
Mutation Testing for Physical Computing
Qianqian Zhu

Delft University of Technology
Email: qianqian.zhu@tudelft.nl

Andy Zaidman
Delft University of Technology
Email: a.e.zaidman@tudelft.nl

Abstract—Physical computing, which builds interactive sys-
tems between the physical world and computers, has been
widely used in a wide variety of domains and applications, e.g.,
the Internet of Things (IoT). Although physical computing has
witnessed enormous realisations, testing these physical computing
systems still face many challenges, such as potential circuit
related bugs which are not part of the software problems, the
timing issue which decreasing the testability, etc.; therefore, we
proposed a mutation testing approach for physical computing
systems to enable engineers to judge the quality of their tests in a
more accurate way. The main focus is the communication between
the software and peripherals. More particular, we first defined a
set of mutation operators based on the common communication
errors between the software and peripherals that could happen
in the software. We conducted a preliminary experiment on nine
physical computing projects based on the Raspberry Pi and
Arduino platforms. The results show that our mutation testing
method can assess the test suite quality effectively in terms of
weakness and inadequacy.

I. INTRODUCTION

Physical computing creates a conversation between the
physical world and the virtual world of the computer [1]. The
recent confluence of embedded and real-time systems with
wireless, sensor, and networking technologies is creating a
nascent infrastructure for an educational, technical, economic,
and social revolution. Fuelled by the recent adoption of a
variety of enabling wireless technologies such as RFID tags,
embedded sensor and actuator nodes, the Internet of Things
(IoT) has stepped out of its infancy and is rapidly advancing
in terms of technology, functionality, and size, with more real-
time applications [2]. A good example of the IoT is wearable
devices like fitness trackers that are ever getting more popular.

Modern embedded platforms, like those centred around
the 8051 and Freescale micro-controller series, have seen a
dramatic rise in speed and functionality. The Raspberry Pi and
Arduino platforms, which were originally meant for education,
are two of the most popular modern embedded platforms. They
are both open-source electronics platforms based on easy-to-
use hardware and software.

An equally important trend is softwarization of hardware.
In the early days, hardware engineers had to build circuits
by physically connecting electronic components using wire
and soldering. More recently, reconfigurable computing tools
provide the opportunity to compile programs written in high-
level languages such as C and Java into a hardware architec-
ture. A Raspberry Pi supports several programming languages
including Python to control the General Purpose Input/output
(GPIO) pins to communicate with the external devices. This

means that developing a physical computing system has been
simplified to the point where the hardware peripherals can
easily be controlled via software without even knowing the
hardware part. This trend also provides a great opportunity for
applying methodologies of software engineering in physical
computing, especially testing techniques.

As physical computing is maturing, testing these sensor-
based applications, especially the processing programs, be-
comes essential. Essential, because compared to conventional
software projects, the costs associated with failing physical
computing systems are often even bigger, as bugs can result
in real-life accidents. For example, a robotic arm might
accidentally hurt the human if the programmer does not set
up the initial state properly. Therefore, to develop a rigorous
and sound physical computing system, a high-quality test suite
becomes crucial. This brings us to mutation testing, a fault-
based testing technique that assesses the test suite quality by
systematically introducing small artificial faults [3]. It has been
shown to perform well in exposing faults [4]–[6].

In this paper, we propose a novel mutation testing approach
for physical computing systems enabling engineers to judge
the quality of their tests in an accurate way. Specifically, we
define a set of mutation operators based on common mistakes
that we observed when developing physical computing sys-
tems. We present an initial evaluation of our approach on the
Raspberry Pi and Arduino platforms.

II. BACKGROUND AND MOTIVATION

We introduce basic concepts related to physical computing
and mutation testing. We then motivate why mutation testing
should be applied to physical computing systems.

