
Analyzing large event traces with the help of a coupling metrics

Andy Zaidman Serge Demeyer

University of Antwerp
Department of Mathematics and Computer Science

Lab On Re-Engineering
Middelheimlaan 1

2020 Antwerp, Belgium
{Andy.Zaidman, Serge.Demeyer}@ua.ac.be

Abstract

Gaining understanding of a large-scale industrial
program is often a daunting task. In this context dynamic
analysis has proven it’s usefulness for gaining insight
in object-oriented software. However, collecting and
analyzing the event trace of large-scale industrial appli-
cations remains a difficult task. In this paper we present
a heuristic that identifies interesting starting points for
further exploratory program understanding. The technique
we propose is based on a dynamic coupling metric, that
measures interaction between runtime objects.

Keywords:
Reverse engineering, program comprehension, dynamic
analysis, dynamic metrics

1 Introduction

Every software engineer has been in the position that he
has to familiarize himself with the ins and outs of a piece
of software in the shortest possible time. Most often, this is
a daunting task and estimates go as far as stating that 30 -
40% of a programmer’s time is spent in studying old code
and documents in order to get an adequate understanding
of a software system before making changes [12, 13].

The manner in which a programmer gets understand-
ing of a software system varies greatly and depends on
the individual, the magnitude of the program, the level
of understanding needed, the kind of system, ... [6]
Because of this it is difficult to imagine that there exists
one tool for all program understanding purposes. Ideally,
a program understanding tool shouldguide the software
engineer in his exploration process through the software [3].

When building program understanding tools, three
strategies come to mind: pure static analysis, pure dy-
namic analysis or a combination of both. In the context
of object-oriented software however, static analysis has
proven to be inadequate to gain meaningful insight into
the behavior of the application due to the late binding
mechanism that’s present in object-oriented systems [14].
However, dynamic analysis also has a major drawback: the
huge amount of data that has to be analyzed, since even
small applications generate tens of thousands of events (see
Table 1). The scalability of the analysis algorithm is thus
of the utmost importance [7, 11]. Because of the human

Jakarta Tomcat Fujaba 4
4.1.18

Execution time 48s 70s
(without tracing)
Classes 3 482 4 253
Events 1 076 173 772 872
Unique events 2 359 95 073

Table 1. Size of an event trace of two medium-
size programs.

cognition process, program understanding can never be a
fully automated process: the user should be free to explore
the software, with the help of specialized tools. Our aim is
to develop a technique which gives the software engineer
– the user– clues as to where to start his or her program
understanding process. These clues consist of medium
to high-level domain concepts from where the user can
dig deeper into the code and/or dynamic behavior of the
application.

To reach this goal we will develop a heuristic based
on a dynamic coupling metric. This heuristic will show
us some medium to high-level domain concepts which
can then serve as starting points for exploratory program
understanding.

2 Scalability solutions

In order to overcome scalability issues a lot of tech-
niques are presented as beingiterative, meaning that the
user has to repeatedly perform the technique on smaller
sets of data, e.g. [9]. Scalability, however, is not only a
computational issue: from a human standpoint the amount
of analyzed data presented to the software engineer should
be manageable [17].

Recent research has come up with two possible solu-
tions:

• A novel solution has been formulated by Hamou-Lhadj
and Lethbridge [4]. They represent the event trace as
a tree in which they search neighbouring isomorphic
subtrees. Identical neighbouring subtrees are pruned
and replaced with a single occurrence which gets anno-
tated with the total number of occurrences of the sub-
tree. However, the problem of finding all isomorphic
subgraphs in the tree is NP-complete [8], a problem re-
ferred to as thesubgraph isomorphism problem. Their
solution here is to set a minimum threshold for a cer-
tain subtree to be considered as being a candidate for
exploratory program understanding.

• In [16] we explained a heuristic based on the fre-
quency of execution of individual methods. The idea is
based on the fact that methods work together to reach
a common goal (e.g. accomplish a certain functional-
ity). Thus, these methods are related through their fre-
quency of execution [1]. We’ve engineered a heuristic
which searches for and displays regions in the trace
which contain similar trajectories in the frequency-
time space. For finding this trajectories human inter-
vention is required, so this is not a fully automated
technique.

3 Dynamic metrics

Metrics have originally been designed to measure qual-
ity of (object oriented) code. These metrics are calculated
from data that can be found directly in or can be extracted
from the source code [2]. A few well-know metrics are:
cyclomatic complexity measure, coupling between objects
(CBO), lines of code (LOC), ...
Another field in which metrics are used is research in the

area of clone detection. Here metrics serve as a way of
finding regions of duplicated sourcecode. In this scenario
the value of certain metrics is used to takefingerprintsof
regions of sourcecode. These fingerprints are then used to
determine identical regions in the sourcecode [10].

