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Abstract

Software evolution is the term used in software engineer-
ing to refer to the process of developing an initial version of
the software and then repeatedly updating it to satisfy the
user’s needs. Software evolution is an inevitable activity, as
useful and successful software stimulates users to request
new and improved features. However, evolving a software
system is typically difficult and costly. In this chapter, we
provide an historical overview of the field and survey four
important research ares: program comprehension, reverse
engineering, reengineering, and software repository min-
ing. We report on key approaches, results, and indicate a
number of challenges open to on-going and future research
in software evolution.

Keywords: software evolution, software reengineering,
software reverse engineering, software repository mining,
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1 Introduction

In a recent advertisement aimed at recruiting new soft-
ware engineers, ING, one of the largest European banks,
summarized some of its key information technology fig-
ures1. ING serves over 85 million customers, conducts
16 million financial transactions each day, making use of
75,000 computers running over 3000 different applications,
storing 10 petabytes of data. Furthermore, the underlying
software systems are not static, but subject to continuous
evolution: ING indicated it was involved in 1449 change
projects.

1Automatisering Gids, nr. 42, 16 oktober 2009.

The situation at ING illustrates what is common in
many software-intensive organizations: software systems
are business critical and are required to run continuously,
often on a 7× 24 hour basis. The systems are complex in
nature, and should operate under hard to meet performance
and scaleability criteria. Under these constraints, engineers
are required to adjust the systems to new business oppor-
tunities, emerging technologies, law changes, and so on.
These changes are to be made in a cost-effective manner,
without loss of quality of the existing functionality.

Making changes to existing software systems is one of
the key software engineernig challenges, and covered by
the field of software evolution. We provide a historical
overview of this field, and survey four important research
areas in software evolution:

∙ Program comprehension, addressing the difficulties
people have in understanding the structure of complex
software systems;

∙ Reverse engineering, comprising methods and tech-
niques to distill abstract information from existing sys-
tems;

∙ Reengineering, offering tools and techniques to re-
structure existing software systems; and

∙ Software repository mining, involving the study of his-
torical data collected in bug tracking systems, revision
control systems, mailing lists, etc. in order to increase
our understanding of the underlying systems.

These topics are addressed in Section 3–6, after which
we conclude with pointers to research venues and avenues
for future research.
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2 Historical Perspective

In the 1960’s awareness grew that manufacturing soft-
ware should be less ad hoc, and instead should be based
on theoretical foundations and practical disciplines. This
awareness culminated in the organization of the first soft-
ware engineering conference in 1967 by the NATO Science
Committee [28].

In 1970 then, inspired by established engineering dis-
ciplines, Royce proposed the waterfall life-cycle process
for software development [38]. Of particular importance
in this model was the definition of the maintenance phase
for software systems, which was considered the final phase
of the software life-cycle and which happened after its de-
ployment. The IEEE 1219 standard defines software main-
tenance as: “the modification of a software product after
delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a modified environ-
ment.”

It took a while before software engineers became aware
of the inherent limitations of this software process model,
namely the fact that the separation in phases was too strict
and inflexible, and that it is often unrealistic to assume that
the requirements are known before starting the software de-
sign phase. In the late seventies, a first attempt was made
towards a more evolutionary process model, the so-called
“change mini-cycle” as proposed by Yau et al. [41].

Also in the seventies, Manny Lehman started to for-
mulate his laws of software evolution, see Table 1. The
postulated laws were based on earlier work carried out by
Lehman to understand the change process being applied
to IBM’s OS 360 operating system. His original findings
were confirmed in later studies involving other software
systems [25]. This was probably the first time that the term
software evolution was explicitly used to stress the differ-
ence with the post-deployment activity of software mainte-
nance.

Nevertheless, it took until the nineties until the term soft-
ware evolution gained widespread acceptance. Also around
this time evolutionary processes such as Boehm’s spiral
model gained acceptance. In that same category, Bennet
and Rajlich’s staged model explicitly takes into account the
inevitable problem of software aging [36]. After initial de-
velopment of a first running version, the “evolution stage”
allows for any kind of modification to the software, as long
as the architectural integrity remains preserved. If this is no
longer the case, there is a loss of evolvability and the “ser-
vicing stage” starts. During this stage, only small patches
can be applied to keep the software up and running.