A. Physical computing

Most physical computing systems (and most computer ap-
plications in general) can be broken down into the following
same three stages: input, processing, and output [1]. The input
is about how computers sense the physical world via sensors
and signals, such as buttons and speakers. While the output is
where computers make changes to the world under people’s
desire through various actuators, like servos, motors and LEDs.
The processing procedure requires a computer (usually an
embedded platform) to read the inputs and turn them into
outputs.

The General Purpose Input/output (GPIO) is the primary
interface that micro-controllers including Raspberry Pi use to
communicate with external devices. The pins available on a



processor can be programmed to be used to either accept input
or provide output to external devices depending on user desires
and application requirements. These pins support a variety of
data handling methods, such as Analog-to-Digital conversion
and interrupt handling. GPIO is also the main focus of our
methodology.

Among different embedded system platforms, the Rasp-
berry Pi is a popular one-chip computer which includes an
ARM-compatible CPU, a GPU and a Secure Digital (SD) card
module. Its recommended operating system for normal use is
Raspbian, a free, Debian-based operating system optimised
for the platform. Python is the recommended programming
language and the RPi.GPIO library is used to configure GPIO
pins.

Another popular micro-controller is Arduino which is also
open-source and easy-to-use. Arduino boards support GPIO
pins as well. The Arduino Software (IDE) runs on the Win-
dows, MacOS, and Linux operating systems. Its programming
language can be expanded through C++ libraries, and users
wanting to understand the technical details can make the leap
from Arduino to the AVR C programming language on which
it is based. Similarly, users can also add AVR-C code directly
into Arduino programs.

B. Mutation Testing

Mutation testing is defined by Jia and Harman [3] as a
fault-based testing technique which provides a testing criterion
called the mutation adequacy score. This score can be used to
measure the effectiveness of a test set regarding its ability to
detect faults [3]. The principle of mutation testing is to intro-
duce syntactic changes into the original program to generate
faulty versions (called mutants) according to well-defined rules
(mutation operators) [7]. The benefits of mutation testing have
been extensively investigated and can be summarised as [8]:
1) having better fault exposing capability compared to other
test coverage criteria [4]–[6], 2) being an excellent alternative
to real faults and providing a good indication of the fault
detection ability of a test suite [9].

C. Characteristics of Physical Computing

Physical computing allows to build interactive physical
systems through a combination of hardware and software. The
following six major characteristics describe the uniqueness of
physical computing [10]:

(1) Safety and security issue: physical computing systems
are much more safety-critical than traditional software where
small defects could have a tremendous impact on the reliability
of systems upon which people’s lives and living depend.
Moreover, sensor networks interact closely with their phys-
ical environment and with people, posing additional security
problems.

(2) Fault-tolerance: fault-tolerance is a crucial requirement
for physical computing systems that manage to handle excep-
tions properly once a certain part does not work. E.g., sensors
may fail due to surrounding physical conditions or when their
energy runs out. It may be difficult to replace existing sensors;

the network must be fault-tolerant such that non-catastrophic
failures are hidden from the application [11].

(3) Lack of knowledge: physical computing is a multi-dis-
ciplinary domain which requires developers to create high-
level software system as well as low-level embedded systems
solutions. However, most embedded systems developers have
an electrical engineering background, therefore, might lack
basic knowledge of software engineering, especially testing
techniques; which could lead to error-prone code and low-
quality tests.

(4) Circuit related bugs: this type of errors is mostly due
to hardware configuration, such as shorts circuits, errors in
sensors, undefined states (not pulling up resistors for the input
processing); these bugs could be prevented or localised by
testing each component at the unit level.

(5) Timing issue: in most cases, peripherals are activated or
deactivated at a particular time, e.g., systems embedded with
sonic sensors only start working when the distance meets a
specific condition. The timing issue decreases testability of
physical computing systems as it is hard to set up the real
scenarios for testing.

(6) Slow execution speed: although there is a dramatic
improvement in the power and functionality of modern em-
bedded platforms, the execution speed of these embedded
platforms is still not as comparable as PCs and servers.
Thereby, the processing program must be carefully designed
to avoid computationally-consuming algorithms.

