
Massively Parallel, Highly Efficient, but What About the Test Suite Quality?
Applying Mutation Testing to GPU Programs

Qianqian Zhu
Delft University of Technology
Email: qianqian.zhu@tudelft.nl

Andy Zaidman
Delft University of Technology
Email: a.e.zaidman@tudelft.nl

Abstract—Thanks to rapid advances in programmability
and performance, GPUs have been widely applied in High-
Performance Computing (HPC) and safety-critical domains. As
such, quality assurance of GPU applications has gained increasing
attention. This brings us to mutation testing, a fault-based testing
technique that assesses the test suite quality by systematically
introducing small artificial faults. It has been shown to perform
well in exposing faults. In this paper, we investigate whether GPU
programming can benefit from mutation testing. In addition to
conventional mutation operators, we propose nine GPU-specific
mutation operators based on the core syntax differences between
CPU and GPU programming. We conduct a preliminary study
on six CUDA systems. The results show that mutation testing
can effectively evaluate the test quality of GPU programs:
conventional mutation operators can guide the engineers to write
simple direct tests, while GPU-specific mutation operators can
lead to more intricate test cases which are better at revealing
GPU-specific weaknesses.

I. INTRODUCTION

A graphics processing unit (GPU) is a single-chip processor
originally used to boost the performance of video and graphics.
The recent development of massive parallelism and energy
efficiency and the ease of programming using the CUDA [1]
and OpenCL [2] programming models have made GPUs
attractive for High-Performance Computing (HPC), which re-
quires compute-intensive, highly parallel computation [3], [4].
Moreover, GPUs are increasingly used in some safety-critical
domains, such as medical science [5] and automotive [6]. In
both HPC and safety-critical domains, quality assurance of
GPU applications is an important issue [7], [8].

However, it is not easy to write a correct GPU program [9].
The essential elements of GPU programs are kernels, which
are functions executed on GPU cores. To efficiently schedule
instances of kernels on a GPU platform, a programmer needs
to face the challenges in computation and memory access that
do not appear in Central Processing Unit (CPU) programs.

Regarding computation, a programmer tends to spend less
effort on thread management on the CPU platform than on the
GPU platform [9]. To ensure high execution efficiency, a CPU
usually supports far fewer threads running in parallel than a
GPU of the same generation. Since the operating system needs
to spend extra time on thread scheduling when the number of
threads triggered by an application exceeds the total number of
cores on the CPU. As a result, a CPU programmer may focus
on the correctness and efficiency of a single thread, and leave
the thread collaboration issues to libraries (e.g., OpenMP) and
third-party tools. In contrast, managing threads on GPUs is

challenging and rarely automated as a GPU often contains
thousands of cores. Development toolkits as CUDA require
programmers to manage the threads explicitly.

With regard to memory access, the hardware-level facilities
for memory, such as the memory hierarchy, are typically
transparent to programmers for the CPU. For instance, a CPU
programmer may reorder entries in an array without knowing
or controlling the movement of data in between the main
memory and CPU cache. In contrast, a GPU platform has
a separate memory space which is isolated from the main
memory of the host computer. To ensure correctness and
execution efficiency, GPU programmers have to explicitly
manage different types of memory including shared memory,
global memory and the memory of host computer [10].

Given the increasing demand for quality assurance of GPU
applications as well as the challenges in GPU programming,
it becomes essential to understand to which extent a GPU
program can be analysed and tested. This brings us to mutation
testing, a fault-based testing technique that measures the test
effectiveness in terms of fault detection [11], [12]. Mutation
testing has been shown to perform well in exposing faults
compared to other test coverage criteria [13]–[15]. Also,
mutants can act as a valid substitute to real faults [16], [17].

In this paper, we aim to enable mutation testing for GPU
programming to investigate if mutation testing can help in
GPU program testing. To achieve this goal, we develop a
mutation testing tool named MUTGPU especially for GPU
applications in the CUDA programming model. Considering
the differences between CPU and GPU programming, we
design nine new GPU-specific mutation operators in addition
to conventional mutation operators. We perform an empirical
study involving six GPU projects from the CUDA SDK [18].
To steer our experimental study, we propose the following
research questions :

RQ1 How frequently can GPU-specific mutation operators be ap-
plied, and how good is the existing test suite at killing them?

RQ2 How effective are conventional mutation operators in evaluating
the test suite of GPU programs?

RQ3 How effective are GPU-specific mutation operators in evaluat-
ing the test suite of GPU programs?

RQ4 How do GPU-specific mutation operators compare with con-
ventional mutation operators in terms of the improvement?

Fig. 1. Comparison of CPU and GPU [1]

II. BACKGROUND

A. GPU computing

A graphics processing unit (GPU) was originally dedicated
to providing a high-performance, visually rich, interactive
3D experience [19]. With rapid advances of programmability
and performance, a GPU becomes a compelling platform for
computationally demanding tasks in various domains [20].

GPU computing, also known as general-purpose computing
on the GPU (GPGPU), is to use a GPU as a co-processor
to accelerate CPUs for general-purpose scientific and engi-
neering computing [20]. Compared to the CPU, the GPU
contains many more transistors devoted to data processing
rather than data caching and flow control (as demonstrated
in Figure 1) [1]. Thus, the GPU is especially well-suited for
compute-intensive, highly parallel computation.

Another important characteristic of GPUs is that the pro-
grammable units (a GPU core) follow a “SPMD” programming
model: single program, multiple data [20]. More specifically,
the GPU processes many elements (vertices) in parallel using
the same program, and each element is independent of the
other elements.

So far, there are three major GPU programming models:
OpenCL (Open Computing Language), from the Khronos
Group [2]; CUDA, from NVIDIA [1]; and C++ AMP, from
Microsoft [21]. CUDA, as a popular GPU platform and
programming model, was introduced by NVIDIA in November
2006. CUDA comes with a software environment that enables
developers to program in C/C++. Except for C/C++, CUDA
also supports Fortran, DirectCompute, OpenACC and Python.

B. Example of GPU Programming

In this section, we are going to demonstrate the main
concepts of GPU programming along with a simple program
in CUDA C1. This program is to sum two vectors (a and b)
into a third vector (c). In standard C, we can easily compute
within a for loop shown as Listing 1. In CUDA C, we can
accomplish the same addition on a GPU by introducing a
device function. Here, we refer to the CPU and the system
memory as the host and the GPU and its memory as the
device. As shown in Listing 2, we add global to sum()
(Line 1 in Listing 2) in order to notify the compiler that this
function should be compiled to run on a device instead of

1CUDA C is standard C with some ornamentation to allow developers to
specify which code should run on the GPU and which should run on the
CPU [22]

1 void sum(int n, float *a, float *b, float *c){
2 for (int i = 0; i < n; i++){
3 c[i] = a[i] + b[i];}}
4 int main(){
5 ...
6 int N = 1<<20;
7 // Perform SUM on 1M elements
8 sum(N, a,b,c);
9 ...}

Listing 1. sum function in Standard C

kernel1

kernel2

block
(0,0)

block
(1,0)

block
(2,0)

block
(0,1)

block
(1,1)

block
(2,1)

grid1

block
(0,0)

block
(1,0)

block
(0,2)

block
(0,1)

block
(1,1)

block
(1,2)

grid2
thread
(0,0)

thread
(1,0)

thread
(2,0)

block (2,1)

thread
(3,0)

thread
(0,1)

thread
(1,1)

thread
(2,1)

thread
(3,1)

thread
(0,2)

thread
(1,2)

thread
(2,3)

thread
(3,3)

Host Device

Fig. 2. CUDA programming model [1]

__global__	void	sum(...){

		int	i	=	0;

		if	(i	<	n){	

				c[i]	=	a[i]	+	b[i];}}

Thread 0 Thread 1

Thread 2 Thread 3

...

