we detected cases where CPS develop-
ers set a fixed communication rate between these devices
and modules. In some other cases, they set a limit for these
communication rates. As we have seen, for example, in a
commit from PX4-Autopilot 8. Later, these developers
find scenarios where low communication rates negatively
affect the system’s performance.

Example In the DroneKit Android project architec-
ture, Android devices need to communicate with drones
for controlling purposes. In this project, the CPS develop-
ers set a default communication rate between the Android
device and the drone. However, they noticed that this de-
fault rate is not enough when the user enters the tuning
screen. Hence, in one of the commits 9, they implemented
a dynamic procedure to increase the communication rate
when a user opens the tuning screen and returns the rate
back to default when they close it.

Is it a performance antipattern? As is shown in
Table 5, we detected 66 commits in our manual analy-
sis that strives to tackle the fixed communication rate.
We identified this performance issue in five projects: (i)
DroneKit Android (implemented in Java), which provides
a framework for developing applications for Android de-
vices to control drones, (ii) PX4 Autopilot (implemented in
C++) that enables the automated and manual control of
moving devices such as multi-copters, small airplanes, air-
ships, balloons, rovers, boats, and even small submarines,
(iii) Arduino-esp32, Arduino ESP32 core (implemented in
C), (iv) Grbl, Parallel-port-based motion control for CNC
milling (also implemented in C), and (v) Turtlebot 3, a
wheeled robot written in Python and C++. Given these
observations, we consider the Fixed Communication Rate
as a new CPS-PA.

Proposed solution(s) The refactoring action should
aim to ensure that the communication rates between hard-
ware components adapt during the operation of CPSs ac-
cording to the need for communication between the com-
ponents. Though, when considering this proposed refac-
toring, the CPU and thereby power consumption can pos-
sibly be affected. It would be interesting for future work
to investigate the impact of implementing the proposed
solution.

4.4. Rounding Errors

In some scenarios, CPSs contains software modules
that perform calculations related to the physical events
(e.g., the exact angle of a robotic arm or the location of
a drone) in the project. These calculations should have
the highest precision for more accuracy and reliability to
prevent any threat to the safety of different processes in

7https://docs.px4.io/master/en/concept/px4_systems_

architecture.html
8https://github.com/PX4/PX4-

Autopilot/commit/81a4df0953e738041d9fdc2b2eb353a635f3003b
9https://github.com/dronekit/dronekit-

android/commit/2c9d9bc08147b0952eba4b6ef28701641a99bb21
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the CPS. For instance, one of the known mathematical
calculation errors that can endanger the precision of the
calculations is a rounding error in which one of the num-
bers is altered to a type with fewer decimals [64, 65].

Examples In our analysis, we found eight commits
in which CPS developers changed the number types in
these calculations to increase the calculation precision and
prevent rounding errors. As an example, a commit in
DroneKit Android 10 changes the types of numbers related
to the latitude, longitude, and altitude of the drone from
float to double. The message of this commit also indicates
that this change is applied to increase the precision of these
numbers. At first sight, this bad practice leads to func-
tional issues. For instance, in this example, the miscalcu-
lation of the drone’s latitude, longitude, and altitude leads
to problems in how the CPS functions. However, it can
also — indirectly — negatively impact the performance of
the CPS. For example, a miscalculation in detecting the
proper coordination for the landing of drones can trigger
other correcting processes (e.g., recalculating the right co-
ordinate or recalculating other metrics for landing in the
new location), which are energy and time-consuming.

Is it a performance antipattern? As presented in
Table 5, we identified ten instances of Rounding Errors in
our manual analysis. These instances are detected in five
projects, two of which are for controlling various types
of drones: DroneKit Android and PX4 Autopilot (imple-
mented in C++ and Java). We also found Rounding Er-
rors in Arduino-esp32, Grbl, and Johnny Five (the first
two are implemented in C and the last one in JavaScript).
As with these three projects, we think that this type of
antipattern can be found in any CPS containing mathe-
matical calculations for physical values (e.g., robotics and
self-driving cars). For example, depending on the com-
piler and hardware used, there is a difference in precision
and range for using a float [66]. Some systems compen-
sate for the functional errors with correction actions; these
are pure overhead and cause performance issues or poten-
tially crash the system. Given these findings, we consider
Rounding Errors as a new CPS-PA.