Motivation. We can see that physical computing systems
require extremely error-free and reliable code considering
the safety and security issue and fault-tolerance. The slow
execution speed of embedded platforms also demands a well-
designed and cost-effective processing program to be deployed
ubiquitously. Moreover, the testing procedure is of utmost
importance to implement high-quality and error-free programs,
as well as detect circuit related bugs, and make up developers’
lack of knowledge of software engineering. Also, a weak test
suite is not sufficient enough to detect the faults and cannot
correctly handle the timing issue.

Taking all the characteristics of physical computing sys-
tems together, the primary challenge for physical computing
systems here is: how to effectively and efficiently test these
physical systems? To deal with this challenge, we are seeking
to apply software engineering methodologies to the physical
computing domain. In particular, mutation testing, which is
well-known for its high fault-revealing effectiveness, is a
viable way to help developers design better quality test suites
in this highly safety critical domain. Also, mutation testing,
as a fault injection technique, is an ideal method for testing
the fault tolerance mechanisms with respect to a specific set
of inputs the physical computing systems are meant to cope
with [12].

III. DESIGNING MUTATION OPERATORS

To integrate computing with the physical world via sensors
and actuators, an essential component is an interface between
the software (processing programs) and peripherals (sensors



and actuators). The proliferation of sensor and actuator net-
works in (civilian) applications requires new approaches to
handle real-time, multimedia and multi-threaded communi-
cations, such as wireless sensor network [11] and cloud
computing [13]. This leads to a more complex and error-prone
integration part. Therefore, when designing a mutation opera-
tor for physical computing, our main goal is to narrow down
the scope of the mutation process to parts of the code that
affect the communication between the software and peripherals
(digital circuits1), namely the GPIO interface. To derive the
mutation operators that represents errors typically made by
programmers during the implementation of the software, we
first summarise common mistakes that could happen in the
software based on our experience. Subsequently, we design a
set of mutation operators for these common mistakes.

(1) output value errors: The output value is usually
decided by a complex function which takes many elements
such as feedback from the sensors and preferences of the
user, into consideration. For example, an automatic watering
system decides when to water the plants according to multiple
environmental conditions, e.g., soil humidity and the amount
of water configured by the user. Thus, the output could be
wrong if there exists a bug in the function. More specifically,
we only pay attention to the final output value generated by
the function, i.e., whether the output value is high or low,
regardless of the function details. For this type of the error, we
derived the OutputValueReplacement (OVR) operator which
replaces HIGH to LOW (and vice versa) in the output value.

(2) output setting omissions: Once a certain signal has been
received/read by a peripheral, the output value should, in some
cases, be reset to ensure that the peripheral can change states
at a later stage. For example, a self-driving car should reduce
engine output when detecting a wall, but the engine should
engage again after clearing the wall. Accordingly, we designed
the OutputSettingRemoval (OSR) operator which deletes the
output setting function.

(3) pin number errors: The programmer may read in-
formation or send control signals using a wrong pin that
she does not intend to operate. The problem typically arises
during prototyping for two reasons: 1) the GPIO pins are
usually on the PCB as a symmetric array without labels so
that designers need to locate a pin by counting, and 2) the
order of a pin on the PCB is typically different from its
numerical ID in the software API, making the mapping error-
prone. PinNumberReplacement (PNR) replaces the pin id with
one of the surrounding pin ids.

(4) input value errors: There are usually two ways to obtain
an input value. The simplest way is to check the input value at
a point in time. This “polling” can potentially miss an input if
the program reads the value at the wrong time. The other way
of responding to a GPIO input is using edge detection. An edge
is the name of a transition from HIGH to LOW (falling edge)
or LOW to HIGH (rising edge). Quite often, we are more

1In this paper, we focus on the digital circuits, where two possible states,
i.e., HIGH and LOW, are considered. As this is the fundamental circuit type
compared to analog.