Software evolution is also a crucial ingredient of so-
called agile software development, of which extreme pro-
gramming (XP) [2] is probably the most famous proponent.
In brief, agile software development is a lightweight iter-

ative and incremental (evolutionary) approach to software
development. It takes into account that software is created
in a highly collaborative manner and explicitly accommo-
dates the changing needs of its stakeholders, even late in
the development cycle.

Nowadays, software evolution has become a very active
and well-respected field of research in software engineer-
ing, and the terms software evolution and software main-
tenance are often used as synonyms. The fact that the
software evolution research area is so active, can in part
be explained through the fact that software systems have
a prolonged lifetime: some of the early systems written
in the 1960’s and 1970’s are currently still in use. These
so-called legacy systems are still crucial to the business en-
vironment and simply replacing them might involve high
risk and high costs. Still, these systems must also evolve
in order to stay useful in today’s operating context. That
is why sub-fields such as program comprehension, reverse
engineering, mining software repositories, testing, impact
analysis, cost estimation, software configuration manage-
ment and re-engineering are so important to understand the
software and enable the continued evolution of these and
more modern software systems.

3 Program Comprehension

Having a sufficient understanding of the software system
is a necessary prerequisite to be able to successfully accom-
plish many software engineering activities, including soft-
ware evolution and software re-engineering related tasks.

Definition Program comprehension is the task of building
mental models of an underlying software system at various
levels of abstraction, ranging from models of the code itself
to ones of the underlying application domain [33].

Being aware of the fact that almost all software evo-
lution activities require understanding of the software
system, the link between software evolution and program
understanding becomes immediately clear. Unknown
perhaps is the fact that building up this knowledge can
take up to 60% of the time allocated for a particular task,
making program comprehension a costly necessity [10].

Von Mayrhauser and Vans have done research on how
software engineers go about their comprehension process
and they have identified three distinct strategies, namely: a
top-down model, a bottom-up model or a mix of the previ-
ous two, the so-called integrated model [39].

Top-down understanding typically applies when the
code, problem domain and/or solution space are familiar
to the software engineer. Because of these similarities, the
software engineer typically forms a number of hypotheses
about the structure of the system. Subsequently, hypotheses
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1 Continuing Change Systems must be continually adapted else they become progressively less satisfactory.
2 Increasing Complexity As a system evolves its complexity increases unless work is done to maintain or reduce it.
3 Self Regulation System evolution processes are self regulating with distribution of product and process measures close

to normal.
4 Conservation of Organizational Stability Unless feedback mechanisms are appropriately adjusted, average effective global activity rate in an

evolving system tends to remain constant over product lifetime.
5 Conservation of Familiarity As a system evolves, all associated with it, developers, sales personnel, users, for example, must main-

tain mastery of its content and behavior to achieve satisfactory evolution. Excessive growth diminishes
that mastery. Hence the average incremental growth remains invariant as the system evolves.

6 Continuing Growth The functional capability of systems must be continually increased to maintain user satisfaction over
the system lifetime.

7 Declining Quality Unless rigorously adapted to take into account for changes in the operational environment, the quality
of a system will appear to be declining.

8 Feedback System Evolution processes are multi-level, multi-loop, multi-agent feedback systems.

Table 1. Laws of Software Evolution

are iteratively refined, passing several levels until they can
be matched to specific code in the program.

Pennington found that the bottom-up program compre-
hension model is often used when the code and/or problem
domain are not familiar to the software engineer [37]. This
way of understanding starts at the code level and while iden-
tifying elementary blocks of source code in the program,
microstructures are chunked together to form macrostruc-
tures and macrostructures are linked to each other via cross-
referencing. Another bottom-up approach that can be em-
ployed is the so-called situation model, which concentrates
on a dataflow/functional abstraction instead of relying on
control-flow, as described earlier.

Finally, the integrated model for program comprehen-
sion involves top-down and bottom-up comprehension, and
also a knowledge base. The knowledge base, which typ-
ically is the human mind, stores (1) any new information
that is obtained directly from the application through either
of the two program comprehension strategies or (2) infor-
mation that is inferred. In practice, the integrated model is
frequently used when trying to understand large-scale sys-
tems, largely because software engineers are typically fa-
miliar with certain parts of the source code, while they are
less familiar with other parts.

4 Reverse Engineering

Usually, the system’s maintainers are not the software
engineers that originally designed the system. Thus, be-
fore making changes to the software they must first build
up sufficient knowledge of the software system at hand. In
Section 3 on program comprehension, we have seen that this
process can take up to 60% of the allocated time. It is in this
context that reverse engineering tools can play an important
role as they can facilitate the program comprehension pro-
cess.