Proposed solution(s) Assure that the types of vari-
ables do not introduce rounding errors for the values passed
to the hardware-related methods. For example, review
all number types (e.g., int, double, and floats) used in
hardware-related code to verify that the appropriate pre-
cision is used.

4.5. Delayed Sync with Physical Events

This issue refers to scenarios in which the CPS does
not notify running software processes and threads when
an unexpected physical event occurs. We detect two cases
in our analysis that expose this performance issue.

10https://github.com/dronekit/dronekit-

android/commit/e29a5fde6f5c871ce956ffe6659e8b34f3d8a5b2

ExamplesWe detected this performance issue in Turtle-
Bot and the PX4-Autopilot project. TurtleBot is a per-
sonal multi-functional robot kit with different input and
output ports, including a USB port for connecting it to
other controlling devices. In the detected issue, the driver
node for communicating via this USB port is not noti-
fied and is stopped if the USB connection is disconnected.
In this scenario, if the user plugs in another device, the
driver node considers the new device as the previous one.
This issue is fixed in one of the commits we manually ana-
lyzed in this study 11. This commit assures that the driver
node fast-fails when the USB device is disconnected. This
change also ensures that the driver node does not mistak-
enly detect and re-associate with a newly plugged-in USB
device as the previous USB device.

Is it a performance antipattern? Since we identi-
fied two instances of this issue in our analysis (see Table 5),
we cannot confirm if this performance issue commonly oc-
curs in CPSs. Hence, for now, we do not consider Delayed
Sync with Physical Events as an antipattern.

4.6. Bad Noise Handling

Several hardware devices contain sensors that require
software-based noise-handling techniques to collect accu-
rate data, as the input collected from these devices can
be noisy. However, in some situations, the noise-handling
techniques are not efficient, with entails that the CPS
needs to collect more data to increase the accuracy, but
this also leads to an increase in I/O resource consump-
tion. Similar to the previous section, we detected this per-
formance issue in only two projects. There were a total of
ten instances found across these two projects.

ExamplesWe detected this performance issue in PX4-
Autopilot and the Johnny Five project. The Johnny Five
project is a JavaScript robotics programming framework
working with various hardware. This project handles the
noises by selecting the median value collected from sensors.
However, by looking at the changes in the code history of
this project 12, we noticed that the implemented median
calculation was not efficient enough. One of the commits 13

in this project improves the noise handling procedure with
a faster and more stable technique.

Is it a performance antipattern? Similarly to the
previous performance issue, the Bad Noise Handling is de-
tected in only two projects in our analysis. Therefore,
we currently cannot confirm that this performance issue is
common enough to be considered an antipattern.

4.7. Revisiting RQ1 and RQ2

Summarizing the discussion of each identified CPS-PA
and results, we noted the occurrence of four previously

11https://github.com/turtlebot/turtlebot/commit/

f2d46b705722b61948313e3f2ec167dcaeeb3359
12https://github.com/rwaldron/johnny-five/pull/138
13https://github.com/rwaldron/johnny-

five/commit/d3541a70d7767e52fb9aa67b32d9f32669abf45f
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undescribed CPS-PAs and three from Smith [23] (RQ1).
Of these CPS-PAs, the Hard Coded Fine Tuning antipat-
tern is the most prevalent with 63.03% of the total number
of CPS-PA occurrences, followed by the Magical Waiting
Number antipattern with 23.70%. A short overview of the
detected CPS-PA is shown in Table 6 (RQ2).

Antipattern O
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Hard Coded Fine Tuning 399 63.03 %
Magical Waiting Number 150 23.70 %
Fixed Communication Rate 66 10.43 %
Rounding Errors 10 1.58 %
Is Everything OK 4 0.63 %
Where Was I 3 0.47 %
Are We There Yet 1 0.16 %

Total 633

Table 6: Order of CPS-PAs occurrences detected in our study.

5. Study II - Automated Detection of the new CPS
Antipatterns

As we have seen in previous studies [17, 30], antipat-
terns can negatively impact a system’s performance and
stability. Informing the developer of existing antipatterns
in their system gives them the ability to resolve the is-
sues [19, 20], and therefore possibly improve the software’s
code quality [67], performance [18], and stability [32].

