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ABSTRACT
As we have come to rely on software systems in our daily lives,
we have a clear expectation about the reliability of these systems.
To ensure this reliability, automated software quality assurance
processes have become an important part of software development.
However, given the climate crisis that we are witnessing, it is im-
portant to ask ourselves what the impact of all these automated
quality assurance processes is in terms of electricity consumption.
This study explores the electricity consumption and potential envi-
ronmental impact of continuous integration and software testing
in 10 open source software projects.
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1 INTRODUCTION
As we have grown accustomed to living in a software-filled world,
we are also more and more relying on software for everyday tasks.
Because of our reliance on software, its reliability is indispens-
able [20]. For example, it has been estimated that software failures
in 2017 cost the economy $1.7 trillion [25]. Additionally, Ko et al.
report on software failures that can be directly linked to the loss
of 1500 human lives [24]. In this light, the role of software quality
assurance becomes ever more important.

To ensure the quality of software systems, software engineers
have a variety of quality assurance approaches at their disposal.
Some popular approaches are: software testing [1, 4, 7, 21], modern
code review [3, 5, 10, 21], automated static analysis [6, 16], and build
automation [8, 11, 18, 29]. Of the four aforementioned approaches,
software testing, automated static analysis, and build automation
are automated and run on the workstations of software engineers,
or are run through continuous integration services [8].

While we acknowledge that reliable and robust software is of the
utmost importance, we cannot neglect that Information and Com-
munication Technology (ICT) is a growing concern in the climate
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change debate. It has been estimated that in 2020 the energy con-
sumption of the ICT sector reached 15% of the world’s total energy
consumption [15], and it has been predicted that the ICT sector
could consume up to 20% of the world’s electricity by 2025 [13].
How that use of electricity translates to the environmental impact
is tightly related to the carbon intensity of the electricity. The car-
bon intensity expresses the “cleanness” of the produced electricity,
i.e., it specifies how many grams of CO2 are released to produce
a kilowatt hour (kWh) of electricity [30]. The carbon intensity de-
pends on how the electricity was produced, e.g., through renewable
resources, or using fossil fuels.

Depending on the study, the overall ICT carbon footprint is
broadly estimated to be between 1.8% to 3.9% [14] of the total
greenhouse gas emissions as of 2020. While the impact of ICT seems
modest when compared to sectors like transportation (27%) and the
manufacturing industry (24%) [23], there seems to be consensus that
“urgent policy action and investment are needed to limit increases in
energy use driven by increasing demand of ICT services” [14].

Our exploratory study fits in this call to arms, aswe explore— and
hope to create awareness on — how popular software engineering
practices are contributing to the consumption of electricity. While
Pang et al. indicate that software engineers typically have little
knowledge of energy consumption [28], Chowdhury et al. [9] and
Verdecchia et al. [35] rightfully point out that software engineers
need to have awareness about and feedback on energy consumption
before they can adjust their programming practices and behaviour.

Our particular focus for this study are automations of popular
software engineering practices, particularly those that we execute
frequently, often without thinking about them. Two prime examples
of such automations are software testing, and continuous integra-
tion. In particular, we aim to investigate how frequently they are
executed and what the impact of testing and performing a complete
build is in terms of electricity consumption.

Our guiding research question is the following:

RQ: What is the energy impact of automated
software testing and continuous integration in
open source software development?

Our exploratory results indicate that there is great variety in the
energy consumption among projects for these quality assurance
practices. A striking example of a project that consumes quite a bit
of energy is the Elasticsearch project: it was built 5025 times in
2022, leading to an estimated yearly energy consumption of ∼161.5
kWh for building this project on an AMD Ryzen 7 CPU. This level
of energy consumption corresponds to ∼9.7% of the yearly average
household energy consumption of a citizen in the European Union.
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2 STUDY SETUP
We have a very clear understanding that we can in absolutely no
way be complete in our investigation to estimate the energy con-
sumption of quality assurance practices in open source software
(OSS). Essential reasons for this incompleteness are:

(1) We would need to have access to the precise hardware on
which the build and test actions take place and be able to
measure the precise power consumption.