...

Block 0

__global__	void	sum(...){

		int	i	=	1;

		if	(i	<	n){	

				c[i]	=	a[i]	+	b[i];}}

__global__	void	sum(...){

		int	i	=	2;

		if	(i	<	n){	

				c[i]	=	a[i]	+	b[i];}}

__global__	void	sum(...){

		int	i	=	3;

		if	(i	<	n){	

				c[i]	=	a[i]	+	b[i];}}

Fig. 3. Actual code in CUDA parallel threads

the host. Moreover, we need to determine how many parallel
copies of sum() function (named a kernel meaning a function
that executes on the device) to launch. A kernel is executed
by a collection of thread blocks (called a grid), and a thread
block can be further split into threads (shown in Figure 2).
The statement sum<<<4096,256>>> (Line 13 in Listing 2)
specifies to launch 1,048,576 parallel threads (4096 blocks ×
256 threads per block) for function sum.

After we launch the kernel with 1M parallel threads, the
CUDA runtime assign varying values to those threads by
blockIdx.x*blockDim.x + threadIdx.x2 (Line 2 in Listing 2),
the first taking 0 and the last taking n-1. Thus, all the threads
run the same instructions but with different indices in parallel.
Figure 3 presents the actual code being executed in threads.

Last but not least, in order to call the kernel, we first need
to load the values of the two vectors (a and b) to the device
(dev a and dev b) by invoking cudaMemcpy (Line 10 and 11
in Listing 2). The function cudaMemcpy, similar to memcpy

2Those are built-in variables in CUDA runtime that contains the value of
thread index for whichever thread is currently running the device code.

1 __global__ void sum(int n, float *a, float *b, float *c){
2 int i = blockIdx.x*blockDim.x + threadIdx.x;
3 if (i < n){
4 c[i] = a[i] + b[i];}}
5 int main(){
6 ...
7 int N = 1<<20;
8 int *a, *b, *c; // memory in host
9 int *dev_a, *dev_b, *dev_c; // memory in device

10 cudaMemcpy(dev_a, a, N, cudaMemcpyHostToDevice);
11 cudaMemcpy(dev_b, b, N, cudaMemcpyHostToDevice);
12 // Perform SUM on 1M elements
13 sum<<<4096,256>>>(N, dev_a, dev_b, dev_c);
14 cudaMemcpy(c, dev_c, N, cudaMemcpyDeviceToHost);
15 // examine the correct answer in c
16 ...}

Listing 2. sum function in CUDA C

1 void test(){
2 ...

3 int N = 1<< 25 ;
4 int *a, *b, *c; // memory in host
5 int *dev_a, *dev_b, *dev_c; // memory in device
6 cudaMemcpy(dev_a, a, N, cudaMemcpyHostToDevice);
7 cudaMemcpy(dev_b, b, N, cudaMemcpyHostToDevice);
8 sum<<<4096,256>>>(N, dev_a, dev_b, dev_c);
9 cudaMemcpy(c, dev_c, N, cudaMemcpyDeviceToHost);

10 ...}

Listing 3. A test case for sum function (Listing 2)

in standard C, controls the memory copy between the device
and the host. After the execution of the device function in the
GPU, we then copy the output from the device (dev c) to the
host (c) (Line 14 in Listing 2).

III. MOTIVATION

From Section II, we can see there are important differences
in the programming models of the CPU and the GPU. This
raises the question of whether conventional mutation operators
for C/C++ are enough to represent bugs in GPU programming?
We observe that a test suite mutated with conventional oper-
ators may be insufficient: the GPU code with certain issues
can still easily pass the test suite.

The first example is the memory management in GPU. In
GPU programming, we first need to specify the number of
parallel processors to launch in the device. In Listing 2, we
can see that 1,048,576 parallel threads are used for the kernel.
In this example, the size of our testing data is 220, the exact
same size as the number of parallel threads; this means that
every thread can process one index of the vectors. Thereby,
this test can easily pass. What if the testing data exceeds 220

(such as 225 shown in Listing 3)? For this test case, the specific
parallel threads are not enough to iterate and compute each
index individually. Therefore, the test in Listing 3 fails. This
exposes a bug in the sum function: we have to modify the
CUDA C code to allow certain threads to compute more than
one index of the vectors (see in Listing 4). For Listing 2,
existing mutation operators for C cannot target the problem
related to parallel processor allocation in GPUs.

Another instance we observe is the thread management in
the GPU. Different from the CPU, GPU computing involves
massive parallel operations via threads; the bugs in thread
management are hard to represent with conventional mutation

1 __global__ void sum(int n, float *a, float *b, float *c){
2 int i = blockIdx.x*blockDim.x + threadIdx.x;

3 while (i < n) {

4 c[i] = a[i] + b[i];

5 i += blockDim.x * gridDim.x; }}

Listing 4. Modified sum function in CUDA C

1 __global__ void sum(int n, float *a, float *b, float *c){

2 int i = threadIdx.x*blockDim.x + blockIdx.x ;

3 while (i < n)}{
4 c[i] = a[i] + b[i];
5 i += blockDim.x * gridDim.x; }}

Listing 5. sum function in CUDA C with indexing bugs

operators. For example, Listing 5 presents one example of
indexing bugs that could occur in GPU programs.

We would also like to mention atomic operations in GPU
programming. When developing conventional single-threaded
applications, there is no need for atomic operations. However,
for GPU applications which are multithreaded by default,
we do need a way to perform read-modify-write without
being interrupted by another thread in certain conditions, such
as reduction. Atomic operation omissions are one common
mistake that happens in GPU programming, e.g., Listing 6.

To sum up, we do see a necessity to investigate mutation
testing specifically for GPU programming.

IV. MUTATION OPERATORS FOR GPU PROGRAMMING

A. GPU-Specific Mutation Operators

Mutation operators are well-defined rules to specify the syn-
tactic changes to generate faulty versions (called mutants) [23].
They are the key to mutation testing, where good mutation
operators lead to effective test suites while poor mutation
operators generate many trivial and redundant mutants.

To design mutation operators, we usually follow two
methodologies [24]: the first is based on fault models, and
the other is to analyse the syntax of the language being
mutated. In our study, we mainly follow the later guideline:
we have defined GPU-specific mutation operators based on the
core syntax differences between CPU and GPU programming
(as discussed in Section III). Meanwhile, we also consider
the syntactic changes in ways that programmers could make
mistakes in GPU programming (the first guideline). To verify
that the mutation operators we have proposed represent the
common mistakes in GPU programming, we have searched
for them on StackOverflow with the keyword “cuda” + issue
name. For example, the keyword for the shared memory
issue is “cuda shared memory”. After searching for “cuda
shared memory”, we have obtained 500 search results from
StackOverflow sorted by relevance. We have analysed the first
150 items. Among those, 48% are referring to bug issues.

We categorise the GPU-specific mutation operators accord-
ing to the key syntactic differences between CPU and GPU
programming. In the following sections, we describe the GPU-
specific mutation operators we proposed by category.