In this section, we propose a novel approach to stat-
ically detect the two most frequently occurring CPS-PA
from our Study I (see Section 3), in particular, the Mag-
ical Waiting Number and Hard-Coded Fine Tuning an-
tipatterns. We focus on these two antipatterns since they
represent the large majority (71.30%) of the instances of
performance issues we have identified in Study I (see Ta-
ble 4 and Table 5) and CPS-PA occurrences (86.73%).

To detect these two antipatterns, we rely on static anal-
ysis rather than dynamic analysis as done by Pinciroli et
al. [53]. Our choice is due to the fact that static analy-
sis is faster since it does not require re-running the code
on the hardware or in a simulated environment, nor the
test cases, which are usually very expensive to run [6, 68].
Furthermore, it does not require to re-build old releases
of the CPS systems, which can be very challenging due
to obsolete hardware, dependencies, and libraries [69, 70].
However, static analysis has limitations as it requires man-
ually validating the raised warnings and removing false
alarms [71].

In this section, we first describe our approach for de-
tecting Magical Waiting Number and Hard Coded Fine
Tuning (Section 5.1), and then we evaluate against a bench-
mark (Section 5.2) of nine open-source CPS projects not
considered in Study I.

5.1. Our Approch: APSpotter

We have implemented two detection strategies for the
Magical Waiting Number and Hard Coded Fine Tuning
patterns in our tool, AP-Spotter. Details of these strate-
gies are in the following subsections (Section 5.1.1 and
Section 5.1.2). Our tool employs rule-based static anal-
ysis techniques to detect performance issues in CPSs. In
contrast to dynamic detection approaches, static analy-
sis techniques do not require high computational effort to
monitor the application during execution. See Figure 5 for
the software architecture of our tool.

AP-Spotter runs over a project (refer to 1O and 3O

in Figure 5) in search of one specific antipattern ( 2O) at
a time. It analyzes the project directory and selects the
source code files (such as C++ classes) that are of interest
for the specific antipattern under analysis. For instance,
for the Magical Waiting Number antipattern, AP-Spotter
selects the files that contain the wait() method or similar
method/function calls for hardware-software communica-
tion and multiprocessing (step 4O). Since we are inter-
ested in antipatterns at the source code level, AP-Spotter
skips modules related to Git, Azure, Docker files, doc-
umentation, web pages, Gradle usage, tests, test data,
examples, and templates. After this selection process,
AP-Spotter creates an Abstract Syntax Tree (AST) us-
ing ANTLR4 [72] 5O. Then, it analyzes the structure of
the AST in search of the antipattern ( 6O- 7O) for which it
was run. Our tool is publicly available on GitHub 14.

The parser used in this tool is specifically for C++
projects, but there are parsers available for other lan-
guages. This tool has been designed to process an Abstract
Syntax Tree (AST) resulting from any parser; thereby
making it possible to be extended to other languages for
future research.

5.1.1. Detecting Magical Waiting Number

As described in Section 4.1, the Magical Waiting Num-
ber antipattern occurs when two events happen: (1) a soft-
ware component sends a request to hardware, and (2) the
software waits for a fixed amount of time or does not wait
at all to read the response from the hardware.

To detect this antipattern, we first identify source code
files that import drivers for the hardware; hereafter, we re-
fer to these files as candidate files. We then check whether
these two events described above occur using specific rules
(regular expressions). An overview of the method for de-
tecting this antipattern is presented in Figure 6. This
procedure contains three phases and is repeated for each

14https://github.com/ciselab/CPS_SPA_Detection_Tool
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candidate file. The first phase involves identifying the re-
quests sent to hardware, in which the detector analyzes
each file to determine if it has any direct request to hard-
ware. In the second phase, our detector identifies waiting
commands after sending the request, i.e., statically iden-
tifying waiting commands such as sleep or timeout meth-
ods. Finally, our detector analyzes the code history of
the CPS to determine whether the waiting time was both
hard-coded and manually changed in prior commits.

Identifying the requests sent to hardware (Phase 1
in Figure 6) As the first step, the detector checks if it
can find at least one request to the hardware in the given
candidate file (condition 1O in Figure 6). The command
used for sending the request to hardware varies depend-
ing on the language and the project. For instance, PX4-
Autopilot, a well-known open-source CPS for controlling
drones, is implemented in C++ and uses SerialLib 15 for
serial communication between modules, or MAVLink 16

to communicate with MAVLink-based vehicles17. We de-
signed regular expressions based on the documentation of
these libraries to find the send requests in a a given source
code file; in case of a regex match, the file is considered
as a candidate file to further check for the presence of the
Magical Waiting Number antipattern.

