
Multi-objective Black-box Test Case
Prioritization based on Wordnet Distances

Imara van Dinten1�[0000−0002−3690−2730], Andy Zaidman1[0000−0003−2413−3935],
and Annibale Panichella1�[0000−0002−7395−3588]

Delft University of Technology, Delft, The Netherlands
{I.vanDinten,A.E.Zaidman,A.Panichella}@tudelft.nl

Abstract. Test case prioritization techniques have emerged as effec-
tive strategies to optimize this process and mitigate the regression test-
ing costs. Commonly, black-box heuristics guide optimal test ordering,
leveraging information retrieval (e.g., cosine distance) to measure the
test case distance and sort them accordingly. However, a challenge arises
when dealing with tests of varying granularity levels, as they may em-
ploy distinct vocabularies (e.g., name identifiers). In this paper, we pro-
pose to measure the distance between test cases based on the shortest
path between their identifiers within the WordNet lexical database. This
additional heuristic is combined with the traditional cosine distance to
prioritize test cases in a multi-objective fashion. Our preliminary study
conducted with two different Java projects shows that test cases prior-
itized with WordNet achieve larger fault detection capability (APFDC)
compared to the traditional cosine distance used in the literature.

Keywords: Empirical software engineering · Search-based software test-
ing · Test case prioritization · Wordnet · Natural language processing

1 Introduction

Regression testing is the process of retesting a software project to evaluate
whether changes in the production code have any unintended effects on the
unchanged portions [12]. The simplistic approach to regression testing involves
executing the entire test suite within a CI/CD pipeline. However, this strategy
may not be feasible for systems that require extensive resources or have large
test suites. Therefore, researchers have proposed different techniques to reduce
the cost of regression testing [12], including removing redundant tests, selecting
a subset of tests for execution, and sorting the test cases to detect regression
faults earlier through test case prioritization (TCP).

Black-box TCP techniques have emerged as effective strategies to optimize
this process and mitigate the regression testing costs [8]. The main advantage of
black-box heuristics is that they do not require access to the source code and,
thus, can be applied to any software project. Black-box heuristics commonly
guide optimal test ordering by leveraging diversity/distance metrics. The idea is

2 I. van Dinten et al.

that diverse test cases cover different parts/behaviors of the system under test
and, thus, would be more effective in detecting faults [12].

To this aim, researchers have reduced the TCP problem into a traditional
information retrieval (IR) task [8, 10], where test cases are treated as textual
queries and used to retrieve the more diverse (less related) test cases in the
test suite. However, these methods statically inspect test case keywords and
compare them using well-known similarity functions, such as cosine similarity,
hamming distance, etc. Static keyword comparison might only partially capture
the semantic distance between test cases if they employ different vocabularies.
While unit-level tests that target the same classes may share common identifiers
or keywords, system-level tests invoke components and call specific APIs.

To address these limitations, we proposed to leverage WordNet [7], a large
lexical database of English words interlinked with each other through semantic
and lexical relations. While two words can have different meanings, they may
share a common ancestor in the WordNet hierarchy. For example, the words
“chapter” and “paragraph” are not identical, but they are semantically related
as they are both part of a “document”. Our intuition is that WordNet can provide
additional information about how two test cases can be related to one another.

Our paper introduces TestScheduler, a novel black-box TCP method that
combines the traditional cosine distance with the WordNet distances. Our ap-
proach relies on multi-objective evolutionary algorithms (and NSGA-II [5] in
particular) to prioritize the test cases based on (1) their cosine distance, (2)
their WordNet distance, and (3) past test execution cost.

We evaluated TestScheduler on two open-source Java projects, namely
Javaparser and Apache Commons Lang. The former is a parser for Java source
code, while the latter is part of the Defects4J dataset [6]. We analyze the fault
detection capability produced by TestScheduler. And compare its performance
against a baseline that relies on the traditional IR distance and past execution
cost. Our results indicate that TCP by TestScheduler can detect more faults
than the baseline while incurring a lower execution cost. This confirms our con-
jecture that WordNet can complement the traditional IR-based methods.