1) Memory management:

1 __global__ void histogram(unsigned char *buffer,
2 long size, unsigned int *histo){
3 int i = blockIdx.x*blockDim.x + threadIdx.x;
4 while (i < n){

5 histo[buffer[i]] += 1; i += blockDim.x * gridDim.x;}}

Listing 6. histogram in CUDA C with atomic operation omission

a) Execution configuration: As mentioned in Sec-
tion II-B, we need to specify the execution configuration for
a kernel function. The execution configuration defines the
dimension of the grid and blocks that will be used to execute
the function on the device. To determine the number of parallel
processors allocated for the kernel, many factors should be
taken into consideration, for instance, the maximum size of the
data and the limitation of the GPU device. For the execution
configuration is unique in GPU programming, we propose the
following three mutation operators to cover this aspect:
• alloc swap: to replace the number of threads with

the number of blocks in parallel processor alloca-
tions (and vice versa). The same bug was posted in
SO29158775 [25].

add<<<4096,256>>>(N, a, b, c); // original
→ add<<<256,4096>>>(N, a, b, c); // mutant

Listing 7. Example of alloc swap mutator

• alloc increment: to increase the number of parallel pro-
cessors (in both threads and blocks) allocated by one

add<<<4096,256>>>(N, a, b, c); // original
→ add<<<4096+1,256>>>(N, a, b, c); // mutant

Listing 8. Example of alloc increment mutator

• alloc decrement: to decrease the number of parallel pro-
cessors (in both threads and blocks) allocated by one

add<<<4096,256>>>(N, a, b, c); // original
→ add<<<4096-1,256>>>(N, a, b, c); // mutant

Listing 9. Example of alloc decrement mutator

b) Shared memory: The shared memory in GPU pro-
gramming provides a means by which threads within a block
can communicate and collaborate on computations [1]. To
declare the variable in shared memory, we use the shared
memory space specifier in CUDA C, for instance, shared
float share[64];. The shared memory management is the
main cause of data races and bank conflicts. The mutation
operator share removal is introduced to represent such bugs
in GPU programs. There are a great deal of questions posted
on StackOverflow addressing the confusion about the shared
memory in GPU programming, e.g., SO25255699 [26] and
SO9488590 [27].
• share removal: to remove the shared memory space spec-

ifier in variable declarations
__shared__ float cache[N]; // original

→ float cache[N]; // mutant

Listing 10. Example of share removal mutator

2) Thread management:
a) GPU indexing: GPU programming introduces a new

indexing mechanism to iterate the data and threads using built-
in variables such as threadIdx.x and blockIdx.x (as mentioned
in Section III). While in conventional imperative program-
ming, we use the loop statement (e.g., for and while) to
iterate the data and threads. Since the indexing scheme is
quite different from serial code, there are numerous ques-
tions posted on StackOverflow addressing the confusion about
GPU indexing, such as SO9859456 [28], SO21677559 [29]
and SO33159171 [30]. Therefore, we design three mutation
operators address the indexing issue:
• gpu index replacement: to replace the thread indexing

variable (threadIdx) with the block indexing variable
(blockIdx) and vice versa

int tid = blockIdx.x; // original
→ int tid = threadIdx.x; // mutant

Listing 11. Example of gpu index replacement mutator

• gpu index increment: to increase the indexing variables
(threadIdx and blockIdx) by one

int tid = blockIdx.x; // original
→ int tid = blockIdx.x+1; // mutant

Listing 12. Example of gpu index increment mutator

• gpu index decrement: to decrease the indexing variables
(threadIdx and blockIdx) by one

int tid = blockIdx.x; // original
→ int tid = blockIdx.x-1; // mutant

Listing 13. Example of gpu index decrement mutator

b) Synchronisation functions: The synchronisation func-
tion, also called barrier, is used to coordinate communications
between threads in a specific block (e.g., syncthreads() func-
tion in CUDA C). Many data races and deadlocks are caused
by the incorrect barrier placement. We propose sync removal
to mimic the mistakes of the incorrect barrier placement. The
omission or misplacement of the synchronisation function are
very common in GPU code, e.g., SO29233426 [31].
• sync removal: to remove the synchronisation function

call (e.g. syncthreads())
int i = blockDim.x/2;
while (i != 0) {
if (cIndex < i)
cache[cIndex] += cache[cIndex + i];

__syncthreads(); //original
→ //__syncthreads(); //mutant
i /= 2;}

Listing 14. Example of sync removal mutator

3) Atomic operations: Atomic operations are unavoidable
in multithreaded applications in the sense that they are guaran-
teed to be performed without interference from other threads.
In other words, no other thread can access this address until
the operation is complete. However, if the programmer does
not pay enough attention, he or she is very likely to omit
the atomic operations in GPU programming, for example,
SO14057678 [32].

• atom removal: to remove the atomic functions (e.g.,
atomicAdd()) with non-atomic operations

while (i < size) {
atomicAdd(&(histo[buffer[i]]),1); //original
→ histo[buffer[i]]) += 1; //mutant

i += stride;}

Listing 15. Example of atom removal mutator

B. Conventional Mutation Operators

CUDA C is an extension of standard C [1], therefore,
conventional mutation operators for C also apply to CUDA C.
Since the existing C mutation tools, such as Mull [33], cannot
fully parse the grammar of CUDA C, we have to define the
grammar of CUDA C first. So far, we have implemented five
mutation operators which are most widely adopted in mutation
testing, i.e., conditional boundary replacement, negate condi-
tional replacement, math replacement, increment replacement
and logical replacement.

C. GPU-specific v.s. Conventional Mutation Operators

The design principle of CUDA C/C++ is based on the
traditional C/C++ syntax, which makes it easy to learn and use
for developers. Although our newly proposed GPU-specific
mutation operators seem to be subsumed by the existing muta-
tion operators in terms of syntax, they are semantically differ-
ent. Take gpu index replacement from GPU-specific mutation
operators and array reference from conventional mutation
operators for example. The operator gpu index replacement
replaces the thread indexing variable (threadIdx) with the
block indexing variable (blockIdx). The thread/block indexing
variable on the GPU is not equivalent as the array variable on
the CPU. The thread/block indexing variable is used to access
the parallel processors on the GPU, while array reference
variable is used to access the memory blocks on the CPU.
One thing to notice here is that the mutants generated by
GPU-specific mutation operators are totally different from the
conventional operators; this means there is no overlap between
those two sets of mutants.

To sum up, we have designed nine mutation operators
(summarised in Table I) to replicate common errors in GPU
programming. Meanwhile, we have also implemented five
conventional mutation operators that can be applied to CUDA
C programs (also included in Table I).

V. TOOL IMPLEMENTATION

As mentioned earlier in Section II, there are three major
GPU programming models, i.e., OpenCL, CUDA and C++
AMP. In this paper, we select CUDA as the target model to
implement the aforementioned mutation operators.

To evaluate our approach, we have implemented a prototype
tool (coined MUTGPU) in Python to apply mutation testing
in GPU programs. Figure 4 presents an overview of the
architecture of MUTGPU [35]. MUTGPU consists of two
components, i.e., the mutation engine and the test executor.
MUTGPU takes the program and its test suite as input. First,
the mutation engine analyses the source code and marks all

mutants

code
analyser

mutant
generator

program

mutation engine

tests

 test
executor

input output

mutant
killable
results

MutGPU

1

2

3 4

Fig. 4. Overview of MUTGPU architecture and workflow

possible mutation points, and then the mutation generator
produces all the mutants according to mutation operators. After
that, the program and generated mutants together with the
test suite go to the test executor, where the mutation testing
is performed: each mutant is executed against the test suite
one by one. Finally, MUTGPU prints out the detailed mutant
killable results.

The main task of the code analyser is to analyse the test
dependencies and parse the source code of the program for
the mutation generator. We have adopted Pyparsing [36] as the
code analyser to parse the CUDA C code. Pyparsing is a pure-
Python class library that constructs recursive-descent parsers
with ease. The mutation generator contains all the mutation
operators and the details of the mutants including the mutation
location (line number) and the mutation operator type.

VI. EMPIRICAL EVALUATION

To assess the efficacy of our mutation testing approach,
we conducted an experimental study based on the CUDA
programming model. The main purpose of this study is to
investigate whether GPU programming can benefit from mu-
tation testing, so we proposed the following research questions
to steer our experimental study:

• RQ1: How frequently can GPU-specific mutation operators be
applied, and how good is the existing test suite at killing them?