TABLE I
SUMMARY OF MUTATION OPERATORS

Mutation Full name Definitionoperator

OVR Output Value Replacement replace HIGH to LOW (and vice versa) in the
output value

OSR Output Setting Removal delete the output setting function
PNR Pin Number Replacement replace the pin id with its surrounded pin ids
IVR Input Value Replacement replace HIGH to LOW (and vice versa) in the

input value
EDR Edge Detection Replacement replace edge names among {FALLING, RISING,

BOTH}
IOMR I/O Mode Replacement replace IN to OUT (and vice versa) in the mode

setting
SIR Setup Input Replacement replace the input value from PUD UP to

PUD DOWN (and vice versa) in setup function
SOR Setup Output Replacement replace the output value from HIGH to LOW (and

vice versa) in setup function
SVR Setup Value Removal remove the initial value setting in setup function

for both input and output modes

concerned by a change in state of an input than its value.
One potential fault in the edge detection is to mix up the
falling and rising edge. This problem is common due to the
confusion brought by the variety of external devices, e.g., for
the 7400 series logic chip, for instance, the 74LS107 JK flip-
flop chip [14] triggers on a rising edge, while the 74HC74 D
flip-flop chip [15] triggers on a falling edge. For input value
mistakes, we defined the following two mutation operators:
• InputValueReplacement (IVR): replaces HIGH to LOW

(and vice versa) in the input value
• EdgeDetectionReplacement (EDR): replaces FALLING to

RISING (and vice versa) in the edge detection. However,
sometimes, there is one more edge event called BOTH
which covers both the falling and rising edge. In this case,
the replacement happens among the three edge events,
e.g., replace FALLING to RISING and BOTH.

(5) I/O pin mode errors: A GPIO pin allows to define each
individual pin on the chip as being in input or output mode.
As a side-effect of pin number mistakes, the programmer
might set the pin I/O mode by mistake. Thus we designed
the I/OModeReplacement (IOMR) operator that changes IN to
OUT (or vice versa).

(6) initial setup value errors: If a pin is not “connected”
to a peripheral, it will “float”. In other words, the value that is
read in is undefined because it is not connected to anything.
It could frequently change values as a result of receiving
mains interference. To get around this, GPIO modules usually
provide an option to use a pull-up (PUD UP) or pull-down
(PUD DOWN) resistor to set the default value of the input.
Two potential errors in this context are (1) the omission
of setting up the input value or (2) initializing it with the
opposite value by mistake. Similarly, for the output mode,
pins can have different default output values in a single GPIO
module. The initial output value affects the initial state of the
peripheral that the pin is connected to, which could lead to a
breakdown or unexpected activation. For instance, if the pin
connected to a motor is initially set to HIGH, then once the
module is activated, the motor is immediately activated which
is supposed to be activated when the switch is on. The potential
errors in output value setup are similar to the input value



setup, i.e., the setup omission and the initial value mistakes.
Accordingly, there are three mutation operators:
• SetupInputReplacement (SIR): replace the input value

from PUD UP to PUD DOWN (and vice versa) in setup
function.

• SetupOutputReplacement (SOR): replace the output value
from HIGH to LOW (and vice versa) in setup function.

• SetupValueRemoval (SVR): remove the initial value in
setup function for both input and output modes.

Summary: We designed nine mutation operators (sum-
marised in Table I) to replicate common communication errors
in physical computing systems.

IV. TOOL IMPLEMENTATION

Various modern embedded platforms contain the GPIO
module, such as Arduino, BeagleBone, PSoC kits and Rasp-
berry Pi. In this paper, we chose Raspberry Pi and Arduino as
the target platforms to implement the aforementioned mutation
operators. One thing to note is that our approach should work
with the other aforementioned platforms as well.