(2) We would need to build all projects on GitHub to get a com-
plete picture. This is infeasible from (1) a time perspective,
and (2) from the perspective that it is non-trivial to get OSS
projects to build out of the box. In particular, Khatami and
Zaidman have shown that around 47% of the Java projects
they considered for their study run out of the box, i.e., with-
out making major changes to the configuration of their sys-
tem [22]. Similar numbers have been reported by Hassan et
al. (46%) [17] and Sulir et al. (41%) [31].

(3) Wewould need to takemultiple environments into considera-
tion, i.e., both the workstation environment, i.e., the hardware
on which the software engineer would locally run tests, e.g.,
in the IDE [7] or command line, and the continuous inte-
gration environment [8], i.e., a server or cloud environment
on which a complete build-test cycle is performed after a
commit to version control.

As such, we fully acknowledge that our investigation is (1) ex-
ploratory in nature, (2) composed of a convenience sample in terms
of projects, i.e., those projects that we could build locally “out of
the box”, i.e., we did download specific versions of the development
kit, or specific compilers, but did not make changes to the source
code, and (3) the energy measurements come with a number of
important assumptions (see below).

2.1 Two evaluation platforms
We opted to run our energy evaluations on two separate platforms:

• A Raspberry Pi 4 B1. This mini computer is equipped with
a 1.8 GHz 64-bit quad core ARM Cortex-A72 processor pro-
duced by Broadcom (model: BCM2711C0), 8GB RAM, and a
Samsung 256GB mini SD card. It runs Debian GNU/Linux
11 (“Bullseye”).

• AMinisforumMini PC (model EM680)2 featuring an AMD
Ryzen 7 6800U 8-core processor with a base clock speed of
2.7 GHz (max. 4.7 GHz), with 16GB of RAM, and a 512GB
SSD. As operating system, it runs Windows 11 Pro (version
22H2).

Our choice for these two platforms was instigated by the fact
that both these devices are USB-C powered and contain no battery.
As such, we could monitor their power usage with the CT-3 power
meter from AVHzY3. We used the Shizuku Toolbox to read out
electricity measurements from the CT-3 power meter4.

1See https://www.raspberrypi.com/products/raspberry-pi-4-model-b/, last visited De-
cember 1st, 2023.
2See https://store.minisforum.com/collections/all-product/products/minisforum-
em680, last visited December 1st, 2023.
3See https://www.avhzy.com, last visited December 1st, 2023
4See https://yk-lab.org:666/shizuku/manual/software/manual-pc-en-us/content.html,
last visited December 1st, 2023.

This begs the question of how realistic these platforms are in
terms of actual computational performance versus electricity
consumption. On the one hand, the Raspberry Pi platform features
an ARM Cortex-A72 processor design that is in use in many mid-
range smart phones (e.g., Samsung’s Galaxy A9). The Raspberry
Pi’s overall electricity footprint is less demanding with a 7.5W
TDP5. On the other hand, the Minisforum Mini PC contains more
realistic hardware with the AMD Ryzen 7 6800U chip that has an
adjustable TDP of 15–28W. The chip is in use in popular notebooks
such as the Asus Zenbook S 13. However, we assume build farms
to contain more powerful processor designs. For example, Amazon
Web Services uses Intel Xeon processors6 that have a minimal
85W TDP7. We thus start from the assumption that our electricity
measurements are likely at the lower end of the spectrum.

Another important factor is the precision of the electricity
consumption measurement. We explicitly opted to measure the
electricity consumption at the hardware level, and not at the soft-
ware level. While measuring at the software level would be more
convenient, for example, see the PeTra tool for Android electricity
measurements [26], it is also less precise as it typically only consid-
ers CPU usage [19]. An alternative to a USB-C power meter would
be the Monsoon power meter [2]. We avoided using a USB-C laptop,
as there could be an energy draw from the battery.