• RQ2: How effective are conventional mutation operators in
evaluating the test suite of GPU programs?

• RQ3: How effective are GPU-specific mutation operators in
evaluating the test suite of GPU programs?

• RQ4: How do GPU-specific mutation operators compare with
conventional mutation operators in terms of the improvement?

A. Subject Systems

We select six GPU benchmark projects from the CUDA
SDK [18]. All these benchmark projects are widely used in
the research domain [37]–[39]. Table II summarises the main
characteristics of the selected projects. All systems are written
in CUDA C, and contain a set of test cases.

We perform the experiment on two different NVIDIA
graphic cards (GeForce MX150 & GTX 960) with two releases
of CUDA toolkit (9.0 & 9.1) to minimise the threat caused by
errors residing in hardware and CUDA toolkits.

B. Experimental Setup

To answer RQ1, we investigate the mutant results for
each GPU-specific mutation operator we proposed in detail.
More specifically, we evaluate the frequency of each mutation

TABLE I
SUMMARY OF MUTATION OPERATORS

category operator definition

C conditional boundary replacement replace the relational operators <, ≤, >, ≥ with their boundary counterpart (according to PIT [34])
increment replacement replace increments with decrements and vice versa
logical replacement replace logical operator AND (&&) with OR (||) and vice versa.
math replacement replace binary arithmetic operations with another operation (according to PIT [34])
negate conditional replacement replace the relational operators with another operation (according to PIT [34])

GPU alloc decrement decrease the number of parallel processors (in both threads and blocks) allocated by one
alloc increment increase the number of parallel processors (in both threads and blocks) allocated by one
alloc swap replace the number of threads with the number of blocks in parallel processor allocations (and vice versa)
atom removal remove the atomic functions (e.g. atomicAdd()) with non-atomic operations
gpu index decrement decrease the indexing variables (threadIdx and blockIdx) by one
gpu index increment increase the indexing variables (threadIdx and blockIdx) by one
gpu index replacement replace the thread indexing variable (threadIdx) with the block indexing one (blockIdx) and vice versa
share removal remove the shared memory space specifier in variable declarations
sync removal remove the synchronisation function call (e.g. syncthreads())

TABLE II
SUBJECT SYSTEMS

Project File LOC #Mutants
Source Test hCOV2 C GPU

MonteCarloMultiGPU MonteCarlo kernel.cu 231 359 100 71 59
MonteCarlo reduction.cuh 71 14 2

convolutionFFT2D convolutionFFT2D.cu 226 509 100 40 36
convolutionFFT2D.cuh 463 250 64

histogram histogram64.cu 219 141 100 82 96
Histogram256.cu 165 48 81

mergeSort mergeSort.cu 636 95 100 264 300
transpose transpose.cu 349 174 100 180 319
scan scan.cu 290 116 100 90 70

total 2650 1394 100 1039 1027
2The column “hCOV” indicates the statement coverage for the host code. For device
code, coverage analysis is a wrong approach as already discussed by the Nvidia
community [40].

operator based on the number of the generated mutants and
the mutation score.

For RQ2 and RQ3, we determine the effectiveness of the
mutation operators in assessing test quality of GPU programs
based on non-equivalent surviving mutants. Because non-
equivalent surviving mutants are crucial to calculate the muta-
tion score, and by investigating non-equivalent surviving mu-
tants, we can see whether those mutants are due to inadequate
test suites or not. We have implemented five conventional and
nine GPU-specific mutation operators in our tool MUTGPU.
We apply all the mutation operators to the six subject systems
and manually analyse the non-equivalent surviving mutants.
We identify the equivalent mutants by hand.

To compare the conventional mutation operators with GPU-
specific ones (RQ4), we are interested in what kind of
enhancements the GPU-specific mutation operators can bring
to the conventional mutation operators. In other words, we
would like to investigate whether there exists some bugs or
issues that cannot be detected by the conventional mutation
operators, but can be detected by GPU-specific mutation
operators. Therefore, we first try to manually engineer new test
cases to kill all the possible conventional mutants to obtain a
C-sufficient test suite for each system. Then, we apply GPU-
specific mutation operators to the C-sufficient test suites to
see if there are non-equivalent GPU mutants survived. The
last step is to manually analyse the remaining GPU mutants
that cannot be detected by the C-sufficient test suites.

VII. RESULTS

TABLE III
MUTANT RESULTS FOR EACH MUTATION OPERATOR

category operator covered killed equiv. survived total MS3

C conditional boundary replacement 114 60 45 58 118 0.822
increment replacement 12 9 0 3 12 0.75
logical replacement 5 2 3 3 5 1
math replacement 714 572 86 172 744 0.869
negate conditional replacement 156 130 6 30 160 0.844
subtotal 1001 773 140 266 1039 0.86

GPU alloc decrement 46 38 0 12 50 0.76
alloc increment 46 21 0 29 50 0.438
alloc swap 46 31 3 19 50 0.633
atom removal 1 1 0 0 1 1
gpu index decrement 204 181 0 29 210 0.862
gpu index increment 204 173 0 37 210 0.824
gpu index replacement 403 340 0 71 411 0.827
share removal 20 17 0 3 20 0.85
sync removal 25 19 1 6 25 0.792
subtotal 995 821 4 206 1027 0.803

3MS represents the mutation score which is calculated by the number of killed mutants
divided by the number of non-equivalent mutants (the same in the following tables).

1) RQ1: frequency of GPU-specific mutation operators &
mutation scores: We sum up the mutant results for each
mutation operator in Table III. From Table III, we can
observe that operator gpu index replacement generates the
most mutants (411) for GPU programs, followed by operator
gpu index decrement (210) and gpu index increment (210).
This indicates that the GPU indexing operations are commonly
used in GPU programming. Thus, designing specific mutation
operators for GPU indexing seems necessary. The operator
atom removal only produces one mutant. We assume the
reason behind the low mutant number (=1) is because the
selected subject systems we selected do not contain many
atomic operations.

From the aspect of the mutation score, except operator
atom removal whose mutation score is 1, the rest ranges from
0.438 to 0.862. This means that not all the mutants generated
by the GPU-specific mutation operators can be detected by
the existing test suites. There is still space for improvement
in the existing test suites. The high mutation score for op-
erator atom removal is due to its low mutant number. This
observation indicates that all GPU specific mutation operators
we designed are useful in GPU programming to guide the
engineers to write better tests.

The GPU-specific mutation operators we propose can be fre-

quently applied in GPU programming. Furthermore, the mutation
score obtained from applying these mutation operators ranges
from 0.438 to 1.0.

2) RQ2: conventional mutation operators: Table IV sum-
marises the mutant results from running both C and GPU
mutants against existing test suites. Overall, there are 1039
C mutants generated in total (as shown in Table IV). 96.3%
mutants are covered by the existing test suites (meaning the
line from which the mutant is generated is covered by the test
suite), while 74.4% mutants (86.0% non-equivalent mutants)
are killed. We can see that the mutation score (0.860) is
lower than the mutation coverage (0.963), which means some
mutants that are covered by the tests can still survive. Looking
at the existing test suites, we found that most tests from the
six projects do not target the unit-level: the main design of
the test suites is to invoke a series of functions in turn and
examine the final results in the end. Therefore, it is very
likely that a small change in the program (a mutant) do not
propagate to the outputs (fault masking [41]). Moreover, test
directness, which measures the extent to which the production
code is tested directly, plays an important role in mutation
testing [42]. However, there are few direct tests in the existing
test suite to assess the difference between the original and the
mutated programs; this causes a small number of mutants to
not be detected by the existing test suites. The comparison of
coverage and mutation score indicates that the mutation score
is a stronger indicator of test suite quality than test coverage.