2 Test Case Prioritization based on WordNet

WordNet [7] is a well-established lexical database of English words grouped in
sets of synonyms, called synsets. Synsets are connected via synonym relation-
ships, i.e., distinct synsets that share the same meaning. In addition to synonyms,
WordNet also includes additional relationships between synsets, such as hyper-
nyms (superordinate terms), hyponyms (subordinate terms), meronyms (part-
whole relationships), and holonyms (whole-part relationships). We proposed a
novel approach, called TestScheduler, that prioritizes test cases based on their
semantic distance in WordNet. We elaborate on its main steps below.

Pre-processing Before using WordNet, the test cases undergo a pre-process-
ing phase aiming to extract words to query on WordNet and exclude program-
ming language-specific keywords that do not contribute to the test semantics.

Test Case Prioritization based on Wordnet Distances 3

TestScheduler pre-processes the tests by applying various IR steps: (i) tokeniza-
tion, removing stop words, and (ii) stemming. First, tokenization extracts words
in the tests and removes non-relevant characters. After which, the compound
names are split into tokens [1]. Further, it applies the stop-word list function to
remove words that do not contribute to the semantic content of the tests [1]. Our
stop-list includes the standard list for the English language (e.g., prepositions
and articles) [1], plus a list of words that are specific to the programming lan-
guages (i.e., keywords like class in Java). The stop-word function also removes
words that contain less than three characters [4]. Finally, stemming algorithms
reduce the words to their root form using the Porter stemming algorithm [1].

WordNet Distance Given two test cases ti and tj , we measure their seman-
tic distance as the average pairwise distance between their composing words/
synsets (after pre-processing) in the WordNet taxonomy/database:

WD(ta, tb) = 1
m × n

m∑
i=1

n∑
j=1

d(wi, wj) (1)

where wi is the i-th word in ta; wj is the j-th word in tb; m and n are the number
of words in ta and tb, respectively; d(wi, wj) denotes the distance between the
words/synsets wi and wj in the WordNet taxonomy/graph.

Multiple distances have been defined for the WordNet database, such as the
simple path distance, the Leacock Chodorow similarity, Resnik, and the Wu &
Palmer similarity. In this preliminary study, we focus on the Wu & Palmer
(WUP) similarity [11] while we aim to experiment with other metrics in the fu-
ture. The WUP similarity between two synsets/words is defined as: d(w1, w2) =
2×[depth (lcs(w1, w2))] / [depth(w1) + depth(w2)], where lcs(.) is the Least Com-
mon Subsumer (LCS), also called the most specific ancestor node, and depth(.)
is the depth of a given node in the WordNet graph.

Multi-objective optimization. Our approach uses the WordNet distance
as an additional heuristic/objective to guide the search for optimal test case
ordering rather than as an alternative to existing black-box heuristics. Given a
test suite T = {t1, . . . , tn}, we consider the following three objectives to optimize:

min

[
f1(T) =

n∑
i=1

cost(ti)
i

, f2(T) = −
n∑

i=2

WD(ti, ti−1)
i

, f3(T) = −
n∑

i=2

cosine(ti, ti−1)
i

]
(2)

f1 measures the contribution of each test case ti (cost(ti)) to the cumulative
execution cost divided by its position i in the test case ordering. It corresponds
to the traditional cost-based objective used in the literature [2] for test case
prioritization. f2 measures the contribution of each test case ti to the cumulative
diversity divided by its position i in the test case ordering. WD(ti, ti−1) denotes
the WordNet distance between a test ti and its predecessor ti−1 in the order.
Finally, f3 considers the traditional cosine distance between two consecutive test
cases. These three objectives promote solutions where the least expensive or the
more diverse test cases are prioritized first (i.e., executed earlier).