In their seminal paper, Chikofsky and Cross define re-
verse engineering as follows [9]: “reverse engineering is

the process of analyzing a subject system to identify the
systems components and their interrelationships and cre-
ate representations of the system in another form or at a
higher level of abstraction.” Reverse engineering has been
traditionally viewed as a two step process: information ex-
traction and abstraction. Information extraction analyses
the subject system artifacts to gather raw data, whereas ab-
straction creates user-oriented documents and views. The
primary purpose of reverse engineering a software system
is to increase the overall comprehensibility of the system
for both maintenance and new development. In particular,
reverse engineering provides ways to [9]:

Cope with complexity. It allows to better deal with the
shear volume and complexity of systems, by (automat-
ically) abstracting to a higher level.

Generate alternate views. Tools facilitate the
(re)generation of graphical representations. In
particular, these tools often allow to generate alternate
views, thereby offering the chance to study the system
from a different perspective.

Recover lost information. In continuously evolving sys-
tems, modifications are frequently not reflected in doc-
umentation. In this context, reverse engineering allows
to recover designs.

Detect side effects. Comparing the initial designs with the
current designs as obtained from reverse engineering
tools allows to spot deviations from the original design
plans.

Synthesize higher abstractions. Reverse engineering
tools frequently create alternate views at higher levels
of abstraction.

Facilitate reuse. Reverse engineering can help detect can-
didates for reusable software components from soft-
ware systems.

Reverse engineering techniques can be classified accord-
ing to the artifacts that they analyze: static analysis extracts
properties from software systems through the analysis of
source code, documentation, architectural diagrams, or de-
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sign information. Dynamic analysis meanwhile analyses
data gathered from a running programming and thus studies
the actual behavior of the software. Hybrid approaches then
combine static and dynamic analysis. We will now discuss
static and dynamic analysis in more depth.

4.1 Static Analysis

Static analysis, or the analysis of source code, documen-
tation, architectural diagrams, or design information, has
been successfully applied in a number of areas. Key chal-
lenges in static analysis-based reverse engineering are to ab-
stract low-level information, e.g., source code, into more
manageable and easier to understand higher-level abstrac-
tions, e.g, control-flow diagrams. Apart from abstracting,
another challenge is to establish links between different ar-
tifacts, e.g., establish links between existing documentation
or requirements and the source code.

Low-level examples of static analysis are the generation
of control-flow diagrams and performing data-flow analy-
sis in order to better understand software systems in the
small. Passing over program dependence graphs and tech-
niques like slicing [40], which enable program comprehen-
sion in the large, there are also many other static analysis
techniques which have successfully been applied. Some ex-
amples of problem areas where reverse engineering with
static analysis has been successfully applied are [7]: re-
documenting programs and relational databases, identifying
reusable assets, recovering architectures, recovering design
patterns, building traceability links between code and docu-
mentation, identifying code clones, code smells and aspects,
performing impact analysis, and many more.

4.2 Dynamic Analysis

Dynamic analysis, or the analysis of data gathered from
a running program, has the potential to provide an accurate
picture of a software system because it exposes the systems
actual behavior. Among the benefits over static analysis are
the availability of runtime information and, in the context
of object-oriented software, the exposure of object identi-
ties and the actual resolution of late binding. Drawbacks
are that dynamic analysis can only provide a partial pic-
ture of the system, i.e., the results obtained are valid for the
scenarios that were exercised during the analysis, and that
dynamic analysis typically involves the collection and anal-
ysis of large amounts of data, often introducing scalability
issues with tools when analyzing large software systems.

Cornelissen et al. have performed a survey of dy-
namic analysis techniques for program understanding pur-
poses [12]. From this broad overview, we see that research
in this area revolves around creating ultra-scalable visual-
izations, e.g., Extravis [11] (see Figure 1), and coming up

Figure 1. Extravis, an example of visualization
of dynamic analysis [11].

with sensible abstraction mechanisms for trace data in order
to overcome scalability issues [43]. Research in this area
has resulted in tools that allow to do feature localization,
bug localization, etc.

4.3 Tools

A number of reverse engineering tools have been pro-
duced by the research community. Two of these tools have
become real frameworks enabling a wide range of static
and/or dynamic analyses for reverse engineering. These
tools are Moose2, which is a platform for software analy-
sis originally developed at the University of Berne, Switzer-
land, and Rigi3, an interactive, visual tool to understand and
re-document software, developed at the University of Vic-
toria, BC, Canada.