Speaking of equivalent mutants, the conventional mutation
operators generate 140 equivalent mutants (13.5%) out of
1039 mutants as displayed in Table IV. Furthermore, from
Table III where we sum up the mutant results for each mutation
operator, we can see that over 50% of mutants (61.4%) are
generated by operator math replacement, followed by oper-
ator conditional boundary replacement (32.1%). Most of the
equivalent mutants produced by math replacement are because
one operand in the math operation is zero, such as threadIdx.x
+ 0, thus the replacement of the math operators, e.g., from
+ to −, does not influence the result. The equivalent mutants
from conditional boundary replacement are owing to the fact
that the boundary conditions (the equivalent condition, i.e., =)
cannot be reached or satisfied. Also, there are a few equivalent
mutants guiding us to detect the bugs in the systems. Listing 16
presents an example of a bug caught by the equivalent mutants.
The mutant which replaces < to ≤ in Line 1 is equivalent
to the original program since the variable i does not affect
the result of the loop. This equivalency turns out to be a
potential bug in the program as variable i is useless in the
loop. The cause for the bug is that there is a similar loop
in the previous function (shown in Listing 17). Thus, the bug
shown in Listing 16 might be due to copy-pasting the previous
statements but omitting the modification. This finding supports
that GPU programming can benefit from mutation testing.

Moreover, to further understand the effectiveness of the
mutation operators in assessing test quality, we need to
manually analyse the 126 surviving non-equivalent mutants
to see whether these surviving non-equivalent mutants are

1 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS){
2 if (xIndex < height && yIndex < width){
3 odata[index]=tile[threadIdx.y][threadIdx.x];}}

Listing 16. Bug example of an equivalent mutant (in transpose.cu)

1 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS){
2 odata[index_out+i] = idata[index_in+i*width];}

Listing 17. Cause of bug example in Listing 16

due to inadequate test suites. Compared to conventional CPU
programs, testing GPU code is more challenging. Only a small
number of mutants (34 out of 126) can simply be killed by
improving and adding tests. To detect the remaining mutants,
we first need to refactor the existing code, and then add
tests. The reason for a number of the mutants that need to
be refactored is because many functions cannot be directly
accessed from the test suites.

According to the CUDA programming model (shown in
Figure 2), there are two parts in the GPU programs: the host
(the CPU and the system memory) and the device (the GPU
and its memory). The tests are mainly located in the host
which invokes a function in the device/host and examines the
result. Therefore, if the function is executed on the device
and callable from the device only, it is impossible to access
the function directly from the host. This exception is the
function specified by device . The workaround is to wrap

device functions with a global function which can
be callable from the host. Other function specifiers, e.g., static
and inline, also prevent the tests to access those functions from
a different file. Since the access to static and inline functions
is restricted to the file where they are declared. To test static
and inline functions, we have to remove the static and inline
specifiers to allow the access from a separate test file.

By modifying the function accessibility for the tests and
adding direct tests, we can kill another 58 mutants. However,
some mutants generated are located in intermediate variables
which do not propagate to the output. These are much harder
to detect: they usually require to split the method into smaller
portions, or refactor the method to non-void. This might
considerably alter the structure of the systems, and also affect
the mutation score. Therefore, in this study, we leave this
type of “stubborn” mutants [43] aside. Except for “stubborn”
mutants, to kill a conventional mutant in a GPU program,
adding one direct test without carefully choosing test input
can work well which we can achieve it within 1 min. Finally,
we can achieve 0.962 mutation score by improving the test
quality, which indicates the conventional mutation operators
can effectively evaluate the existing test quality in the context
of GPU programming.

GPU programming can benefit from the conventional mutation
operators which mainly guide the engineers to write direct tests
for GPU programs. The average time to engineer a test case to
kill a mutant is within 1 min.

3) RQ3: GPU-specific mutation operators: From Table IV,
we can see that there are 1027 mutants generated by GPU-
specific mutation operators, slightly less than C mutants.

TABLE IV
MUTANT RESULTS

Project File C Mutants GPU Mutants
total covered killed equiv. MS total covered killed equiv. MS

MonteCarloMultiGPU MonteCarlo kernel.cu 71 65 44 7 0.688 59 59 23 0 0.390
MonteCarlo reduction.cuh 14 14 13 1 1.000 2 2 0 1 0.000

convolutionFFT2D convolutionFFT2D.cu 40 40 40 0 1.000 36 36 27 0 0.750
convolutionFFT2D.cuh 250 249 213 34 0.986 64 64 61 0 0.953

histogram histogram64.cu 82 77 70 6 0.921 96 96 81 0 0.844
Histogram256.cu 48 48 41 5 0.953 81 81 68 0 0.840

mergeSort mergeSort.cu 264 244 180 33 0.779 300 288 265 0 0.883
transpose transpose.cu 180 174 99 43 0.723 319 299 231 0 0.724
scan scan.cu 90 90 73 11 0.924 70 70 65 3 0.970

total 1039 1001 773 140 0.860 1027 995 821 4 0.803

1 if (tid == 0){
2 beta = 0;beta2 = 0;
3 for (int i = 0; i < blockDim.x; i += VEC) {
4 beta += sum[i];beta2 += sum2[i];}
5 __TOptionValue t = {beta, beta2};
6 *d_CallValue = t;}
7 cg::sync(cta);

Listing 18. Bug example of an equivalent mutant (MonteCarlo reduction.cuh)

Among all the GPU mutants, 96.9% mutants are covered by
the existing test suites. The overall mutation score is 0.803.
The same observation holds for GPU mutants as for CPU
mutants: the mutation score is higher than the coverage. As
we mentioned in Section VII-2, the majority of the tests only
examine the final outputs after a series of function calls.
Therefore, although a number of mutants are covered by the
test suites, their changes do not propagate to the final outputs.
This also shows the advantage of the mutation testing over
test coverage in evaluating test quality.

In terms of equivalent mutants, GPU specific mutation op-
erators only generate four equivalent mutants. Three are from
operator alloc swap, which are all located in the execution
configuration for a kernel function call (global function
call). The mutants generated by alloc swap are due to the
number of threads being the same as the number of blocks
in parallel processor allocations. The last equivalent mutant
is generated by operator sync removal. This mutant is similar
to Listing 16 which indicates the presence of a potential bug
(presented in Listing 18). The main task of Listing 18 is to
produce a smaller array of the sum result by reduction. The
code fragment in Listing 18 does not contain write operations
to the shared array sum and sum2, thereby, there is no need for
a synchronisation function (cg::sync(cta)) in the end to guaran-
tee that all of those writes to the shared arrays complete before
anyone tries to read from the buffers. The synchronisation
function (cg::sync(cta)) in Listing 18 is not necessary. This
also confirms that misuses of the synchronisation functions
in GPU programming are quite common, and the operator
sync removal can well represent common errors in GPU pro-
gramming. Looking into the surviving GPU mutants, a large
number of mutants (131) can easily be detected by modifying
the function accessibility (e.g., remove static specifier) and
adding direct tests as mentioned in Section VII-2. To kill
the remaining non-equivalent mutants is more challenging: in
addition to examining the expected result after the function
call, more factors should be taken into consideration, such
as the execution sequence, the size of the test input and the

times of test execution. For instance, to detect the mutants
from operator sync removal, it usually requires multiple test
executions (> 10 times), as the execution order of the code in
GPU cores is undetermined. Although, we assume that GPU
cores run the parallel program at the same time, there exist
some latencies in different GPU cores. For instance, Thread 1
is executed before Thread 2 in one execution, while Thread 2
is executed before Thread 1 in another execution. Thus, data
races do not occur every time. Another example is to kill the
mutant generated from a global function. It is very likely
to encounter illegal memory access if the test input size is
inappropriate. To kill a GPU mutant, it usually requires us to
understand the program context very well and choose more
than one specific test input to kill a mutant; this could take up
to hours to kill a GPU mutant. Thus, those tests designed to
kill GPU mutants can better reveal GPU-specific weakness.