4 I. van Dinten et al.

Finding optimal solutions for problems with multiple criteria requires trade-
off analysis. Given the conflicting nature of our two objectives 1, it is not possible
to obtain one single solution optimal for all objectives. Hence, we are interested
in finding the set of solutions that are optimal trade-offs between the three
objectives. To this aim, we use NSGA-II [5] as it provides well-distributed Pareto
fronts and performs best when dealing with two or three search objectives [5].

3 Preliminary study

The goal of our preliminary study is to answer the following research question:
RQ1: To what extent does the use of WordNet improve the effectiveness of

diversity-based test case prioritization?
We compare TestScheduler against a baseline that prioritizes the test cases

without using WordNet data. The baseline is set up as follows: it uses NSGA-
II [2, 12] and prioritizes the test cases based on (1) past execution cost and
(2) cosine distance between the test cases. We assess the effectiveness of the
prioritized tests in terms of fault detection capability, i.e., detecting faults earlier
when executing the test suite with a given test order.

Benchmark For our preliminary study, we consider two open-source proj-
ects: Javaparser and Apache commons lang. The former is a Java library for
parsing, analyzing, and manipulating Java code and it is publicly available on
GitHub2 (containing 2,864 test cases). For test execution cost (f1 in Equation 2),
we collected the execution times available in the past build logs on the GitHub
repository of the project. For the fault detection capability, we analyzed the
git history and identified failing builds due to test failures and later fixed by
developers via source code changes (patches). We consider only faults (7 in total)
for which the developers provided a patch, and their commits do not include
unrelated changes (e.g., documentation and refactoring).

The second project, i.e., Apache commons lang, is a library with a set of
utility functions for the Java programming language (e.g., numerical function
and string manipulation). We have selected this project since it is part of the
Defects4J dataset [6]. The project has 2,223 test cases written in JUnit and has
65 isolated faults. The dataset also provides, for each isolated bug, the list of
failing (fault-revealing) test cases. As for the execution cost, we run the test
suites in a dedicated Docker container set up with the correct JVM version and
the required dependencies. We run each test case 10 times, and consider the
median execution time as the (past) execution cost.

Experimental Setup We run the TestScheduler (with WordNet) and the
baseline (without WordNet) 20 times (each) to address their randomized nature.
Both approaches rely on NSGA-II and are configured with the same default pa-
rameter values: (1) population size of 200 randomly sampled permutations; (2)
400 generations; (3) partially-mapped crossover (PMX) [2] with the probabil-
ity µp=0.; (4) hybrid mutation operator [2] that combines three different mu-
1 Diverse tests are not necessarily the least expensive to run.
2 https://github.com/javaparser/javaparser

https://github.com/javaparser/javaparser

Test Case Prioritization based on Wordnet Distances 5

Table 1: Median APFDc values (with IQR) achieved with the WordNet Similairy
vs. the traditional cosine distance. Best performance is highlighted in grey color.

Project Name Baseline TestScheduler p-value Â12

Javaparser 0.8834 (0.0415) 0.9139 (0.0390) 0.004 0.7600 (large)
Apache commons lang 0.5230 (0.0335) 0.5778 (0.0455) <0.001 0.8575 (large)

tation operators, namely swap, insert, and invert; (5) mutation probability of
µc0.1/| T | with T being the test suite to prioritize; (6) tournament selection
with tournament size k = 2. Since the two approaches differ in the number of
objectives they optimize for, we could not compare them based on traditional
metrics, e.g., HV and IGD. Among the non-dominated solutions generated at
the end of each search run, we selected the extreme (corner) points that achieved
the lowest past execution cost. We have tried other solutions from the generated
fronts (e.g., the knee or elbow solutions [2]), but they did not lead to consistent
results. Therefore, we compared the two approaches based on the cost-cognizant
variant of the average percentage of faults detected (APFDc) [2, 12] for the cor-
ner points described above. APFDc is a well-established metric in TCP, and it
reflects practitioners’ needs, interested in maximizing the number of detected
regression faults at the same level of test execution cost. To assess the signif-
icance of the differences between TestScheduler and the baseline, we use the
Wilcoxon rank-sum test with the α=0.05. We further complement the test for
significance with the Vargha-Delaney statistic (Â12).