2.2 Energy simulations
Because of the aforementioned assumptions that we make, and
because we randomly select a commit from the year 2022 that
builds successfully and that we assume to be representative for the
energy consumption of all builds of a project, we refer to our study
as an energy simulation study. We simulate two particular scenarios
without Docker, as explained in our replication package [36]:
Scenario 1: Run a full build + tests. This scenario roughly
corresponds to a Continuous Integration build. In this scenario we
ensure that the project is clean and that the cache of the build system
(Maven or Gradle) is empty. As such, during the build dependencies
are downloaded, the entire project is built, optional analyses are
executed (e.g., static analysis, or code coverage measurements), and
the tests are run. We use ./gradlew build or mvn install, unless
otherwise specified by the documentation.
Scenario 2: Run all tests. This scenario roughly corresponds to
a developer executing all the tests locally (commandline, outside
of the IDE). The project is built, and we simulate the electricity
consumption of running the tests. We use ./gradlew cleanTest
test or mvn test, unless otherwise specified by the documentation.

3 RESULTS
The results of our electricity consumption simulations can be ob-
served in Table 1; the table also indicates the exact commit that
we have considered, an estimation of the number of tests (a sim-
ple search for the occurrence of @Test for JUnit projects), and the
number of commits on GitHub in 2022 for the particular project.

5TDP stands for Thermal Design Power, in watts, and refers to the power consumption
under the maximum theoretical load.
6See: https://aws.amazon.com/intel/, last visited December 1st, 2023.
7https://www.intel.com/content/www/us/en/products/details/processors/xeon.html,
last visited December 1st, 2023.
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Table 1: Results of electricity consumption simulation using Raspberry Pi and Minisforum EM680. Single measurements are in
mWh (milliwatt hour), yearly estimations are in kWh (kilowatt hour).

Project Commit
# of # of Raspberry Pi Minisforum EM680 AMD Ryzen 7 6800U
tests commits Energy 1 complete Yearly energy simulation Energy 1 complete Yearly energy simulation

in 2022 build test exec. to build to test build test exec. to build to test

Apache Flink f68967a 13267 3218 2325 mWh —a 7.482 kWh — 7379 mWh 3142 mWh 23.746 kWh 10.111 kWh
Apache Maven dfbb324 1016 200 442 mWh 286 mWh 0.088 kWh 0.057 kWh 1573 mWh 918 mWh 0.315 kWh 0.184 kWh
Apache Seatunnel bd74989 2171 1457 2763 mWh —b 4.026 kWh — 16506 mWh —b 24.049 kWh —
Cruise-control 2839592 627 68 4591 mWh 3894 mWh 0.312 kWh 0.265 kWh 8996 mWh 5254 mWh 0.612 kWh 0.357 kWh
Elasticsearch 6019f38 18275 5025 3726 mWh 2703 mWh 17.723 kWh 13.583 kWh 32131 mWh 23308 mWh 161.458 kWh 117.122 kWh
Google Guave 2786f83 3199 231 2994 mWh 2777 mWh 0.692 kWh 0.641 kWh 4969 mWh 4373 mWh 1.148 kWh 1.010 kWh
Junit5 22a64e7 1382 334 1777 mWh 466 mWh 0.594 kWh 0.156 kWh 3115 mWh 625 mWh 1.040 kWh 0.209 kWh
OpenEMS 94c7111 2738 228 2201 mWh —b 0.502 kWh — 2753 mWh 2103 mWh 0.628 kWh 0.479 kWh
Spring Boot 009d927 6946 5535 1790 mWh —b 9.908 kWh — 11727 mWh 4713 mWh 64.909 kWh 26.086 kWh
Spring Framework 2a37284 8170 2564 3066 mWh 2453 mWh 7.861 kWh 6.289 kWh 6133 mWh 3666 mWh 15.725 kWh 9.400 kWh
a Test execution timed out.
b Intermittent test failures.

Single builds.When we examine the results of individual builds,
we observe a range between 442 mWh (Apache Maven) and 8050
mWh (Apache Druid) for the Raspberry Pi platform. Similarly, for
the Minisforum EM680 we observe a range between 1573 mWh
(Apache Maven) and 32131 mWh (Elasticsearch). The more power-
ful Minisforum EM680 platform uses roughly ×4 more energy for a
build compared to the low-power Raspberry Pi 4 B.
Single test suite runs. Switching our attention to the energy
consumption of running the test suite, we observe that for both
platforms the energy consumption of a test run is typically quite
a bit less than for a full build. The two extremes are still Apache
Maven and Elasticsearch with an energy consumption of respec-
tively 286 mWh and 23308 mWh. This corresponds to ∼65% and
∼73% of the energy consumption of a full build. On the faster Min-
isforum EM680 platform, we also observe that test runs require less
energy compared to full builds, but do make the observations of the
high variance between build and test energy consumption, ranging
from 20% for JUnit5 to 88% for Google Guava. This is something
that we aim to investigate more deeply in future work.