Dynamic metrics, on the other hand, are often more
precise because they give an image of whatis happening
(dynamic) versus whatmay happen(static) [15]. In this
context Hitz et.al. [5] mentioned the difference between
class level couplingandobject level coupling. The former
being a static metric, while the latter is a dynamic measure.

3.1 Coupling metrics

In terms of quality,cohesionwithin a class is desirable,
while couplingbetween classes is undesirable. This stems
from the idea that a class should be responsible for handling
its own data. In practice however, coupling is unavoidable
as classes collaborate in certain ways in order to perform
the application functionality.

Within our problem-domain, coupling on a dynamic
level has some interesting properties: because each in-
stantiation of a collaboration between classes will exhibit
the same level of coupling, the dynamic coupling metric
becomes interesting for taking fingerprints of interaction
patterns that exits between collaborating classes.

4 Implementation

4.1 The dynamic coupling metric

From a technical point of view, we will use theExport
Object Coupling metric (EOC) to calculate the dynamic
coupling [15] (see Equation 1). For understanding this for-
mula, some helpful definitions are:

• oi: is an instance of a class (an object)

• O: is the set of objects involved in a particular run of
the program

• M(oi, oj): is the set of messages sent from objectoi

to objectoj during the program run

• MT : is the total number of messages exchanged be-
tween all objects inO

EOC(oi, oj) =
|{M(oi, oj)|oi, oj ∈ O ∧ oi 6= oj}|

MT
× 100

(1)
Calculating the EOC for each participating object results in
a matrix of coupling-values, as can be seen in Table 2. For
program understanding purposes this information is perhaps

object1 ... objectn
object1 coupling1,1 ... coupling1,n

...
objectn couplingn,1 ... couplingn,n

Table 2. Coupling matrix

too detailed: it would be far more interesting to know how
many unique messages a certain object has sent. For this,
we can revert to theObject Request For Servicemetric
[15]. Equation 2 gives us the total number of (unique) mes-
sages that objectoi has sent during the program run.

OQFS(oi) =
K∑

j=1

EOC(oi, oj) (2)

This leaves us with a simplified version of the matrix from
Table 2 in which only one column remains.

4.2 Possible interpretations

For our exploratory program understanding process we
are mainly interested in classes which have a lot of respon-
sibilities, i.e. classes which tell other classes to perform a
certain action. Because of polymorphism and late binding,
a certain class can issue different messages depending on
e.g. the dynamic type of a parameter of a method. With this
in mind, we can choose from two strategies to interpret the
metric:

1. We can simply take the objects with the highest OQFS
value and start our exploratory program understanding
process there.
A benefit of choosing this strategy is that other in-
stances from the same class that exhibit different be-
havior will be listed separately.
On the downside we have to note the fact that there is
no easy way of removing duplicates.

2. On the other hand, we can build in another abstraction-
step by not looking at individual objects, but instead at
classes. If we were to change the formula for OQFS in
Equation 2 into:

CQFS(ci) =
K∑

j=1

|{M(oi, oj)|

oi instance of ci ∧ oj ∈ O ∧ oi 6= oj}| (3)

We refer to this as theClass Request For Service
(CQFS) metric. Basically it registers every message
that the instantiations of a certain class sends during
the execution of the program. Notice however, that du-
plicate message-sends are eliminated because we work

with sets.
Benefit of this strategy is the fact that duplicate instan-
tiations from the same class are abstracted.
A negative side to this technique is the fact that differ-
ent objects that react differently due to the polymor-
phic behavior also get abstracted.

4.3 Which interpretation to choose

duplicates different actions
due to polymorphism

OQFS present visible
CQFS removed abstracted

Table 3. Overview of the OCFS versus the
CQFS metric

When comparing the OQFS with the CQFS metric (see
Table 3, we have to keep in mind that the software engineer
that uses our heuristic is trying to find clues as to where to
start his software understanding exploration. As such, he’s
concerned with trying to find a class that has a high degree
of responsibilities. When found, he can dig deeper into the
code and/or zoom into sequence diagrams where this class
is involved.
Thus, the fact that he is actually working with an abstrac-
tion isn’t a problem for his program understanding process.
Because of this, the CQFS metric seems to be more appro-
priate. However, experiments should validate this hypothe-
sis.