Suppose the detector cannot find any hardware re-
quest. In that case, it assumes that it is not possible to
find the Magical Waiting Number in this file, stops the pro-
cess, and continues with the next source code file in the
project repository. However, if it finds at least one request,
it enters the second phase of the detection procedure.

Identifying the waiting commands after the re-
quest (Phase 2 in Figure 6) The second phase starts
by searching for the waiting command after the request
to hardware (condition 2O in Figure 6). If it cannot find
any waiting command, it checks if the system uses any
method of detecting the request sent previously has been
finalized before requesting the results (condition 3O in Fig-
ure 6). If it finds no method, the detector identifies the
request command as a Magical Waiting Number. In con-
trast, the detector assumes that it is not an antipattern
if no usage can be found. If the detector manages to find
any waiting command in condition 2O, it checks the nu-
meric value used as the amount of time that the system
needs to wait for the request sent to the hardware (condi-
tion 4O in Figure 6). If a fixed hard-coded value is used,
the detector enters Phase 3. However, if a variable is used
to set the waiting time, it continues Phase 2 by finding
the closest statement that assigns a value to this variable.
Then, it checks whether the assigned value is hard-coded
(condition 5O in Figure 6). If the variable is assigned dy-
namically, the detector decides that this pattern is not
a Magical Waiting Number antipattern. However, if the
value is assigned a hard-coded fixed value, the detection

15 https://github.com/imabot2/serialib
16 https://mavlink.io/en/
17 https://microsoft.github.io/AirSim/mavlinkcom/
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Figure 5: AP-Spotter

process enters Phase 3.
Analyze the code history (Phase 3 in Figure 6) If

the code under analysis is still a potential antipattern (AP)
according to Phase 2, we start the last phase. The first
condition happens when a hard-coded fixed value is di-
rectly passed as the waiting time to the wait method (true
branch of condition 4O in Figure 6). The second condi-
tion regards variables that are assigned to a hard-coded
value and passed as the waiting time (true branch of con-
dition 5O in Figure 6). In both cases, the detector checks if
the hard-coded value used as the waiting time is changed
in the code history (condition 6O in Figure 6). If this
hard-coded value is changed, it shows that developers had
to change the waiting time because they either detected a
physical event or a specific hardware module that the pre-
vious waiting time was not suitable. Hence, the detector
considers it as the Magical Waiting Number antipattern.
However, if the hard-coded value is not changed in the code
history, we cannot be sure if there is any scenario in which
the current hard-coded value does not work, and thereby
the detector does not consider it as an antipattern.

5.1.2. Detecting Hard Coded Fine Tuning

Detecting this performance antipattern in CPSs re-
quires (1) identifying the method calls that pass any nu-
meric values to hardware (e.g., requests, property setters,
etc.); (2) checking whether the passed numeric arguments
are hard-coded in the code; and (3) checking if the hard-
coded value used for these arguments is changed in the
project’s code history. This antipattern can occur in any
file; thus, we first need to identify the interesting code files
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Figure 6: General overview for detecting the Magical Waiting Num-
ber antipattern in CPS.

(same as the files used in Section 4.2).
Figure 7 illustrates the detection procedure for the

Hard Coded Fine Tuning antipattern. Similar to the detec-
tion procedure for Magical Waiting Number, this detection
method has three phases that can be applied to each inter-
esting code file. The first phase identifies hardware-related
methods, i.e., any request or method call passing numeric
values to hardware modules. The second phase analyzes
input arguments, where the detector analyzes each of the
numeric input arguments to hardware-related method calls
and detects the ones which are assigned from a hard-coded
value. Finally, Phase 3 analyzes the code history to check
whether the hard-coded values are modified in the CPS’s
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Figure 7: General overview for detecting the Hard Coded Fine Tun-
ing antipattern in CPS.

code history.
Identify hardware-related methods calls (Phase 1

in Figure 7) In the first step, the detector examines each
of the lines of code in the interesting files to detect any
hardware-related method calls (e.g., requests sent to hard-
ware modules or method calls that set a value in the prop-
erty of hardware, etc.). This step is represented by condi-
tion 1O in Figure 7. Similar to detecting requests to hard-
ware modules for the Magical Waiting Number antipat-
tern, if the detector knows the library used for commu-
nication between software and hardware, or one hardware
module and another hardware component, it can easily de-
tect hardware-related methods, as it just needs to scan for
the particular methods. If the file under analysis does not

15



contain any hardware-related method calls, the detector
assumes that it cannot find any Hard Coded Fine Tuning
antipattern in this file and continues the detection process
with the following interesting files. However, if the file in-
vokes at least one hardware-related method, the detection
procedure for this file enters Phase 2.