Turning our attention to the yearly energy consumption, an
initial observation is that higher yearly energy consumption mainly
stems from a higher number of commits. For example, while a single
build of Apache Flink on the Minisforum EM680 platform consumes
7.379 Wh, the yearly energy consumption is 23.746 kWh due to the
3218 builds that we observed on GitHub. In contrast, we see that a
project like LinkedIn Cruise-control had fewer contributions in 2022
and only required 68 builds on GitHub, leading to a yearly energy
consumption for building it of 0.612 kWh (Minisforum EM680).
Initial insights with regard to Research Question. Individual
runs seem to have a rather small impact in terms of electricity
consumption. For example, the most energy intensive build can be
observed in the Elasticsearch project (32131 mWh on the Minisfo-
rum EM680 platform). The yearly energy consumption for building
Elasticsearch is ∼161 kWh, which is due to the high number of 5025
commits (and builds) that Elasticsearch underwent in 2022.

4 DISCUSSION
Electricity consumption in context. To put the energy simu-
lation data of Table 1 into context: recharging your smartphone

battery from 0 to 100% daily leads to a yearly energy consumption
of ∼2 kWh8. At a macro level, Table 2 shows the yearly household
energy consumption per citizen of a number of countries. Taking
the average energy consumption of an European citizen (EU-27, the
27 countries part of the European Union), we see that this equates to
1.67 MWh. Relating this to our energy consumption simulations, we
can thus see that the yearly builds of the most electricity-intensive
project in our initial dataset, namely the Elasticsearch project cor-
responds to ∼9.7% of the average household energy consumption
in the European Union (based on the number of commits in 2022
and simulated on the Minisforum EM680).
Greenhouse contribution. The carbon intensity is a measure of
how “clean” the electricity is.9 It is determined by the fuel mix used
in the generation of the electricity.10 As Table 2 shows, the carbon
intensity, expressed in grams of CO2 per produced kWh, varies
greatly per region: 110g of CO2 in Canada versus 531 in China. As
such, it is difficult to establish how polluting building and
testing your software is, as we need to know the carbon intensity
of the electricity used to calculate the precise CO2 emissions. If we
were to assume that Elasticsearch was built in Europe, the yearly
emissions would amount to 53.774 kg of CO2.
Two platforms. We initially started our investigation with the
Raspberry Pi platform, but considering the number of test runs that
timed out, we switched to the Minisforum EM680 that launched
in June 2023. We present data of both platforms to indicate the
difference in power consumption depending on the platform. More
specifically, we measured the power consumption while the com-
puter was idle for exactly 1 hour: 1.773 Wh on the Raspberry Pi
and 12.7 Wh on the Minisforum EM680.

4.1 Threats to validity
Construct validity. The documentation of the CT-3 powermeter
that we use in our study reports a voltage resolution accuracy of
8https://www.forbes.com/sites/christopherhelman/2013/09/07/how-much-
energy-does-your-iphone-and-other-devices-use-and-what-to-do-about-
it/?sh=40bd24102f70, last visited December 1st, 2023
9https://www.nationalgrid.com/stories/energy-explained/what-is-carbon-intensity,
last visited December 1st, 2023.
10https://shrinkthatfootprint.com/electricity-emissions-around-the-world-2/, last vis-
ited December 1st, 2023.
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Table 2: Electricity consumption in the household sector per
capita in a selection of countries and the associated carbon
intensity of electricity production. Unless otherwise indi-
cated, data comes from [12, 32].