However, we found that not all the non-equivalent surviving
mutants can be killed by adding test cases. There are 22
mutants not affecting the result of the kernel functions but
the GPU performance. The GPU performance means the
execution time by GPUs. For example, one mutant gener-
ated by alloc increment modifies the number of threads in
parallel processor allocations from 256 to (256-1). But the
modifications do not influence the function output since the
function already takes care of the boundary condition when
the test input exceeds the number of parallel threads (just
as in Listing 4). Also, the performance difference caused
by the allocation decrement (-1) is too small to be sensed
by any test. The performance difference is unique to GPU
programming since the standard CPU programs do not use
GPUs as co-processors. We suggest considering these mutants
that only influence the performance at a small scale without
output modification as equivalent mutants in the context of
GPU programming. Another option to void such “equivalent”
mutants generated from GPU programming could be using
performance requirement to be part of the definition of a test
case passing or failing.

GPU-specific mutation operators can effectively evaluate the test
quality in the context of GPU programming. To kill the GPU
mutants, many factors should be taken into consideration, such as
test directness, the program context, the execution sequence and
the test input size. It takes up to hours to kill a GPU mutant.

1 __global__ void padKernel_kernel(float *d_Dst, float *
d_Src, int fftH, int fftW, int kernelH,int kernelW,
int kernelY, int kernelX){

2 int y = blockDim.y * blockIdx.y + threadIdx.y;
3 int x = blockDim.x * blockIdx.x + threadIdx.x;
4 if (y < kernelH && x < kernelW){
5 int ky = y - kernelY;
6 if (ky < 0){
7 ky += fftH;}
8 int kx = x - kernelX;
9 if (kx < 0){

10 kx += fftW;}
11 d_Dst[ky*fftW+kx] = LOAD_FLOAT(y*kernelW+x);}}

Listing 19. Example of a surviving GPU mutant (convolutionFFT2D.cuh)

4) RQ4: conventional vs. GPU-specific: In this section,
we are going to shed light on the comparison of the con-
ventional and GPU-specific mutation operators we proposed.
As mentioned earlier, we are interested in what kind of
improvements the GPU-specific mutation operators can bring
to the conventional mutation operators. Thereby, we use C-
sufficient test suites (100% mutation coverage for C mutants)
as the base to apply mutation testing on the subject systems.
Table V displays the mutant results based on the C-sufficient
test suites. We can see that C-sufficient test suites have a high
average mutation score using conventional mutation operators
compared to GPU-specific ones; this is what we expect.
Otherwise, GPU mutants are subsumed by C mutants, i.e., if
the test suite achieve 100% mutation coverage on C mutants,
it also achieves 100% mutation coverage on GPU mutants.

From Table V, we can see that with an increase in mutation
score with conventional mutation operators, the mutation score
of GPU-specific mutation operators also increases. This is
mainly due to the design of the existing test suites, that do
not target the unit testing level (mentioned in Section VII-2).
We also observe a lack of direct tests for each function in
the existing test suites. Thus, when we engineer new tests to
kill the C mutants, we mainly concentrate on designing direct
tests (as we discussed in Section VII-2). When we target a C
mutant, the GPU mutant(s) located in the same line or the same
function unit is also under investigation. Once the change(s) of
the GPU mutant(s) in the same line or the same function unit
can be observed by the direct test designed for the C mutant,
the GPU mutant(s) can typically be killed at the same time.

Considering the remaining GPU mutants that are not de-
tected by the C-sufficient test suites, the majority requires more
delicate and complex test cases to observe the differences.
Take a surviving GPU mutant in File convolutionFFT2D.cuh
(shown in Listing 19) for example. The function padKer-
nel kernel aims to position the center of the convolution kernel
at (0, 0) of the image which makes use of 2D GPU indexing.

All the mutants generated in Line 2 are detailed in Table VI.
In order to kill the C mutant (MID = 0) in Line 2, we
add a direct test (shown in Listing 20) for function pad-
Kernel kernel. However, the newly added direct test cannot
detect the two GPU mutants with MID = 2 and MID = 9.
Upon investigation, we found in the execution configuration
for function padKernel kernel, the numbers of blocks in the
two dimensions are the same, i.e., gridDim.x = gridDim.y =
1 (see Line 14). Also, the condition in Line 4 of Listing 19

1 void test_padKernel_kernel(){
2 int N = 64*64;
3 float *d_Dst,*d_Src;
4 float h_Dst[N],h_Src[N],h_expected[N];
5 for(int i=0;i<N;i++){
6 h_Src[i]=i;
7 h_expected[i]=0;}
8 h_expected[3966]=1.0;
9 ...

10 cudaMalloc((void **)&d_Dst,sizeof(float)*N);
11 cudaMalloc((void **)&d_Src,sizeof(float)*N);
12 cudaMemcpy(d_Src, h_Src, N*sizeof(float),

cudaMemcpyHostToDevice);
13 cudaMemset(d_Dst,0,N*sizeof(float));

14 dim3 threads(8,8);

15 → dim3 threads(32,8);

16 dim3 grid(iDivUp(3, threads.x), iDivUp(3, threads.y));
17 padKernel_kernel<<<grid,threads>>>(d_Dst,d_Src,64,64,

1,1,1,1);

18 → padKernel_kernel<<<grid,threads>>>(d_Dst,d_Src

,64,64, 3,3,3,3);

19 cudaMemcpy(h_Dst, d_Dst, N*sizeof(float),
cudaMemcpyDeviceToHost);

20 bool testFlag = true;
21 for(int i=0;i<N;i++){
22 if(h_expected[i]!=h_Dst[i]){
23 testFlag = false;}}
24 ...}

Listing 20. Direct test and its improved version for Listing 19

restricts the larger indexes of parallel threads for computation.
Therefore, adding the direct tests cannot detect the difference
of replacing blockIdx.y to blockIdx.x. To detect Mutant 2, we
need to modify the numbers of blocks in the two dimensions to
different values, e.g., set gridDim.x = 4 and gridDim.y = 1 (see
Line 15). Moreover, we need to set the values of kernelH and
kernelW (see Line 17&18) big enough so that the difference
of the value y can affect the output of d Dst array.

Together with this example, we can see that adding direct
tests can kill most C mutants, but not all the GPU mutants. The
remaining GPU mutants are more challenging to be killed as
their differences with the original program are more subtle to
tell. Only given test inputs with specific values and execution
settings, these GPU mutants can be detected. This shows that
the outputs of the GPU program are easily affected by test
inputs and execution configurations. Thus, the corresponding
test cases designed according to these types of GPU mutants
are of higher quality and can detect more potential GPU-
specific bugs in the systems. Therefore, it requires more
effort to design delicate tests to kill a GPU mutants than the
conventional C mutants.

Compared to conventional mutation operators, GPU-specific ones
are better at guiding the engineers to design more delicate tests
to detect the subtle differences in GPU programming. The efforts
required to kill GPU mutants are higher than the conventional.