Analyze input arguments (Phase 2 in Figure 7)
For each of the numeric input arguments passed to the
hardware-related method call that is detected in Phase 1,
the detector inspects if the passed argument is a hard-
coded value (condition 3O in Figure 7). If this value is
hard-coded, the detector enters Phase 3. If the value
passed as an argument of the hardware-related method
is a variable, the detector finds the closest statement in
the code that assigns a value to the variable. If this as-
signed value is hard-coded (true branch of condition 4O

in Figure 7), the detector enters Phase 3. If assigned dy-
namically (false branch of condition 4O in Figure 7), the
detector assumes that this case is not a Hard Coded Fine
Tuning antipattern.

Code history analysis (Phase 3 in Figure 7) This
section is similar to the procedure explained for the Magi-
cal Waiting Number AP. We examine the code history of
the CPS to collect all the modifications to the hard-coded
values, which are passed to the hardware-related method
calls and requests (condition 6O in Figure 7). These hard-
coded values can be passed directly to the hardware-related
method call or assigned to variables that are passed later
to these methods. If the values are changed, it indicates
that developers found scenarios in which the hard-coded
value was not suitable (hence a Hard Coded Fine Tuning
antipattern is detected). If it was not changed, we can-
not be sure if this value is not suitable for all the possible
scenarios in the operation of the CPS.

5.2. Empirical Evaluation

In this section, we evaluate the precision of the AP-Spotter
tool in detecting the Magical Waiting Number and Hard
Coded Fine Tuning antipatterns. Therefore, our second
study is guided by our third research question:

RQ3: How precise can our approach detect
performance antipatterns?

5.2.1. Benchmark

To assess our tool, we have selected a set of 9 CPS
projects that were not previously used in Study I. This is
because we want to avoid any positive bias towards the
projects we have manually analyzed to identify the new
antipatterns. In particular, we selected 9 projects, whose
statistics are summarized in Table 7. These projects differ
in their sizes (number of commits, stars, and forks) and
application domains. All projects are developed in C++ (a
constraint of our tool), are open-source, and are publicly
available on GitHub.

It is also worth noticing that six of these projects (i.e.,
Arduino, Arduino-IR Remote, ArduinoJson, Carla, RFID,

and Ardupilot), have been used in a prior study aimed at
classifying functional bugs in CPS [24]. These projects
have a high activity level and are well maintained, these
projects are known by the research community as inter-
esting projects to select when investigating code quality of
CPS systems.

Three additional projects are added to the list for anal-
ysis, i) AirSim, ii) CoppeliaSimLib, and iii) Ardumower.
AirSim is a simulation platform by Microsoft and used for
AI research and experimentation [73], including assessing
reinforcement learning methods [74] and testing [75]. Cop-
peliaSimLib is a library part of Coppelia Robotics [76], its
robotics simulation is i.a., of interest due to its physics en-
gines support [77] and known in the robotics community.
Ardumower is an open-source robotic project of interest in
the DIY community. This project has a lower popularity
and number of commits compared to some of the other
projects selected. These projects have been selected for
their industrial usage, DIY community, machine learning
components, or popularity by researchers in their domain.

5.2.2. Study Setup

To answer RQ3, we ran AP-Spotter on each project
and collected the files for which our tool indicates the
presence of an antipattern (hereafter called warnings). To
assess the detection precision, we manually validated the
raised warnings considering (1) all commits (title, mes-
sage, and code changes) related to the file and statements
for which the warning is raised, (2) the project documen-
tation, and (3) GitHub issues and pull-requests. This al-
lowed us to gain more information about the nature and
rationale for the applied changes.

To assess the final precision of the tool we calculated
the weighted average. This is done as follows:

Precision =
(A ∗ATP%) + (B ∗BTP%)...

TW
(1)

Where ‘A’ is the number of warnings for Project A
and ‘ATP%’ is its percentage of true positives. ‘TW’ is
the total number of warnings in all the projects.