Preliminary Results Table 1 reports the median and the interquartile
range (IQR) of the APFDc values achieved by TestScheduler and the baseline
over 20 independent runs. We observe that TestScheduler achieves a larger
(better) APFDc value than the baseline for both projects. For javaparser,
TestScheduler leads to a median increase in the APFDc value of 3.05%; for
Apache commons lang, the use of Wordnet leads to a median increase in APFDc

of 5.48%. It is also worth noticing that simply relying on the cosine distance (the
baselines) leads to APFDc values slightly above (very close) to what a random
prioritization would do (i.e., APFDc=0.5). From a statistical standpoint, the
differences are all statistically significant according to the Wilcoxon rank-sum
test (all p-values<0.01) and with a large effect size according to the Vargha-
Delaney statistic (Â12=0.76 and Â12=0.86 for javaparser and Apache commons
lang, respectively). These preliminary results confirm our intuition/hypothesis
that the use of WordNet can improve the fault detection capability.

Threats to Validity The main threats to external validity regard the gen-
eralizability of our results. In this preliminary study, we have considered only
two open-source projects. However, javaparser and Apache common langs are
well-known and widely used projects in the software engineering community. The
latter project is also part of the Defects4J dataset, which is a well-known bench-
mark for software testing research. Replicating our results with more projects
and different application domains is part of our future plan.

6 I. van Dinten et al.

4 Conclusion and Future Work

Diversity-based heuristics are widely used in TCP. In this paper, we propose
to use WordNet to complement existing diversity metrics based on IR. We im-
plemented a proof-concept in TestScheduler, and demonstrated the feasibility
and usefulness of WordNet in a preliminary study. In the future, we plan to
extend our study to more projects and different application domains. We also
plan to investigate multiple distances for the WordNet taxonomy, such as the
Leacock-Chodorow distance, and the Lin distance. Finally, we have considered
only NSGA-II as the multi-objective algorithm. We plan to investigate other
algorithms, such as AGE-MOEA [9] and NSGA-III.

Acknowledgements This work has been partially supported by the European
Union’s Horizon 2020 Research and Innovation Programme under grant agree-
ment No. 957254, project COSMOS [3].

References
1. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.

ACM press New York (1999)
2. Birchler, C., Khatiri, S., Derakhshanfar, P., Panichella, S., Panichella, A.: Single

and multi-objective test cases prioritization for self-driving cars in virtual environ-
ments. ACM Trans. on Software Engineering and Methodology (TOSEM) (2022)

3. COSMOS: Devops for complex cyber-physical systems. https://www.
cosmos-devops.org (2021)

4. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Applying a
smoothing filter to improve IR-based traceability recovery processes: An empirical
investigation. Information and Software Technology (IST) 55(4), 741–754 (2013)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on evol. computation 6(2) (2002)

6. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to en-
able controlled testing studies for Java programs. In: International Symposium on
Software Testing and Analysis. p. 437–440. ISSTA, ACM (2014)

7. Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11),
39–41 (Nov 1995)

8. Nguyen, C.D., Marchetto, A., Tonella, P.: Test case prioritization for audit testing
of evolving web services using information retrieval techniques. In: International
Conference on Web Services. pp. 636–643. IEEE (2011)

9. Panichella, A.: An adaptive evolutionary algorithm based on non-euclidean geom-
etry for many-objective optimization. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference. pp. 595–603 (2019)

10. Peng, Q., Shi, A., Zhang, L.: Empirically revisiting and enhancing IR-based test-
case prioritization. In: Proc. of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. pp. 324–336 (2020)

11. Wu, Z., Palmer, M.: Verb semantics and lexical selection. arXiv preprint cmp-
lg/9406033 (1994)

12. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Software Testing, Verification and Reliability 22(2), 67–120 (Mar 2012)

https://www.cosmos-devops.org
https://www.cosmos-devops.org

	Multi-objective Black-box Test Case Prioritization based on Wordnet Distances