5 Reengineering

From the laws of software evolution that we discussed in
Section 2 we intuitively understand that systems must con-
tinuously be adapted to meet changing requirements from
its users (law 1) and that we should take preventive actions
to reduce the increasing complexity which is the result of
successive adaptations of the software (law 2). Reengineer-
ing is the term coined for the process of reorganizing and
modifying an existing software system with the aim of mak-
ing the system easier to maintain. Chikofsky and Cross de-
fine reengineering as follows [9]: “The examination and al-
teration of a system to reconstitute it in a new form”. Please
note that this definition implies that reverse engineering —
the examination part — is often part of the reengineering
cycle. In the following, we introduce legacy software sys-
tems and subsequently ways to measure and resolve typical
shortcomings with them.

2http://www.moosetechnology.org/
3http://www.rigi.csc.uvic.ca/
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5.1 Legacy Software Systems

There is a clear connection between reengineering and
legacy software systems. Often, reengineering is the most
cost-effective option for an organization to extend the life
of their software systems. Legacy software is software that
is still very much useful to an organization – quite often
even indispensable – but the evolution of which becomes a
great burden [3]. Brodie and Stonebraker give an apt de-
scription of a legacy system [5]: “Any information system
that significantly resists modification and evolution to meet
new and constantly changing business requirements.” Note
that this definition implies that age is no criterion when con-
sidering whether a system is a legacy system [14], implying
that even relatively new systems can be considered legacy
systems if they are of high-value to the organization and re-
sist evolution.

Legacy software is omni-present: think of the large soft-
ware systems that were designed and first put to use in the
1960s or 1970s; these software systems are nowadays of-
ten the backbone of large multinational corporations. For
banks, healthcare institutions, etc. these systems are vital
for their daily operations. As such, failure of these soft-
ware systems is not an option and that is why these trusted
“oldtimers” are still cared for every day. Furthermore, they
are still being evolved to keep up with the current and fu-
ture business requirements. This is where reengineering ap-
proaches can be useful: reengineering allows to make the
future evolution of these legacy systems easier.

5.2 Software Metrics

Considering the quality of a software system requires to
take a multidimensional viewpoint. Indeed, the ISO 9126
standard identifies six key quality attributes for computer
software: (1) functionality, (2) reliability, (3) usability, (4)
efficiency, (5) maintainability, and (6) portability. From a
software evolution perspective, the fifth quality attribute,
maintainability, is of great importance, as this attribute de-
termines the ease with which the software can be adapted.

In particular, a number of internal properties of the soft-
ware can be measured and captured with metrics. A num-
ber of these metrics have shown to be affecting the main-
tainability of the software system [24]. For example, com-
plexity is often correlated with maintenance effort; that is,
the more complex the code, the more effort is required to
maintain it. One of the most frequently used measures dur-
ing maintenance is the McCabe cyclomatic complexity [27],
which measures the number of linearly independent paths
through the code. Other measures that influence the main-
tainability are the more traditional object-oriented design
metrics (see Chidamber and Kemerer [8]) and simple met-
rics like lines of code, number of comment lines, number of

modules, number of methods/procedures per class/module,
etc.

5.3 Code Smells and Problem Detection

Code smells are symptoms in the source code or the be-
havior of a software system that possibly indicate a deeper
problem [18]. Many code smells are associated with diffi-
culties in maintaining the software system, e.g., the dupli-
cate code code smell. In general, code smells can be iden-
tified in several ways: through the use of code metrics, par-
ticular relations between source code elements, specific be-
havior of the software system or through a series of changes
that have been made to the code.

Table 2 gives an overview of some common code smells.
Fowler considers the duplicate code code smell as the num-
ber 1 code smell, a smell that should absolutely be avoided.
Duplicated pieces of source code are typically referred to
as ‘clones’, which Basit and Jarzabek define as [1]: “code
fragments of considerable length and significant similar-
ity”. Because code clones are considered an important code
smell, the area has seen a great interest of the research
community. This interest can be explained by the fact that
code clones are seen as plausible arguments for an increased
maintenance effort, in particular, changes have to be made
multiple times because the code is redundant. Another im-
portant reason for the research interest in code clones is that
clones can lead to bugs. In particular, when only a few in-
stances of a cloning relation are changed, there might be
side-effects from those instances that have erroneously not
been changed.

