
A Lightweight Approach to Determining the Adequacy of Tests as
Documentation

Joris Van Geet* and Andy Zaidman**

*University of Antwerp, Belgium
Joris.VanGeet@ua.ac.be

**Delft University of Technology, The Netherlands
& University of Antwerp, Belgium

Andy.Zaidman@ua.ac.be

Abstract

Programming process paradigms such as the Agile pro-
cess and eXtreme Programming (XP) tend to minimise cer-
emony, favouring working code over documentation. They
do, however, advocate the use of tests as a form of “liv-
ing documentation”. This research tries to make an initial
assessment of whether these unit tests can indeed serve as
a form of full-fledged documentation. The lightweight ap-
proach we propose is mainly based on the number of units
that is covered by each unit test. This paper discusses the
approach, the corresponding tool and the results of a first
case study.

1 Introduction

The program comprehension process a user goes through
when studying a piece of software can benefit greatly from
having up to date documentation available. However, often
the documentation of a software project is either out-dated
or non-existent. Programming practices such as the Agile
process or the XP process even have a tendency to minimise
documentation, as these processes value working code over
comprehensive documentation [3].

Both Agile programming and XP emphasise testing and
even advocate the use of a test-driven approach when writ-
ing a new piece of software [2]. Because the tests are writ-
ten first, they completely define what the code should do.
As such, the tests can be considered as a form of “living”
documentation that can be consulted when one wants to
learn what the code is supposed to do [4].

Our research aim then is to make an initial assessment of
the quality of the unit tests with regard to their adequacy as
documentation. To determine their adequacy, we will look
at two criteria of tests, namely:

1. The test coverage of the system, i.e. how much of the
system is actually tested.

2. Whether each test is focused on a single unit of the
system or whether each test covers a number of units.

This second criterion forms the basis for our hypothesis:
unit tests are possibly not adequate enough for documenta-
tion purposes when they cover a number of units. This basic
idea stems from the fact that when a unit test covers multi-
ple units of production code, the unit test will be harder
to understand because of an increase in coupling and com-
plexity. A similar observation has been made by Selby and
Basili when it comes to understanding “regular” production
code [5]. This is one of the reasons for the pursuit of low
levels of coupling.

To determine these “test dependencies” we rely on dy-
namic analysis, which, in the presence of polymorphism,
allows us to circumvent expensive slicing operations.

As a case study to determine the test coverage and ex-
tract the test dependencies, we used Apache Ant1, a widely
used Java build tool. We determined its test coverage for
a number of versions and extracted the test dependencies
from the latest available version.

1Form more information, see: http://ant.apache.org

2 Unit Tests as Documentation

Testing comes in many forms and can be classified in
various ways. The “Guide to the Software Engineering
Body of Knowledge” (SWEBOK) [1] provides some inter-
esting classifications. One of them is based on the granu-
larity of testing:

• Component/Unit testing is concerned with verifying
functionality of small and (clearly) separable compo-
nents.

• Integration testing aims at verifying the interaction
between components. Usually these components have
already been tested by the previous strategy.

• System testing tests the system as a whole. This strat-
egy is considered useful for testing non-functional re-
quirements, as the functional requirements should have
been tested by the previous two strategies.

It should be noted, however, that the boundary between
component testing and integration testing is blurred for ob-
ject oriented systems as objects are used at all stages of the
software process [6]. This observation by Sommerville is
interesting because it conflicts with the criteria for the ade-
quacy of tests as documentation, which we set out in Sec-
tion 1.

It is our opinion that to have optimal documentation, i.e.
to be able to understand each unit present in the system,
each unit should be documented. As a consequence we ex-
pect each unit to be tested, which we can evaluate by deter-
mining the test coverage, but we also expect each unit to be
tested in isolation, to have a clear and unrestricted view of
how the unit works. Furthermore, we acknowledge the fact
that when units are not tested in isolation, their complexity
tends to increase, which can also hinder understandability.
We are aware of the fact that certain units cannot be tested in
complete isolation, but the usage of stubs can be beneficial
to the understandability because they are often less complex
than their actual implementations.

3 Tool

When trying to determine whether each test command
tests only a single unit of production code (criterion 2 from
Section 1), we need to extract test dependencies. A test de-
pendency being the relation between a unit of code and its
invoking test command. Since we focus on the JUnit test-
ing framework, we define a unit of code as a (production)
method and a test command as a unit test method.

For extracting the test dependencies we created a tool
with a pipe and filter architecture. The tool starts by tracing
the execution of the test scenario(s), followed by an analysis
of that trace data to eventually result in two xml files that
both contain the same test dependency information, albeit
in a different form. The first file contains for each unit of

production code the test commands which invoke the unit,
while the second XML file contains the inverse relations,
namely for each test command, the units of code that are
invoked by it.