4.4 "God classes"

The term ”god class” is used when a class performs most
of the work of the system, relegating other classes to minor
supporting roles. Both the OQFS and the CQFS metric will
not focus particulary on such god classes, because:

• When looking at Equations 3 and 2 we see that the
message sender and the message recipient cannot be
the same:oi 6= oj

• Moreover, when a god class consists ofgod methods,
these god methods will also show up only once in our
analysis.

This means that although god classes won’t disturb the
heuristic, the analysis will remain largely incomplete for
any systems that consists only of god classes.

4.5 Complexity

We already mentioned that a solution should before all
be scalable. In order to get a complete analysis of the run-
ning program, we have to collect the dynamic coupling met-
ric at runtime or calculate it post-mortem from the event
trace.

Time complexity For both the OQFS and the CQFS met-
ric we have to go over the entire trace once in order to cal-
culate the coupling metric. The one step that remains to
be done afterwards is to extract respectively the highest-
scoring objects and classes. This means that the time com-
plexity is linear in the number of eventsn, henceO(n).

Memory complexity To compute the memory complex-
ity, we first have to establish what data we have to keep track
of:

• In the case of OQFS: each object that is created at run-
time.

• In the case of CQFS: each class that is used during the
program run.

• Which messages have already been accounted for in
the metric calculation

This leaves us with a worst-case memory complexity of:
OQFS:O(#objects ×#objects)
CQFS:O(#classes ×#objects)

Because an object creation is considered as a message, we
can put an upper bound on the number of objects with the
total number of messages sentn. In general terms, the mem-
ory complexity is much more of an issue than the time com-
plexity when analyzing large projects.

5 Conclusion and future work

We’ve presented a heuristic that searches for objects or
classes that are candidates for starting exploratory program
understanding. We base ourselves on the fact that classes
which have more than average responsibilities have a
greater coupling compared to other classes.

Our short-term goals are to validate the heuristic we’ve
presented in this paper. The experiments we wish to set-up
should also verify our hypothesis that it is better to abstract
the metric up to the class-level, instead of remaining at the
object-level.

References

[1] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactons on Software En-
gineering, 20(6):476–493, 6 1994.

[3] M. A. Foltz. Dr. jones: A software archaeologist’s magic
lens. http://citeseer.nj.nec.com/457040.html.

[4] A. Hamoe-Lhadj and T. C. Lethbridge. An efficient al-
gorithm for detecting patterns in traces of procedure calls,
2003. Paper presented at the Workshop on Dynamic Analy-
sis (co-located with ICSE’03).

[5] M. Hitz and B. Montazeri. Measuring coupling and cohe-
sion in object-oriented systems. InProceedings of the In-
ternational Symposium on Applied Corporate Computing,
1995.

[6] A. Lakhotia. Understanding someone else’s code: Analysis
of experiences.Journal of Systems and Software, pages 269–
275, Dec. 1993.

[7] J. R. Larus. Efficient program tracing.Computer, 26:52–61,
May 1993.

[8] K. Mehlhorn. Grahp Algorithms and NP completeness.
Springer Verlag, 1984.

[9] T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In H. Yang and L. White, editors,Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 13–22. IEEE, 1999.

[10] R. Smith and B. Korel. Slicing event traces of large software
systems. InAutomated and Algorithmic Debugging, 2000.

[11] D. Spinellis. Code Reading: The Open Source Perspective.
Addison-Wesley, 2003.

[12] F. Van Rysselberghe and S. Demeyer. Evaluating clone de-
tection techniques. InIn proceedings of the International
Workshop on Evolution of Large Scale Industrial Applica-
tions (ELISA), pages 25–36, 2003.

[13] N. Wilde. Faster reuse and maintenance using software re-
connaissance, 1994. Technical Report SERC-TR-75F, Soft-
ware Engineering Research Center, CSE-301, University of
Florida, CIS Department, Gainesville, FL.

[14] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, 1992.

[15] S. M. Yacoub, H. H. Ammar, and T. Robinsion. Dynamic
metrics for object oriented designs. InSixth IEEE Interna-
tional Symposium on Software Metrics, pages 50–61. IEEE,
1999.

[16] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event exe-
cution frequency. InProceedings of the European Confer-
ence on Software Maintenance and Reengineering (CSMR),
2003. To Appear.

[17] I. Zayour and T. C. Lethbridge. Adoption of reverse engi-
neering tools: a cognitive perspective and methodology. In
Proceedings of the 9th International Workshop on Program
Comprehension, pages 245–255, 2001.