Research in the area has on the one hand concentrated
on developing code clone detection and removal tech-
niques [23]. Many of these removal techniques are based
upon series of refactorings (see Section 5.4). On the other
hand, researchers have also concentrated on code clone
management, which entails that the Integrated Development
Environment (IDE) which the software engineer is using,
is aware of the clones and can warn the software engineer
when he is actually making changes to an instance of a code
clone [15].

Nevertheless, code cloning is not all bad. Kapser and
Godfrey’s study has shown that code cloning is sometimes a
purposeful implementation strategy which makes sense un-
der certain circumstances [22].

5.4 Refactoring

Refactoring is a disciplined technique for restructuring
an existing body of code [18]. Crucial to this restructuring
approach is that while the internal structure of the software
is improved, the external behavior is not changed. Typi-
cally, refactoring a software system is composed of a series
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Duplicate code identical or very similar pieces of source code
God class an object that controls too many other objects in the system; an object that does everything
Long method a method that tries to do too many things
Large class a class that contains too many subparts and methods
Long parameter list a method that tries to do too much, too far away from home, with too many subparts of the system
Divergent change occurs when a class is frequently changed in different ways for different reasons, an early sign of a god class in the

making
Shotgun surgery each time you want to make a single, seemingly coherent change, you have to change lots of classes in little ways
Feature envy a method seems more interested in another class than the one it is defined in.
Inappropriate intimacy a method that has too much intimate knowledge of another class or method’s inner workings, inner data, etc

Table 2. An overview of some typical code smells [18]

of small behavior preserving transformations. These small
steps ensure that (1) there is less chance that something can
go wrong, and (2) they make it easier to verify that the be-
havior has indeed been preserved by making use of unit test-
ing [31].

One should however be careful that the refactorings do
not break the unit tests and thus invalidate the safety net that
is provided by the unit tests. Research has shown that at
least 20 of the refactorings that are listed by Fowler in [18]
break the unit tests [31]. This in turn implies that unit tests
can also become an evolutionary burden, because they too
need to be refactored.

6 Mining Software Repositories

With the advent of open source projects, configuration
management systems, bug-tracking systems, open source
projects, and, last but not least, the Internet as communi-
cation platform new information sources became available
for empirical software engineering research. The growing
interest in this research led to special tracks at software en-
gineering conferences and later on to workshops and confer-
ences on its own. The most popular venue is called Mining
Software Repositories (MSR)4 that addresses the following
research topics:

∙ Meta models to integrate, represent, and exchange in-
formation stored in software repositories;

∙ Meta models to model social, organizational, software
development processes;

∙ Meta models to represent software quality aspects;

∙ Mining techniques to analyze the information;

∙ Application areas in which the results can be applied,
e.g., search-based software engineering, software evo-
lution analysis, software reliability assessment, cost
estimation, bug and change impact analysis.

4More information on this series of conferences can be found at:
http://msr.uwaterloo.ca/

∙ Visualization techniques to represent data and mining
results;

A survey on corresponding approaches for mining soft-
ware repositories has been presented by Kagdi et al. in [21].
We further would like to refer interested readers to the spe-
cial issue on MSR that has been edited by Nagappan et
al. [35].

One of the main objectives is to improve current software
development practices by learning from historical evidence
provided by information stored in software archives. In the
following, we list the main research directions of software
repository mining and for each summarize key approaches
and research results.

6.1 Data Modeling

Recent literature highlights source-control systems,
defect-tracking systems, and mailing lists archives as the
main data sources for MSR. Source-control systems, such
as CVS or subversion, are used for managing and stor-
ing the various versions of source code artifacts and the
modification reports that led to the new versions. Defect-
tracking systems, such as Bugzilla or Jira, are used to re-
port and manage defects and enhancement requests. Mail-
ing lists keep track of discussions between software devel-
opers, testers, and also end users. Furthermore, the advent
of Web 2.0 technologies (i.e., Wiki, Blog, Twitter, etc.) pro-
vides various new alternatives to share information and dis-
cussions over the process, design, implementation, etc. of
software systems.