We have coined our mutation tool MUTPHY and imple-
mented it in Python. The overall architecture of MUTPHY is
shown in Figure 1. MUTPHY consists of two components, i.e.,
the mutation engine and the test executor. MUTPHY takes the
program and its test suite as input. First, the mutation engine
analyses the source code and marks all possible mutation
points, and then the mutation generator produces all the mu-
tants according to mutation operators. After that, the program
and generated mutants together with the test suite go to the test
executor where the mutation testing is performed: each mutant
is executed against the test suite one by one. Finally, MUTPHY
prints out the detailed mutant killable results. The main task of
the code analyser is to analyse the test dependencies and parse
the source code of the program for the mutation generator. The
mutation generator contains all the mutation operators and the
details of the mutants including the mutation location (line
number) and the mutation operator type.

As Raspberry Pi and Arduino are the target platforms, we
have created two variants of MUTPHY. The main differences
between the two variants are inherent to the programming
languages that are supported by two platforms. For Raspberry
Pi, the code analyser of MUTPHY needs to parse Python,
as Python is Raspberry Pi’s recommended programming lan-
guage. As Arduino only supports C/C++, we created a C/C++
code analyser in MUTPHY for Arduino. Moreover, we con-
sidered pytest [16], a non-boilerplate alternative to Python’s
standard unittest testing framework [17], as the test executor
for both the Raspberry Pi and Arduino platforms , as it can
also handle other popular Python testing libraries, e.g. unittest
and doctests [18].

V. EMPIRICAL EVALUATION

To assess the efficacy of our mutation testing approach, we
conducted an experimental study using two embedded system
platforms, i.e. Raspberry Pi and Arduino. We proposed the
following research questions to steer our experimental study:

Fig. 1. Overview of MUTPHY architecture and workflow

• RQ1: How effective is MUTPHY in evaluating the exist-
ing test suite? With this research question, we evaluate to
what extent MUTPHY can effectively evaluate the quality
of the existing test suite.

• RQ2: How efficient is MUTPHY in generating non-
equivalent mutants? As we designed the mutation oper-
ators based on common mistakes made by programmers,
this might lead to potential redundant mutation operators
which are subsumed by others. RQ2 addresses the effi-
ciency of MUTPHY in generating non-equivalent mutants.

• RQ3: Is it possible to kill all non-equivalent surviving
mutants by adding extra test cases? This research ques-
tion focuses on non-equivalent surviving mutants and
aims to assess whether our approach enables engineers
to write a better test suite.

For RQ1, we determined the effectiveness of our approach
based on the number of non-equivalent surviving mutants.
Also, we compared our results to test coverage. To answer
RQ2, we manually analysed the generated mutants to deter-
mine whether the mutant is equivalent to the original program.
For RQ3, we analysed the non-equivalent surviving mutants
in detail and tried to manually engineer new test cases to kill
these mutants.

A. Case Studies with Raspberry Pi

In the first part of the experiment, we use five Raspberry
Pi based projects for evaluating MUTPHY. For these five
projects, four are obtained from GitHub, and one is from
industry (Guangzhou Kompline Electronics). The four open
source projects have been manually selected from GitHub
under the Raspberry Pi topic using the following process: we
(1) sorted by stars (from high to low), (2) checked whether
they contain “GPIO” as a keyword, (3) verified that they are
implemented in Python, and (4) examined whether they can
be successfully built, and (5) inspected whether they contain
a test suite. Since our main focus is the GPIO interface, we
only apply mutation operators on the files that use the GPIO
library. Table II summarises the main characteristics of the
selected projects.

When answering the RQs in the next sections, we will start
with RQ2, as we need to analyse non-equivalent mutants to
calculate the mutation score which is part of RQ1.



TABLE II
SUBJECTS BASED ON RASPBERRY PI

Project File LOC2 #Tests Coverage3

RPLCD gpio.py 99 35 71%
hcsr04sensor sensor.py 93 6 96%
jean-pierre buzzer.py 20 21 41%
gpiozero mock.py 312 302 97%
four-wheel robot arm.py 179 11 93%

chassis.py 158 4 100%

Total 861 379 82.8%

1) RPLCD: The project RPLCD [19] is a Python 2/3 Rasp-
berry PI Character LCD library for the Hitachi HD44780 [20]
controller. The main peripheral of this system is a LCD
module.