The total number of warnings of each project is taken
into consideration, as with a higher number of warnings
the “True positives” calculation would be more accurate.
For example, for the “Arduino-IRremote” project in Ta-
ble 8 the percentage of true positives is 100%, but the
number of warnings is only 1. Therefore we take this into
lower consideration than “Ardupilot” with a true positives
percentage of 50.70% with 71 warnings. This calculation
is done for each antipattern separately to know the tool’s
precision for that antipattern. For the tool’s total preci-
sion, we combined both the Magical Waiting Number and
the Hard Coded Fine Tuning results.

5.2.3. Results

The total number of warnings that AP-Spotter raised
for each project is reported in Table 8. In short, AP-Spotter
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Project Name Language Nr. of commits Stars Forks Domain

AirSim C++ 3,523 13.2k 3.8k Automotive
Carla C++ 5,439 7.8k 2.4k Automotive
Arduino C++ 4,236 14.1k 12.5k Arduino
Arduino-IRremote C++ 684 3.6K 1.6k Arduino
ArduinoJson C++ 1,553 5.7k 1k Arduino
RFID C++ 512 2.3k 1.3k Arduino
Ardupilot C++ 53,400 7.4k 12.8k Drone
CoppeliaSimLib C++ 375 57 28 Robotics
Ardumower C++ 1,579 207 126 Wheeled Robot

Table 7: Projects used with the Detection Tool AP-Spotter

Hard Coded Fine Tuning Magical Waiting Number

Projects T
o
ta

l
fi
le
s
in

p
ro

je
c
t

#
F
il
e
s
w
it
h

w
a
rn

in
g
s

T
P

F
il
e
s

#
In

st
a
n
c
e
s

T
P

In
st
a
n
c
e
s

#
F
il
e
s
w
it
h

w
a
rn

in
g
s

T
P

F
il
e
s

#
In

st
a
n
c
e
s

T
P

In
st
a
n
c
e
s

AirSim 1450 0 - - - 7 3 (42.86%) 7 3 (42.86%)
Carla 1289 0 - - - 0 - - -
Arduino 1310 6 5 (83.33%) 9 8 (88.89%) 0 - - -
Arduino-IRremote 122 1 1 (100.00%) 1 1 (100.00%) 0 - - -
ArduinoJson 461 0 - - - 0 - - -
Ardumower 3350 4 3 (75.00%) 8 5 (62.50%) 0 - - -
Ardupilot 4515 59 26 (44.07%) 71 36 (50.70%) 5 3 (60.00%) 6 4 (66.67%)
CoppeliaSimLib 1289 0 - - - 4 3 (75.00%) 4 3 (75.00%)
RFID 68 0 - - - 0 - - -

Total 13854 70 35 (53.93%) 89 50 (58.98%) 16 9 (59.29%) 17 10 (62.02%)

Table 8: Projects analysed with AP-Spotter and the number of antipattern occurences found.

detects the Magical Waiting Number antipattern in 3 proj-
ects, and the Hard Coded Fine Tuning antipattern in 4
projects.

For each project, the number of files containing warn-
ings and the number of instances across these files are
shown. In a number of files, multiple instances of the
antipattern were detected. For example, in the Arduino
project the antipattern Hard Coded Fine Tuning is found
in 6 files, with a total of 9 antipattern instances. We man-
ually validated these findings to verify how many of these
warnings were true positives.

Taking into consideration the Weighted average of each
antipattern detection, the weighted total tool precision is
59.49%. Examples of detected Hard Coded Fine Tuning
antipattern instances are: i) changes to the target’s speed
after test results 18 and ii) re-tuning of the gyro sensitivity

18https://github.com/ArduPilot/ardupilot/commit/

dd392f8c0a74fa0ff603ae5283792cd335fcdfcb

based on user-provided logs 19. These stood out as their
reasoning, as described in the commit message, clearly re-
lates to tweaking done after received feedback. Either by
the community or by test results. In the latter instance,
it is unclear which stage of testing was meant by the de-
veloper.