One of the key problems faced by researchers in the do-
main of mining software repositories is to extract and link
all the different information sources to obtain a more com-
plete picture over the software project. As noted by Kagdi
et al., software repositories vary in their usage, information
content, and storage format. Typically, they are managed
and operated in isolation and have no explicit direct rela-
tionship with each other [21]. Furthermore, not all software
projects follow the same development process (or a devel-
opment process at all). For example, while some projects
agreed on using a versioning system, they do not use a bug-

6



tracking system. Although a project team is using a version-
ing system, a bug-tracking system, and mailing lists, they
operate them in isolation. There is no strict process rule that
enforces developers to link commits to bugs and comments
in mailing lists. Last but not least, these tools were explic-
itly made for developing software but not for performing
software archeology as done with software repository min-
ing.

Improvements and a step towards a more measurable
software development process can be expected from re-
cent trends in Integrated Development Environments (e.g.,
IBM’s Jazz, Microsoft Team Foundation Server) and open
source products, such as Hudson5, CruiseControl6, and
Continuum7. They provide support for continuous integra-
tion that better integrates the various tools and repositories
for developing software systems.

A number of approaches have been introduced in the past
to re-establish the links between the information residing in
the different software repositories. The main objective is
to obtain a common information source which then can be
input into mining algorithms to analyze various aspects of
the software system. In the following we summarize ap-
proaches that have been frequently used and cited by the
MSR community.

The release history database (RHDB) integrates data
from versioning systems obtained from CVS or SVN with
bug report data obtained from Bugzilla [17]. Figure 2 de-
picts the corresponding data model whereas the link is de-
noted by the association between the FileVersion and
BugReport entities.

The file history for each source file is extracted from
the log information that is queried from the versioning sys-
tems, for example with the CVS log command. Bug report
data is obtained from the Bugzilla repository by request-
ing the bug in XML format. The XML then is parsed and
extracted information is stored into the RHDB. The links
between file revisions and bug reports are established in a
post-processing step. Regular expressions, such as

bugi?d?:?=?\s*#?\s*(\d\d\d+)(.*)

are used to query bug numbers in the log messages stored at
each file revision. Whenever a valid bug number is found a
link to that bug report is stored into the database. A similar
approaches has been presented by Bevan et al. with the
Kenyon framework [4].

There have been several extensions to the RHDB ap-
proach that take into account additional data sources. For
example, Hipikat forms an implicit group memory that, in
addition to versioning and bug report data, stores data from

5http://hudson-ci.org
6http://cruisecontrol.sourceforge.net
7http://continuum.apache.org
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Figure 3. The Hipikat data model integrating
versioning and bug report data with mails and
project documentation.

mail archives, and online project documentation [13]. Fig-
ure 3 depicts the Hipikat data model. It comes with a text
similarity matcher to infer links between the various data el-
ements. Through these links the group memory then can be
queried and navigated by developers to obtain recommen-
dations on a task at hand. Another interesting feature is the
incremental update of the group memory when new reports,
mails, file revisions, and emails are added.

6.2 Applications of Software Repository Mining

The integrated data models, such as provided by RHDB
and Hipikat offer various application areas to analyze differ-
ent aspects of a software system related to software evolu-
tion. Kagdi et al. [21] list a number of MSR tasks that have
been addressed by recent approaches. These are: Evolution-
ary couplings/patterns, change classification/representation,
change comprehension, defect classification and analysis,
source code differencing, origin analysis and refactoring,
software reuse, development processes and communication,
contribution analysis, evolution metrics. Out of these appli-
cation areas and tasks we focus on defect prediction and
recommender systems which we will detail in the follow-
ing.

Defect Prediction The main goal of defect prediction is
to calculate a model that when applied to the current sys-
tem tells the developers which modules will most likely be
affected by a bug in the next release and/or how man bugs
that will be. The results of the prediction then can be used
to take preventive and corrective actions, such as refactor-
ing the highlighted software modules and increase testing

7



name
date
usagecount

Aliasrcsfile
workingfile
head
locks
revisions

FileHistory

version
fileHistory
date
author
state
linesAdded
linesRemoved
branches
commitMessage

FileVersionid
severity
shortDescription
OS
priority
product
component
resolution
qaContact
LongDescriptions

BugReport

text
who
when

BugDescription

name
Author

files
subdirectories

Directory
modules

Project directories
files

Module 1
*

1 *
1 * 1 *

1

*

* *

1

*

1*1* * *

*

Figure 2. The Release History Database model for integrating versioning with bug report data.

efforts for these modules.