To trace the different execution scenarios, we used a
profiler agent implemented with the Java Virtual Machine
Profiler Interface (JVMPI) [7]. This agent provides a two
way communication path with the virtual machine. We
are interested in various events that the virtual machine
emits during execution, especially the method entry and
method exit events. Our agent specifically listens for
these two events as they provide the crucial information for
a dynamic call graph. Whenever such an entry or exit oc-
curs, some identification information is written to the trace
file containing the fully qualified name of the method, its
formal parameters and its return type2.

Because the virtual machine sends out these events for all
methods, including the ones from system classes and third
party libraries, we performed a basic form of filtering to
only trace packages or classes that are of interest. Note that
at this stage we merely store the trace data for further anal-
ysis (offline analysis), instead of analysing the trace data on
the fly (online analysis).

The trace file from the profiler agent provides us with the
necessary raw data to extract test dependencies as it lists
the entry and exit of all calls in chronological order. The
dependency extractor takes a regular expression to identify
the test packages or classes. Methods of such a test class
are identified as a test method if they take no arguments
and their name starts with the string ’test’, as this is the
convention in the JUnit testing framework.

Once we have identified the test methods we can easily
deduce all methods that are tested by a certain test method,
as they appear between entry and exit of that test method.
To obtain all the test methods that test a particular method,
we inverse this relationship. Finally, we store this infor-
mation in a proprietary XML format, thereby making the
test dependencies explicit in both directions. Furthermore,
method calls that appear more than once within the same
test method are only listed once, as this tool provides a flat-
tened call graph resulting in a set of methods for each test
method and vice versa.

4 Results

As we mentioned before, we used Ant, the well-known
build tool, as an initial case study for our experiment. We
chose Ant because of its relative simplicity and also because
it is widely used, both in the open source community and the

2The return type of a method is not necessary to uniquely identify a
method. However, the Java Virtual Machine provides this data together
with the parameters, we keep it for human readability.

method coverage
ant version percentage bare count

1.6.3 61% 3247/5351
1.6.4 63% 3399/5363
1.6.5 65% 3739/5745

Table 1. Method coverage as generated by
Emma.

ant version methods tests calls
1.6.3 4467 1330 286499
1.6.4 4472 1337 288363
1.6.5 4767 1407 324250

Table 2. Total count of methods, tests meth-
ods and method calls.

closed source community, as evidenced by the integration of
Ant in many commercial IDEs.

The results of our experiment can be divided into four
parts.

1. The first part determines the test coverage, for which
we used already available tools.

2. The second part deals with numerical data that we re-
trieved from the Ant distribution.

3. The third part presents anecdotal evidence that we re-
trieved when studying code fragments for evidence of
our findings from the numerical data.

4. The fourth part presents an historical perspective, cap-
turing the evolution of the testing strategy.

4.1 Test Coverage

Table 1 gives an overview of the test coverage, more
specifically the methods that are covered by the tests. As
can be seen, the coverage varies from 61% to 65% percent,
depending on the version of the Ant project.

Potentially, this also means that only about 2/3 of the
methods are documented, although this standpoint could be
considered a little harsh, as, just as with regular documen-
tation, not every part of a system needs to be thoroughly
documented.

It is our opinion that a coverage level of about 65%
should be sufficient for documentation purposes, although
we acknowledge that a higher level of test coverage can –
logically – only improve understandability.

4.2 Numerical data

Initially, we calculated the number of unique methods
tested, the number of test methods executed and the total
number of method calls present in our flattened call graph

version mean σ
1.6.3 68.02 190.35
1.6.4 64.48 183.49
1.6.5 64.14 182.40

Table 3. Average number of test methods for
an arbitrary method.

version mean σ
1.6.3 230.45 146.10
1.6.4 215.68 136.68
1.6.5 215.41 137.01

Table 4. Average number of methods that an
arbitrary test method runs through.

to get a quick feel of the application’s test infrastructure.
The results of this operation are listed in Table 2.

Based on this information we performed two calcula-
tions, namely:

• the average number of test methods that test an arbi-
trary method (Table 3)

• the average number of methods an arbitrary test
method runs through (Table 4)

We can see that, on average, a method is tested by approx-
imately 64 test methods and a test method tests approxi-
mately 215 methods. These numbers are shocking in con-
trast with the ideal one to one relation between method and
test method. However, the enormous standard deviation3 of
the averages we calculated, suggests that the actual values
are highly variable, indicating that further investigation is
needed.

To get a better view on the distribution of tested meth-
ods and test methods, we represented them in a box plot4

which uses more robust measurements such as the median
and other quartiles instead of the unstable mean.