Further, examples from the detected Magical Waiting
Number antipattern instances are: i) a hard-coded sleep
duration, with no explanation regarding the chosen value,
after started listening to Gazebo topics 20 and ii) relates
to the support for multiple peripherals in the Software in
the Loop (SITL) 21. A code snippet from this last example

19https://github.com/ArduPilot/ardupilot/commit/

53c4b163ce61a8d58651cb07e54bcfa0bbbdae44
20https://github.com/microsoft/AirSim/blob/main/

GazeboDrone/src/main.cpp
21https://github.com/ArduPilot/ardupilot/blob/

09a0d8d0c0ff060f1ea9d85d6923bf70c1b15f8f/libraries/AP_

HAL_SITL/SITL_Periph_State.cpp
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can be seen in Listing 2.

30 void SITL_State :: wait_clock(uint64_t

wait_time_usec) {

31 while (AP_HAL :: native_micros64 () <

wait_time_usec) {

32 usleep (1000);

33 }

34 }

Listing 2: ArduPilot SITL code-snippet.

This code snippet shows the possibility to use a waiting
function, for which the duration can be given in microsec-
onds. Though this function seems to support the possibil-
ity to request any duration in microseconds, the waiting
method always goes in steps of 1000 microseconds. This
is not clearly described in the code or documentation.

5.2.4. Discussion and Revisiting RQ3

In this section, we discuss the results of our empirical
evaluation.

From our results, we can see that it is possible to au-
tomatically detect the Hard Coded Fine Tuning (58.98%)
and Magical Waiting Number (62.02%) antipatterns, with
a total tool precision of 59.49% (RQ3). Though we also
see a relatively high number of false positives. Review-
ing the results to investigate these false positives, shows
that two main challenges are causing these problems: 1)
issues with building the AST, and 2) the definition of these
antipatterns require them to be closely related to the hard-
ware.

For the first point, regarding the AST, the AP-Spotter
tool uses an existing library to generate the AST. An
incorrectly generated AST will result in the AP-Spotter

tool analyzing the information based on an incorrect AST,
resulting in a possible false positive. This could be due to
an issue in the library, or an edge case that the library does
not take into consideration (yet). For future research, we
plan to re-review these cases and provide assistance, in
the form of pull requests and issue creation, to the further
development of the library.

The second point is related to the definition of these
CPS-PAs. They require to be closely related to hard-
ware interaction with the rest of the system. In our au-
tomatic detection approach, we describe that detecting a
hardware-related call is necessary, see Figure 6 and Fig-
ure 7. As this in itself is a difficult challenge that requires
insight into each project and the libraries used, a more
generic detection method will need to be investigated in
the future. For the AP-Spotter tool, a generic approach
was decided, which requires a preselection of interesting
modules to be made before running the AP-Spotter tool.
This could result in both possible false negatives and false
positives. As we do not have a catalog of antipatterns ex-
isting in the selected projects, we cannot verify how many
false positives are occurring.

6. Threats to Validity

In this section, we review the threats to the validity of
our studies separated by category.

To ensure the replicability of our studies, we provide
the data collected during analysis and the tools created at
https://github.com/ciselab/CPS_repo_mining for our
first study, and https://github.com/ciselab/CPS_SPA_

Detection_Tool for our second study. We also include
README.md files in these replication packages as a guide
on how to replicate our studies.

6.1. Internal Validity

To select possible interesting commits for the first study,
we selected commits based on performance-related key-
words. This is to find developer-admitted performance
issues and analyze these commits in search for possible
antipatterns. This method relies heavily on the chosen
keywords. To mitigate possible author bias in selected
keywords, we extended our set of selected commits by ap-
plying Topic Modeling to the non-selected commits and
adding relevant resulting commits to our data set. Further,
these keywords were validated by domain experts from the
H2020 COSMOS project [56]. There is still a risk of in-
teresting commits being missed due to how the developers
write their commit messages. In future research, we want
to analyze the projects for Performance Antipatterns and
review the keywords used in their commit messages.

For the second study, we manually validated each re-
sult of the Automatic Detection Tool AP-Spotter. This
method of validating the results would only confirm true
and false positives. Potential false negatives that we are
not aware of can still occur. This would be overcome by
having a benchmark project where all antipattern in a sys-
tem are known. As far as we are aware, such a benchmark
does not yet exist. In future research, we will create such
a benchmark for a small system.

6.2. Conclusion Validity

For the first study, we selected 14 projects. Extending
the pool of projects could potentially change the number
of occurrences of each antipattern and possibly confirm
other potential antipatterns. We mitigated this by having
a broad and diverse selection of projects, but for future
research, it would be of interest to keep an eye on possible
occurrences of the potential antipatterns as described in
this paper.