Various machine learning techniques (binary and linear
regression analysis, decision trees, naive Bayes, super vec-
tor machines, etc.) can be used to train and test predic-
tion models. Basically, resulting modules establish relation-
ships between a set of independent variables and a depen-
dent variable. Typically, the number of defects per module
denotes the dependent variable as being predicted by the
model. Product and process metrics, such as modules size
(e.g., lines of code) and complexity (e.g., McCabe), number
of changes and defects in the past, age of the module, are
typically used as the independent variables.

A prediction model first is trained and tested with met-
ric values obtained from past software releases. Ideally,
the validation then is performed with metrics obtained from
subsequent software releases. Often, however, it is per-
formed with the same data, but then using standard valida-
tion techniques, such as ten-fold-cross validation. Depend-
ing on the machine learning algorithm used, various perfor-
mance measures are used to evaluate the predictive power
of obtained models, such as precision, recall, and area un-
der ROC curve (AUC). Models with high performance are
assumed to perform well for predicting the defects of future
release.

Early approaches mostly favored product metrics, such
as size and complexity metrics, for defect prediction. Soon
process metrics have been added and discussions arose
which ones perform best. For example, Graves et al. ex-
plored the extent to which the change history can be used to
predict defects [19]. They found that the number of changes
and the age of modules outperform product measures, such
as lines of code. Their results were confirmed by a number
of recent studies, such as presented by Nagappan et al. [34]

and Moser et al. [32]. In contrast, Menzies et al. used static
code attributes, such as program size and complexity met-
rics, to predict defects [30]. Their results showed predic-
tors with a mean probability of detection of 71 percent and
mean false alarms rates of 25 percent which denote models
with reasonable quality. These authors also made an im-
portant point: the choice of the learning method is far more
important than which subset of the available data is used
for learning. They further advise to assess defect predic-
tion methods with multiple data sets and multiple learners.
Another interesting discussion with valuable feedback on
previous research in defect prediction is presented by Fen-
ton and Neil [16]. They point out relevant issues, such as
the unknown relationship between defects and failures, the
use of multivariate approaches, and issues in the statistical
methodology and data quality. These issues should be dealt
with when doing research in this direction.

Recommender Systems Another promising application
of the integrated data models are recommender systems.
Whenever a modification task is performed the recom-
mender system observes the behavior of developers and
based on that context provides a set of recommendations
aiming at automating the change task and improving the
quality of a software system.

For example, Hipikat is a tool that provides recommen-
dations about project information a developer should con-
sider during a modification task [13]. For that it mines a
broad set of information sources including source file revi-
sions, bug reports, email archives, and online project docu-
mentation and establishes the links between these informa-
tion sources. When a new bug is reported the developer can
query for similar bug reports and obtain recommendations
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on linked source code modifications, email discussions, and
the project documentation which might aid in fixing the
bug. ROSE is an approach and tool that infers recommen-
dations from source file revisions by using association rule
mining [44]. Whenever a developer is performing a modi-
fication task ROSE’s recommendations guide him along re-
lated changes in the way: “Programmers who changed this
function also changed these other functions.” In addition to
these suggestions, ROSE also uses the association rules to
warn of incomplete changes. A similar approach, but on the
level of source files and using frequent item set mining, has
been presented by Ying et al. in [42].

In addition to approaches that mine the project history,
several approaches exist that mine source code reposito-
ries to recommend examples on how to use an API or to
improve code completion. Code completion is a popular
feature offered by modern integrated development environ-
ments that is extensively used by developers. Basically, it
helps to prevent developers from writing not compilable
source code, and to speed up programming by proposing
program elements that are syntactically correct. Investigat-
ing current code completion implementations, Bruch et al.
argued that the quality of suggestions and hence the pro-
ductivity of software development canbe improved by em-
ploying intelligent code completion systems [6]. They eval-
uated three such code completion systems of which the one
using a modified version of the k-nearest-neighbor (kNN)
machine learning algorithm performed best. 82% of the
recommended method calls were actually needed by the
programmer (recall) and 72% of the recommended method
calls were relevant (precision).

Concerning the usage of an application programming in-
terface (API), developers often encounter difficulties, such
as, which objects to instantiate, how to initialize them, and
which methods to call. The problem has been addressed by
a number of approaches, such as Strathcona [20]. Typically,
they form a knowledge base by mining a set of framework
usage examples. Given the current context of the developer
the tool queries the knowledge base and recommends code
snippets of potential interest. However, it is still the task of
a developer to integrated the appropriate code snipped into
the source code.