Figure 1 illustrates the distribution of the number of
methods that are tested by a test method. For version 1.6.5,
for example, you can see that half of the test methods test
more (and the other half tests less) than 212 methods, since
212 is the median (= the second quartile Q2). For the same
version you can see that half of the test methods test no
more than 331 (the third quartile) and no less than 149 (the
first quartile) methods. The distribution is almost symmet-
ric around the median, leaving us with similar results as the

3According to [9] standard deviation is the most common measure of
statistical dispersion. Simply put, standard deviation measures how spread
out the values in a data set are. Traditionally this measure is represented as
σ.

4Please note that we use a stripped version of the traditional box
plot [8]. Whereas a standard box plot has a parametrised acceptable range
to define what an outlier is (usually 3/2 times the inter quartile range), our
range simply extends to the minimum and the maximum values, thus not
explicitly specifying outliers.

139 140 149

0 0 0

203 203 212

580 580

641

307 306
331

0

100

200

300

400

500

600

700

1.6.3 1.6.4 1.6.5

Ant version

n
u

m
b

e
r

o
f

m
e
th

o
d

s

Q1

min

Q2

max

Q3

Figure 1. Box plot of the distribution of the
number of methods tested by an arbitrary
test method.

2 2 2
1 1 1

6
7 7

1146 1153 1222

32 32

38

0

10

20

30

40

1.6.3 1.6.4 1.6.5

Ant version

n
u

m
b

e
r

o
f

te
st

 m
e
th

o
d

s

Q1

min

Q2

max

Q3

Figure 2. Box plot of the distribution of the
number of test methods that test an arbitrary
method.

ones we obtained from the averages.
However, for the number of test methods per method, we

do get a different perspective on the distribution. As you
can see in figure 2 the box plot is stretched towards the top,
meaning that there are only few outliers. For version 1.6.5,
for example, half of the methods are tested by no more than
seven test methods. A quarter of the methods are even tested
by no more than two test methods. As opposed to the aver-
age of 64, we can see that 75% of all methods are tested by
no more than 38 test methods.

4.3 Anecdotal Evidence

Let us dig a little deeper, based on these statistical ob-
servations. In Table 2 we can see that Ant 1.6.5 runs ap-
proximately 1400 test methods and the box plot in Figure 2
shows us at least one method that is tested by more than

1 public class RenameTest extends BuildFileTest {
2 public void setUp() {
3 configureProject(
4 "src/etc/testcases/taskdefs/rename.xml"); }
5 public void test1() {
6 expectBuildException("test1",
7 "required argument missing"); }
8 public void test2() {
9 expectBuildException("test2",

10 "required argument missing"); }
11 public void test3() {
12 expectBuildException("test3",
13 "required argument missing"); }
14 public void test4() {
15 expectBuildException("test4",
16 "source and destination the same"); }
17 public void test5() {
18 executeTarget("test5"); }
19 public void test6() {
20 executeTarget("test6"); }
21 }

JUnit Test Case

1 <project name="xxx-test" basedir="." default="test1">
2 <target name="test1">
3 <rename/>
4 </target>
5 <target name="test2">
6 <rename src=""/>
7 </target>
8 <target name="test3">
9 <rename dest=""/>

10 </target>
11 <target name="test4">
12 <rename src="testdir" dest="testdir"/>
13 </target>
14 <target name="test5">
15 <rename src="template.xml" dest="."/>
16 </target>
17 <target name="test6">
18 <rename src="template.xml" dest="template.tmp"/>
19 <rename src="template.tmp" dest="template.xml"/>
20 </target>
21 </project>

Test Build File ’rename.xml’

Figure 3. Test structure for the rename Task

1200 of these test methods. Based on the rather high aver-
age (Table 4) of methods that an arbitrary test method runs
through, we suspect even more of these methods that are
tested by almost all test methods. Two possible explana-
tions come to mind:

1. Some form of generic setup code is executed at ev-
ery run. This code would have to be located in the
test methods themselves5, since the dependencies of
the setUp() and tearDown() methods are not ex-
tracted from the original trace.

2. Some form of generic test code provides an execution
scenario that is similar for all tests. This would indi-
cate an integration testing strategy or at least a lack of
stub usage.

5Setting up test data in the test method is not uncommon as it is the
only way to initialise different test data for test methods in the same class.

bare count percentage
ant version yes no total yes no

v1 153 53 206 74.27% 25.73%
v2 259 81 340 76.18% 23.82%
v3 328 107 435 75.40% 24.60%
v4 414 150 564 73.40% 26.60%

Table 5. Second Experiment: Test methods
based on BuildFileTest.