For the second study, we analyzed 9 projects, which
differ from those used in the first study. Only 3 projects
showed warnings for Magical Waiting Number and 4 proj-
ects for Hard Coded Fine Tuning. Selecting a larger set
of projects would give us a more accurate estimate of the
tool’s precision.
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6.3. External Validity

In the first study, we did not consider the age and cur-
rent activity level of each project. There is a possibility
that the developers of older projects were not aware of the
existence of the SPA. Thereby, these antipatterns could
be more prevalent in older projects. The developers of the
newer projects, on the other hand, could have been aware
of the existence of these SPAs at the design stage of the
project. And thereby these SPAs would not be occurring
as often.

For the second study, the detection tool AP-Spotter
analyses the current state of the project and the history
of the file when detecting potential antipatterns. As such,
it could be that at some point in time antipatterns were
present in the system, but were resolved before the version
that we analyzed. These antipatterns are not part of our
analysis.

7. Conclusion

Since the coinage of the term CPS in 2006 by Gill [1],
CPSs have increasingly become more part of our daily
lives [35, 12, 11], from smart cars [6] to medical devices [3].
This paper researches the occurrences of CPS Performance
Antipatterns in Open-Source projects on GitHub, further,
it presents an approach to detect the two most frequently
occurring CPS-PA. The goal of this paper is to aid de-
velopers in performance-demanding CPS projects and in-
creasing awareness of existing CPS-PAs.

We conducted two studies in this paper; first, we an-
alyzed multiple open-source CPS projects to catalog the
frequency of known CPS-specific antipatterns and search
for unknown ones. In our second study, we proposed an
automatic detection approach for the two most frequently
occurring antipatterns, and we evaluated our approach
against a set of different open-source CPS projects.

As we have seen from our results, we detected the fol-
lowing antipatterns in the open-source projects that we
considered: i) Hard Coded Fine Tuning, ii) Magical Wait-
ing Number, iii) Fixed Communication Rate, iv) Round-
ing Errors, v) Is Everything OK, vi) Where Was I, and vii)
Are We There Yet (RQ1). The most frequently occurring
antipatterns are: i) Hard Coded Fine Tuning (399 out of
646 occurrences), and ii) Magical Waiting Number (150
out of 646 occurrences) (RQ2). Further, our automatic
detection approach showed a precision of 62.02% for Magi-
cal Waiting Number and 58.98% for the Hard Coded Fine
Tuning antipattern. The main challenges for automatic
detection of these antipatterns are i) building the AST,
and ii) detecting a hardware connection in the modules
(RQ3).

We hope that the AP-Spotter tool can be a start-
ing point for practitioners and researchers to be used, ex-
tended, and adjusted for the continuing effort of improving
the overall performance and code quality of CPSs.

This paper makes the following contributions:

� PyRock: an open-Source mining repository tool to
find commits that are related to self-admitted per-
formance issues based on the commit message.

� A data set of 2699 potentially performance-related
commits from 14 Open-Source projects.

� A catalog/taxonomy of new CPS-PAs identified through
manual classification and analysis of self-admitted
perofrmance issues.

� An approach for automatically detecting the two most
frequent occuring antipatterns, namely Magical Wait-
ing Number and Hard Coded Fine Tuning.

� AP-Spotter: An implementation of our proposed
CPS-PAs detection approach.

Replication packages for both studies are available
openly on GitHub 22 23. These replication packages con-
tain the data collected during the analysis and source code
of the tools introduced in this paper.

For future work, we want to conduct surveys and inter-
views with the CPS developers to better understand why
we see such a high number of occurrences for each type of
antipattern. Further, we would like to see if an automatic
detection tool for these antipatterns would be helpful to
the developers.
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[41] S. Mühlbauer, S. Apel, N. Siegmund, Accurate modeling of
performance histories for evolving software systems, in: 34th
International Conference on Automated Software Engineering
(ASE), IEEE/ACM, 2019, pp. 640–652.

[42] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr,
J. Merseguer, Performance by unified model analysis (puma),
in: Proceedings of the Fifth International Workshop on Soft-
ware and Performance (WOSP), 2005, pp. 1–12.

[43] R. Pinciroli, C. Trubiani, Model-based performance analysis
for architecting cyber-physical dynamic spaces, in: 2021 IEEE
18th International Conference on Software Architecture (ICSA),
2021, pp. 104–114.
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