7 Software Evolution in Research

Software evolution has received considerable attention
over the past few years. If the reader is interested in consult-
ing the body of knowledge in the area of software evolution,
the conferences listed in Table 3 form a good starting point.

Furthermore, also journals like the IEEE Transactions
on Software Engineering, ACM’s Transactions on Software

8Formerly IWPC, the International Workshop on Program Comprehen-
sion.

Engineering and Methodology, Wiley’s Journal of Software
Maintenance and Evolution, Springer’s Emprical Software
Engineering, Elsevier’s Journal of Systems and Software
and Wiley’s Software Practice and Experience have fre-
quent contributions in the broader area of software evolu-
tion.

8 Future Challenges

Besides the general main areas (comprehension, reverse
engineering, reengineering, and repository mining), a num-
ber of trends and application areas can be distinguished.
The most important ones include the following.

Requirements Traceability The need for change is re-
flected in evolving requirements. To assess the impact of
changing requirements, it is essential that source code and
design decisions can be traced back to requirements. Un-
fortunately, maintaining accurate requirements traceability
links has proven to be hard and costly in practice. Promising
research directions aim at partially automating this process,
for example through the use of information retrieval tech-
niques such as latent semantic indexing [26]. By comput-
ing textual similarities between different work documents,
candidate traceability links between, for example, code, test
cases, and requirements can be computed. Turning the can-
didate links into confirmed links is still a manual process,
but initial results are promising.

Service-Oriented Architectures Software portfolios of
large enterprises can easily comprise hundreds of applica-
tions. The evolution of the application landscape of such
a company over the years has typically resulted in a com-
plex network of connected systems, in which system depen-
dencies are often critical, but equally often poorly under-
stood. In order to regain control over the system dependen-
cies many companies are investigating the use of service-
oriented architectures. In this approach, systems are loosely
coupled, and communicate via an enterprise service bus.
Service interfaces are made as stable as possible, but ser-
vice implementations can be (dynamically) identified and
modified.

While promising in many ways, the adoption of service
orientation brings in a number of challenges. These in-
clude migrating legacy components into services (for ex-
ample via wrapping), performance implications of data con-
version that is required to integrate components developed
by different organizations, and systematic testing strategies
for dealing with large collections of services not under di-
rect control of the testing organization. This testing may re-
quire obtaining production data and connecting to services
in production. Since replication of test data and production
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Conference acronym Conference name Year first organized
ICSM the International Conference on Software Maintenance 1983
ICPC the International Conference on Program Comprehension8 1993
WCRE the Working Conference on Reverse Engineering 1994
CSMR the European Conference on Software Maintenance and Reengineering 1997
MSR the Working Conference on Mining Software Repositories 2004
IWPSE the International Workshop on the Principles of Software Evolution 1998

Table 3. Conferences in the area of software evolution

services can be challenging, an interesting research area is
to devise service infrastructures permitting (controlled) test
execution in the production environment.

Collaborative Engineering Software development and
evolution is a team activity. Much of the existing body
of work in reverse engineering and program comprehen-
sion is focused on the individual developer. Methods and
techniques have been proposed to visualize architectures, to
identify features from execution traces, or to establish trace-
ability links. The question arises how such tools can be used
to collaboratively understand, for example, the implemen-
tation of a particular feature. Such tools should support the
incremental growth of understanding, allowing different de-
velopers to record their intermediate knowledge, and share
it with their co-developers.

Globally Distributed Development More and more,
software teams work on different locations spread across
the globe. In addition to this physical distance, the team
members come from different cultures, often working in
different time zones. Many of the techniques developed to
support evolution (tools for program comprehension, im-
pact analysis, or configuration management) will also help
to support teams counter the effects of these increased dis-
tances.

Software Testing Automated testing is an important evo-
lution enabler. An automated test suite can be used for re-
gression testing, to ensure that software modifications do
not break existing functionality. Furthermore, continuous
integration in combination with nightly execution of the test
suite will help to identify problems caused by changes made
to the software as early as possible.

In agile development methods, test suites furthermore
are used to facilitate program comprehension. As an exam-
ple, in the Ruby community software is described via “ex-
ecutable examples” either expressed in Ruby itself (when
using rspec9), or in natural language which via a simple pat-
tern recognition mechanism is translated into an executable

9http://rspec.info/

test suite (when using Cucumber10).
This interplay between testing, test automation, and doc-

umentation comprises an interesting and highly promising
route in further supporting software evolution.
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