Further investigation of the source code revealed the lat-
ter option to be true. We queried our dependencies for
classes containing those often called methods and briefly
navigated through the source code with a code browser.
Figure 3 nicely illustrates our findings. The top of Fig-
ure 3 is a source code extract of the unit test of the Ant
rename task. As you can see in line 1, this test extends
BuildFileTest, an abstraction of a unit test that uses a
build file as test data. Line 3 shows that, for each test run,
a project is configured based on rename.xml (bottom of
Figure 3), a build file specifically designed for testing the
rename task. As you can see, each test method has its own
target in the build file. Executing a test method is noth-
ing more than calling its corresponding target on the newly
created project and checking whether or not the task pro-
duces the correct exception. When searching for that spe-
cific build file, we found similar build files for almost all
other tests.

4.4 Historical Perspective

We performed similar experiments for four other phases
of Ant’s evolution, to verify whether production code and
tests evolve (more or less) simultaneously. Our observations
here are that the test base, and with it the amount of unique
methods that are tested, grows consistently with each ver-
sion. This suggests that newly created test methods test pri-
orly untested functionality. Also, we see that the number of
tested methods increases more rapidly than the number of
test methods. Furthermore, on average, a test method runs
through more methods with each subsequent version. This
indicates that the integration testing strategy is gaining pop-
ularity as the development of Ant evolves.

To investigate this further, we queried our dependencies
for the BuildFileTest class, as it is the basis of the test-
ing framework in version 1.6.x. The dependencies revealed
the presence of this class in all versions except for v1.
Closer investigation showed that in v1 similar functionality
was available in the TaskdefsTest class. As the name
indicates, this was only used to test Ant’s taskdef con-
structs. In the transition to v2 this class was renamed to
BuildFileTest to be used by all Ant constructs. To
investigate the evolution of this testing strategy we queried

the dependencies for all test methods that call at least one of
these framework methods and for all test methods that call
none of them. The fourth column of table 5 shows the per-
centages of test methods that rely on the BuildFileTest
(or the TaskdefsTest for v1). A remarkable result at
first sight, as we might have expected this percentage to
grow in subsequent versions. However, this merely indi-
cates that the integration testing framework was already in
place in v1 (in the form of the TaskdefsTest) and that
the increased usage of that framework has been consistent
over the different versions: for every four new test methods,
three were based on the BuildFileTest.

4.5 Discussion

From the statistical data, the anecdotal evidence and the
evolutionary trends that we have discussed in the previous
sections, we can conclude that the development team of Ant
does not follow a strict unit testing strategy, but rather, fol-
lows a strategy that can be classified as an integration testing
strategy.

As we have mentioned previously, this kind of testing
process can lead to tests that are less suitable for documen-
tation purposes. The main indicator for this reduced ade-
quacy is the fact that a single unit of code cannot be easily
understood without also understanding other modules.

This tight coupling might have its consequences when
trying to understand a single unit or a small set of units
within the system separately. Furthermore, it has been
shown that tightly coupled systems are more difficult to un-
derstand [5], and there is no reason to assume that this is
any different for tests.

5 Conclusion

In this paper we have presented a lightweight approach
to determine the adequacy of (unit) tests as a form of docu-
mentation. Such a form of documentation is actually advo-
cated by the Agile process and eXtreme Programming (XP).
To determine the adequacy, we set out two criteria, namely
(1) the level of test coverage and (2) whether the tests work
in isolation, i.e. how many units of production code are in-
volved in one test command.

With regard to the test coverage we witnessed a method
test coverage of around 65%, which is a quite good level,
but can be improved for documentation purposes.

With regard to the isolation factor, we witnessed an inte-
gration testing strategy in our Ant case study. This integra-
tion testing strategy stands opposed to the isolation criterion
that we set out and as such, we have to express our concerns
with regard to the understandability of these pieces of (test)
code, as involving multiple units of code within one test

command increases coupling and complexity, two closely
related factors that can influence understandability.

References

[1] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, edi-
tors. Guide to the Software Engineering Body of Knowledge -
SWEBOK. IEEE Press, 2001.

[2] K. Beck. Test Driven Development: By Example. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mel-
lor, K. Schwaber, J. Sutherland, and D. Thomas. Manifesto

for agile software development, 2001. Accessed on July 17th
2006, http://agilemanifesto.org/.

[4] E. Hieatt and R. Mee. Going faster: testing the web applica-
tion. IEEE Software, 19(2):60–65, 2002.

[5] R. W. Selby and V. R. Basili. Analyzing error-prone sys-
tem structure. IEEE Transactions on Software Engineering,
17(2):141–152, 2 1991.

[6] I. Sommerville. Software engineering (6th ed.). Addison-
Wesley Longman Publishing Co., Inc., 2001.

[7] Sun. The Java Virtual Machine Profiler Interface documenta-
tion, 2004. Retrieved May 7th 2006.

[8] J. W. Tukey. Exploratory data analysis. MA: Addison-
Wesley, 1977.

[9] Wikipedia. Standard deviation. Retrieved May 14th 2006.