Country Household electricity Carbon Intensity
consumption per capita (grams of CO2

in MWh per kWh)

European Union (EU-27) 1.67 334a
Romania 0.7 264
Italy 1.1 371
Netherlands 1.3 354
Portugal 1.4 234
Luxembourg 1.5 168
Spain 1.5 217
Germany 1.7 385
Belgium 1.7 165
Denmark 1.9 180
Sweden 4.5 45
United States 4.52 b 389
Canada 4.74 110c

China 0.43 d 531e
Brazil 0.55 140
a Data from 2019 [30].
b https://shrinkthatfootprint.com/average-household-electricity-consumption/,
last visited December 1st, 2023.

c https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-
territorial-energy-profiles/provincial-territorial-energy-profiles-canada.html,
last visited December 1st, 2023.

d https://ourworldindata.org/co2/country/china, last visited December 1st, 2023.
e https://www.statista.com/statistics/1300419/power-generation-emission-
intensity-china/, last visited December 1st, 2023.

0.0001V. While we have not further tested this, we consider the
deviation small enough to not influence our initial observations.
The energy measurements might also be influenced by factors such
as the network: if the network is congested, longer waiting times
before dependencies are downloaded might occur and these waiting
times might influence the energy consumption.

We did not run all build and test cycles multiple times due to
time constraints; some single runs took a full day to complete. For
Apache Maven, Apache Seatunnel, and LinkedIn Cruisecontrol we
did run the full build 3 times and observed a coefficient of variance
of respectively 0.009, 0.1, and 0.005, which can be characterised
as low variance. In future work, we will solidify our findings by
running the energy simulations multiple times for all projects.

External validity. The exploratory results in this paper might not
be representative, as we (1) only consider a small set of software
projects, and (2) simulate the energy consumption on two platforms
that are known to be energy efficient. Future work needs to measure
energy consumption on the actual hardware in use in data centers.

5 RELATEDWORK
Verdecchia et al. take a broad look at how to make digital infras-
tructures more sustainable: making the software itself more energy-
aware, e.g., by automatically killing zombie processes, is one of
the proposed solutions [33]. Other investigations have focused on
making deployed software more energy conscious, e.g., Hindle

has presented the Green Mining approach to study energy con-
sumption differences between commits [19]. Similarly, Di Nucci et
al. have focused on reducing the energy consumption of Android
applications [27].

In other work by Verdecchia et al., it is claimed that “testing not
only consumes most of the time and effort in a software project, but it
also heavily contributes to energy waste”, without empirical foun-
dation [34]. In contrast to the aforementioned studies, our paper
contributes initial empirical insights into the electricity required
to execute test suites and run continuous integration builds, in
other words we focus on the energy consumption of (parts of) the
software development process, not on the deployed software.

6 CONCLUSION
We have carried out an exploratory study into the energy con-
sumption of two frequently executed software quality assurance
mechanisms, namely continuous integration and testing. While we
have merely simulated these two mechanisms on low-power hard-
ware, we see indications that individual builds do not consume that
much electricity. For example, 32 Wh for building Elasticsearch on
the Minisforum EM680 platform with an AMD Ryzen 7 6800U CPU.
Depending on the project and a myriad of factors like the size of
the test suite, the elements composing the build, the number of
dependencies, etc., the testing phase of the build consumes between
20% and 88% of the total energy consumption of a full build.

When considering simulated yearly totals, we do observe that
somewhat larger projects like Elasticsearch that are built 5025 times
yearly do consume considerable amounts of electricity: ∼161 kWh
for all CI builds executed in 2022. This level of energy consumption
corresponds to∼9.7% of the average household energy consumption
of a citizen of the European Union. Simulating the environmental
cost in terms of CO2 emissions for Elasticsearch when building
it in the European Union would amount to 53.774 kg of CO2, the
equivalent of driving an average petrol car for 222 kilometers11.

If we want to steer away from the climate crisis that we are
currently experiencing, we will need to (1) further investigate the
power consumption of our routine software engineering practices,
(2) create awareness among software engineers of their energy im-
pact, and (3) come up with solutions to reduce our energy footprint.

7 FUTURE PLANS
• Constructing an automated pipeline for energy measure-
ments that would enable to simulate energy measurements
at scale, for a variety of programming languages.

• Performing fine-grained measurements to isolate several
steps in the build process, e.g., assembling dependencies,
static analysis, compiling, testing.

• Investigating how we can reduce the number of builds by
balancing (1) quick feedback to developers, and (2) energy
consumption.
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