TABLE III
MUTANTS RESULT OF RPLCD

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 13 10 13 0 0 0
OSR 11 10 11 0 1 0
PNR 47 41 47 0 0 0
IVR 0 0 0 0 0 -
EDR 0 0 0 0 0 -

IOMR 1 1 1 0 0 0
SIR 0 0 0 0 0 -
SOR 0 0 0 0 0 -
SVR 0 0 0 0 0 -

Overall 72 62 72 0 1 0

Using MUTPHY, we generated 72 mutants for the RPLCD
project. This project mainly uses the GPIO.output method
to write data to the LCD board, thus, only four types of
mutation operators can be applied to the system: OVR, OSR,
PNR and IOMR. The details of all generated mutants are
presented in Table III. We can see from Table III that only one
equivalent mutant is generated by MUTPHY. This equivalent
OSR mutant is located in a statement that, under the existing
test configuration, cannot be reached. Thus, for this LCD
controlling system, the efficiency of MUTPHY in generating
non-equivalent mutants is promising (RQ2).

While the statement coverage is 71%, the mutation score is
zero. Furthermore, 86.1% of mutants are covered by the test
suite, but none of the mutants is actually killed. Why then is
the mutation score of this project so low? We found that the
developers replaced the RPi.GPIO module of the system under
test with mock objects; this allows the tests to be executed
without a Raspberry Pi. As a side effect, the developers
did not assess the communication between the software and
peripherals for this system. The above findings indicate that
compared to statement coverage, the mutation score can better
represent how a test suite examines the behaviour of GPIO pins
(RQ1).

To kill the mutants (RQ3), we first removed the mock
objects for the RPi.GPIO module and executed the test suite

2The line of code (LOC) is measured by sloccount [21].
3The test coverage is here is statement coverage measured by Coverage.py

[22].

on an actual Raspberry Pi. This modification led to 21 PNR
and 1 IOMR mutants killed. Then, we analysed whether the
remaining mutated statements are covered by the tests or not.
As shown in Table III, we found 85.2% non-equivalent mutants
to be covered by the test suite. However, the existing test suite
only calls the functions in gpio.py file, but does not check
the behaviour of the GPIO pins. To address this drawback of
the existing test suites, we added five test cases to examine
all the pins once their states changed. To capture the state
change sequence of GPIO pins, we introduced new mock
objects. Different from the system developers’ mock objects,
we used mock objects to increase the observability of the
system under test. For instance, one method in gpio.py file
called pulse enable(), that sends a pulse signal to tell the LCD
board to process the data. The method pulse enable() calls
GPIO.output three times in one pin generating a LOW-HIGH-
LOW signal. Without a mock object of method GPIO.output,
it is hard to tell what happens to this pin after this function
call, as the starting and the ending states are both LOW. With
the additional five test cases, all the non-equivalent mutants
are killed.

2) hcsr04sensor: The hcsr04sensor project [23] is a Python
module for measuring distance and depth with a Raspberry Pi
and HC-SR04 Ultrasonic Module [20], which uses sonar to
determine the distance to an object, just like bats or dolphins
do. The sensor first emits ultrasound at 40,000 Hz, which
travels through the air and if there is an object or obstacle
on its path, the ultrasound will bounce back to the module.
Considering the travel time and the speed of the sound, it
calculates the distance. The HC-SR04 Ultrasonic Module has
4 pins: Ground, VCC, Trig and Echo.