VIII. THREATS TO VALIDITY

External validity: First, our results are based on the CUDA
programming model; the results might be different when
using other GPU programming models. Second, concerning
the subject selection, we chose six GPU projects in total
to evaluate our approach. All the projects are benchmark
projects from the CUDA SDK [18], and are widely used in
the research domain; this can minimise the threats caused

TABLE V
MUTANT RESULTS (C-SUFFICIENT TEST SUITES)

Project File C Mutants GPU Mutants
total covered killed equiv. MS total covered killed equiv. MS

MonteCarloMultiGPU MonteCarlo kernel.cu 71 71 61 7 0.953 59 59 49 0 0.831
MonteCarlo reduction.cuh 14 14 13 1 1.000 2 2 0 1 0.000

convolutionFFT2D convolutionFFT2D.cu 40 40 40 0 1.000 36 36 27 0 0.750
convolutionFFT2D.cuh 250 249 216 34 1.000 64 64 61 0 0.953

histogram histogram64.cu 82 77 76 6 1.000 96 96 82 0 0.854
Histogram256.cu 48 48 42 5 0.977 81 81 69 0 0.852

mergeSort mergeSort.cu 264 264 213 33 0.922 300 300 280 0 0.933
transpose transpose.cu 180 180 126 43 0.920 319 319 298 0 0.934
scan scan.cu 90 90 78 11 0.987 70 70 65 3 0.970

total 1039 1033 865 140 0.962 1027 1027 931 4 0.910

TABLE VI
MUTANT DETAILS FOR LISTING 19 IN LINE 2

MID operator details category existing c-sufficient
0 math rep. / c survived killed
1 gpu index rep. threadIdx.y gpu killed killed
2 gpu index rep. blockIdx.x gpu survived survived
3 gpu index inc. (blockIdx.y+1) gpu killed killed
4 gpu index dec. (blockIdx.y-1) gpu killed killed
5 math rep. - c killed killed
6 gpu index rep. blockIdx.y gpu killed killed
7 gpu index rep. threadIdx.x gpu killed killed
8 gpu index inc. (threadIdx.y+1) gpu killed killed
9 gpu index dec. (threadIdx.y-1) gpu survived survived

by subjects. Moreover, there might exist errors in the GPU
hardware and the CUDA toolkit. To avoid this threat, we
conduct our experiment on different NVIDIA graphic cards
and different releases of CUDA toolkit.

Internal validity: The main threat to internal validity
for our study is the implementation of MUTGPU for the
experiment. To reduce internal threats to a large extent, we
carefully reviewed and tested all code to eliminate potential
faults in our implementation. Another threat to internal validity
is the detection of equivalent mutants through manual analysis.
However, this threat is unavoidable and shared by other studies
that attempt to detect equivalent mutants [44], [45].

Construct validity: The main threat to construct validity is
the measurement we used to evaluate our methods. We used
the percentage of non-equivalent mutants and the mutation
score as key metrics in our experiment, both of which have
been widely used in other studies on mutation testing.

IX. RELATED WORK

With wide-spread applications of GPUs in High Perfor-
mance Computing (HPC) [3], [4] and safety-critical domains
(e.g., medical science [5] and automotive [6]), there have
been increasing attentions on the quality assurance of GPU
applications [7], [8], such as dynamic analysis [38] and formal
verification [37], [39].

Most related to our approach are fault injection techniques
in GPGPU applications. Farazmand et al. [46] attempted
to quantify the Architectural Vulnerability Factor (AVF) of
GPU hardware structures using statistical fault injection. They
injected faults into register files, local memory, and active
mask stack to characterise the vulnerability of different micro-
architectural structures in GPUs to soft errors. Yim et al. [47]
developed a mutation-based fault injection tool for automated
reliability testing of GPU devices. They modeled both single-

and multi-bit errors in the architecture state to represent the
silent data corruption (SDC) error.

Fang et al. [48] proposed a fault injection methodology
to evaluate the error resilience of the GPGPU applications.
They aimed at injecting the faults that represent real hardware
errors where they adopted the single-bit-flip fault model to
simulate transient faults in GPU processors. Hari et al. [49]
presented an fault injection-based framework called SASSIFI
for GPU application resilience evaluation, especially on soft
errors. SASSIFI serves two kinds of tasks: (1) inject bit-flip
errors into the register file for AVF analysis; (2) inject errors in
the outputs of the instructions for error propagation evaluation.

All the above studies have targeted the errors related to the
GPU hardware. While we focus on the software aspect of GPU
applications where we design mutation operators in the ways
that engineers could make mistakes in GPU programming.

X. CONCLUSION AND FUTURE WORK

This paper aims to explore whether GPU programming can
benefit from mutation testing. Compared to the CPU, the GPU
differs greatly in the architecture and the programming model,
thus, GPU programming comes with its own set of challenges.
Upon observation, we found GPU code with issues of memory
management, thread management and atomic operations can
easily pass the test suite selected with conventional mutation
operators. Thus, we propose nine GPU-specific mutation op-
erators according to the main syntactic differences between
CPU and GPU programming.

To evaluate our approach, we present a tool coined MUT-
GPU and conduct an experiment on six CUDA systems. Our
results show promising findings that GPU programming can
benefit from mutation testing in three ways: (1) conventional
mutation operators can guide engineers to write simple direct
tests; (2) GPU-specific mutation operators can lead to more
delicate test cases (thus higher quality and more test effort);
(3) equivalent mutants can help in bug detection.

Our paper makes the following contributions:
• nine GPU-specific mutation operators;
• a mutation tool (MUTGPU [35]) working on CUDA;
• comparison of conventional and GPU-specific operators;
• a preliminary experiment on six GPU applications [35].
Future work. In the future, we aim to conduct additional

case studies on more realistic GPU systems. Also, we would
like to explore another GPU platforms, such as OpenCL.

REFERENCES

[1] NVIDIA Corporation, “NVIDIA CUDA C programming guide,” 2010,
version 3.2.

[2] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 2009, pp. 1–314.

[3] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for
high performance computing,” in Proceedings of the 2004 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2004, p. 47.

[4] H. Takizawa and H. Kobayashi, “Hierarchical parallel processing of
large scale data clustering on a pc cluster with gpu co-processing,” The
Journal of Supercomputing, vol. 36, no. 3, pp. 219–234, 2006.

[5] S. S. Stone, J. P. Haldar, S. C. Tsao, B. Sutton, Z.-P. Liang et al., “Ac-
celerating advanced mri reconstructions on GPUs,” Journal of parallel
and distributed computing, vol. 68, no. 10, pp. 1307–1318, 2008.

[6] C. Lee, S.-W. Kim, and C. Yoo, “Vadi: Gpu virtualization for an
automotive platform,” IEEE Transactions on Industrial Informatics,
vol. 12, no. 1, pp. 277–290, 2015.

[7] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, “Gpgpus:
how to combine high computational power with high reliability,” in
Proceedings of the conference on Design, Automation & Test in Europe.
European Design and Automation Association, 2014, p. 341.

[8] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of
GPUs parallelism management on safety-critical and hpc applications
reliability,” in 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2014, pp. 455–466.

[9] A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner,
“Verifying gpu kernels by test amplification,” in ACM SIGPLAN Notices,
vol. 47, no. 6. ACM, 2012, pp. 383–394.

[10] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2016.

[11] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. on Softw. Engineering, vol. 37, no. 5,
pp. 649–678, 2011.

[12] Q. Zhu, A. Panichella, and A. Zaidman, “A systematic literature review
of how mutation testing supports quality assurance processes,” Softw.
Test., Verif. Reliab., vol. 28, no. 6, 2018.

[13] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow
and mutation-based test adequacy criteria,” Software Testing, Verification
and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[14] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing:
an experimental comparison of effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, 1997.

[15] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison
of four unit test criteria: Mutation, edge-pair, all-uses and prime path
coverage,” in ICST workshops. IEEE, 2009, pp. 220–229.

[16] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering. IEEE, 2005, pp. 402–411.

[17] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proc. Int’l Symposium on Foundations of Software Engineering. ACM,
2014, pp. 654–665.

[18] “CUDA Developer SDK Code Samples,” https://www.nvidia.com/object/
cuda get samples 3.html, [Accessed 03-June-2019].

[19] D. Luebke and G. Humphreys, “How GPUs work,” Computer, vol. 40,
no. 2, pp. 96–100, 2007.

[20] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” 2008.

[21] K. Gregory and A. Miller, C++ AMP: accelerated massive parallelism
with Microsoft Visual C++. Microsoft Press, 2012.

[22] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[23] J. Offutt, “A mutation carol: Past, present and future,” Information and
Software Technology, vol. 53, no. 10, pp. 1098–1107, 2011.

[24] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators for
testing android apps,” Information and Software Technology, vol. 81, pp.
154–168, 2017.

[25] “SO29158775: My cuda kernal copying matrix with adjustment
is not working,” https://stackoverflow.com/questions/29158775/
my-cuda-kernal-copying-matrix-with-adjustment-is-not-working,
[Accessed 18-March-2019].

[26] “SO25255699: Share memory in CUDA ? How does it
CODE work?” https://stackoverflow.com/questions/25255699/
share-memory-in-cuda-how-does-it-code-work, [Accessed 18-March-
2019].

[27] “SO9488590: Shared memory mutex with CUDA - adding to
a list of items,” https://stackoverflow.com/questions/9488590/
shared-memory-mutex-with-cuda-adding-to-a-list-of-items, [Accessed
18-March-2019].

[28] “SO9859456: cuda thread indexing,” https://stackoverflow.com/
questions/9859456/cuda-thread-indexing, [Online; accessed 18-March-
2019].

[29] “SO21677559: array operation using CUDA ker-
nel,” https://stackoverflow.com/questions/21677559/
array-operation-using-cuda-kernel, [Accessed 18-March-2019].

[30] “SO33159171: CUDA C sum 1 dimension of 2D array
and return,” https://stackoverflow.com/questions/33159171/
cuda-c-sum-1-dimension-of-2d-array-and-return, [Accessed 18-
March-2019].

[31] “SO29233426: Cuda shared memory bug,” https://stackoverflow.com/
questions/29233426/cuda-shared-memory-bug, [Accessed 18-March-
2019].

[32] “SO14057678: cuda matrix multiplication by
columns,” https://stackoverflow.com/questions/14057678/
cuda-matrix-multiplication-by-columns, [Accessed 18-March-2019].

[33] A. Denisov and S. Pankevich, “Mull it over: mutation testing based on
llvm,” in International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2018, pp. 25–31.

[34] H. Coles, “PIT Mutation Operators,” http://pitest.org/quickstart/
mutators/, [Online; accessed 28-May-2019].

[35] Q. Zhu, “Replication Package,” https://doi.org/10.5281/zenodo.3484715,
[Online; accessed 16-December-2019].

[36] P. McGuire, Getting started with pyparsing. O’Reilly, 2007.
[37] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “Gpu-

verify: a verifier for gpu kernels,” in ACM SIGPLAN Notices, vol. 47,
no. 10. ACM, 2012, pp. 113–132.

[38] M. Boyer, K. Skadron, and W. Weimer, “Automated dynamic analysis
of cuda programs,” in Third Workshop on Software Tools for MultiCore
Systems, 2008, p. 33.

[39] G. Li and G. Gopalakrishnan, “Scalable smt-based verification of
gpu kernel functions,” in Proc. ACM SIGSOFT Int’l Symposium on
Foundations of software engineering. ACM, 2010, pp. 187–196.

[40] “Code coverage using NVCC compiler,” https://devtalk.nvidia.com/
default/topic/980545/code-coverage-using-nvcc-compiler/, [Online; ac-
cessed 09-October-2019].

[41] R. Gopinath, C. Jensen, and A. Groce, “The theory of composite faults,”
in Proc. Int’l Conf. on Software Testing, Verification and Validation
(ICST). IEEE, 2017, pp. 47–57.

[42] Q. Zhu, A. Zaidman, and A. Panichella, “How to kill them all: an
exploratory study on the impact of code observability on mutation
testing,” PeerJ Preprints, vol. 7, p. e27794v1, Jun. 2019. [Online].
Available: https://doi.org/10.7287/peerj.preprints.27794v1

[43] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in Proc. Intl
Conf. on Software Engineering. ACM, 2014, pp. 919–930.

[44] B. J. Grün, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in 2009 International Conference on Software Testing, Ver-
ification, and Validation Workshops. IEEE, 2009, pp. 192–199.

[45] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient javascript
mutation testing,” in 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. IEEE, 2013, pp. 74–83.

[46] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injection-based
avf analysis of a gpu architecture,” Proceedings of SELSE, vol. 12, 2012.

[47] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for gpgpu,” in Int’l
Parallel & Distributed Processing Symposium. IEEE, 2011, pp. 287–
300.

[48] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin: A
methodology for evaluating the error resilience of gpgpu applications,”
in 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2014, pp. 221–230.

[49] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: An architecture-level fault injection tool for gpu application
resilience evaluation,” in Int’l Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2017, pp. 249–258.

https://www.nvidia.com/object/cuda_get_samples_3.html
https://www.nvidia.com/object/cuda_get_samples_3.html
https://stackoverflow.com/questions/29158775/my-cuda-kernal-copying-matrix-with-adjustment-is-not-working
https://stackoverflow.com/questions/29158775/my-cuda-kernal-copying-matrix-with-adjustment-is-not-working
https://stackoverflow.com/questions/25255699/share-memory-in-cuda-how-does-it-code-work
https://stackoverflow.com/questions/25255699/share-memory-in-cuda-how-does-it-code-work
https://stackoverflow.com/questions/9488590/shared-memory-mutex-with-cuda-adding-to-a-list-of-items
https://stackoverflow.com/questions/9488590/shared-memory-mutex-with-cuda-adding-to-a-list-of-items
https://stackoverflow.com/questions/9859456/cuda-thread-indexing
https://stackoverflow.com/questions/9859456/cuda-thread-indexing
https://stackoverflow.com/questions/21677559/array-operation-using-cuda-kernel
https://stackoverflow.com/questions/21677559/array-operation-using-cuda-kernel
https://stackoverflow.com/questions/33159171/cuda-c-sum-1-dimension-of-2d-array-and-return
https://stackoverflow.com/questions/33159171/cuda-c-sum-1-dimension-of-2d-array-and-return
https://stackoverflow.com/questions/29233426/cuda-shared-memory-bug
https://stackoverflow.com/questions/29233426/cuda-shared-memory-bug
https://stackoverflow.com/questions/14057678/cuda-matrix-multiplication-by-columns
https://stackoverflow.com/questions/14057678/cuda-matrix-multiplication-by-columns
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/
https://doi.org/10.5281/zenodo.3484715
https://devtalk.nvidia.com/default/topic/980545/code-coverage-using-nvcc-compiler/
https://devtalk.nvidia.com/default/topic/980545/code-coverage-using-nvcc-compiler/
https://doi.org/10.7287/peerj.preprints.27794v1

	I Introduction
	II Background
	II-A GPU computing
	II-B Example of GPU Programming

	III Motivation
	IV Mutation Operators for GPU Programming
	IV-A GPU-Specific Mutation Operators
	IV-A1 Memory management
	IV-A2 Thread management
	IV-A3 Atomic operations

	IV-B Conventional Mutation Operators
	IV-C GPU-specific v.s. Conventional Mutation Operators

	V Tool Implementation
	VI Empirical Evaluation
	VI-A Subject Systems
	VI-B Experimental Setup

	VII Results
	VII-1 RQ1: frequency of GPU-specific mutation operators & mutation scores
	VII-2 RQ2: conventional mutation operators
	VII-3 RQ3: GPU-specific mutation operators
	VII-4 RQ4: conventional vs. GPU-specific

	VIII Threats To Validity
	IX Related Work
	X Conclusion and Future Work
	References