TABLE IV
MUTANTS RESULT OF hcsr04sensor

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 3 3 1 2 0 0.67
OSR 3 3 1 2 0 0.67
PNR 31 31 7 24 0 0.77
IVR 2 2 0 2 0 1
EDR 0 0 0 0 0 -

IOMR 2 2 0 2 0 1
SIR 0 0 0 0 0 -
SOR 0 0 0 0 0 -
SVR 0 0 0 0 0 -

Overall 41 41 9 32 0 0.78

Table IV details the generated mutants for hcsr04sensor. In
total, MUTPHY generated 41 mutants. For this system, the
Raspberry Pi controls the HC-SR04 Ultrasonic Module by
writing to the Trig pin and reading from Echo. As such, this
control program mainly adopts GPIO.output and GPIO.input
methods. This results in five types of mutants from OVR,
OSR, PNR, IVR and IOMR operators. There are no equivalent
mutants generated by our proposed mutation operators; this
indicates MUTPHY has high efficiency in generating non-
equivalent mutants (RQ2).

For RQ1, although 100% of the mutants are covered, 22%
of the mutants are not detected by the test suite. Looking at



the existing test suite, we found that the test suite checked
all the initial settings of each GPIO pins, but lacks tests
to (1) examine the pins’ state changes during the execution
and (2) the final states after tearing down. For this project,
it is important to clean up the Trig and Echo pins after
use, because otherwise the distance cannot be accurately
calculated by a new request to the ultrasonic sensor. This gives
another indication that mutation score is a better metric of
test suite quality than statement coverage, which only reveals
insufficient tests for the system.

Regarding RQ3, we observe seven PNR mutants that are
still alive; all originating from the GPIO.cleanup function. To
kill these mutants, we need to add two additional assertions
at the point just after the pins are torn down which means the
pins are not used anymore. Once the pins are torn down, they
cannot be read from or written to anymore, so the assertions
expect exceptions when trying to read those pins.

The other two alive mutants, one of type OVR and one
other of type OSR, are located on the same line, more pre-
cisely when calling the GPIO.output function. Similar to the
pulse enable() method in project RPLCD, this GPIO.output
function is meant to send a LOW value, the first stage of
the pulse signal. We follow a similar strategy in that we
try to introduce mock objects to increase the observability,
but this modification led to a syntax error: a local variable
sonar signal on is referenced before assignment. Through
further investigation, we found that this local variable is only
assigned right after the Echo pin detects a HIGH signal via the
GPIO.input function, while in the situation with mocks, the
GPIO.input function is not actually invoked. This leaves us
in the situation that if we do not introduce mock objects, the
state change of this GPIO.output function cannot be observed,
while if we do introduce mock objects, there is a syntax error.

The aforementioned observation is a case of a snarled
method, a term coined by Feathers to describe a method
dominated by a single large, indented section [24]. Feathers
suggest to perform an extract method refactoring to move
all the statements related to the pulse signal into a separate
method [24]. In doing so, we create a function pulse enable()
and we separate responsibilities of this snarled method. As
a result, we can easily test the state change caused by the
target GPIO.output function without affecting the remaining
part. For these two mutants, it is hard to derive new tests
to kill them without refactoring the original production code.
Through refactoring, the statement where the mutants are
located is moved from a long method to a short one, thus,
improving the observability of the state change made by the
statement. This raises an interesting speculation: the testability
of the production code [25] could have an influence on the
test suite’s mutation score. In Voas et al.’s work [26], they
proposed that software testability could be defined for different
types of testing, such as data-flow testing and mutation testing.
Their work inspires us to explore the relationship of software
testability and mutation testing in the future work.

3) jean-pierre: The project jean-pierre [27] is a little DIY
robot based on the Raspberry Pi Zero W [28]. It uses a camera

to scan food barcodes: it fetches information about the product
from the OpenFoodFacts API [29] and adds it to a grocery list
that the user can manage from a web interface. Once an object
is successfully added to the grocery list, a buzzer makes two
beeps. This system consists of three components: a Raspberry
Pi Zero W, a Raspberry Pi Camera Module [30] and a buzzer.
The main use of the GPIO pins in this project is to control
the buzzer (buzzer.py file).

TABLE V
MUTANTS RESULT OF jean-pierre

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 2 0 2 0 0 0
OSR 2 0 2 0 0 0
PNR 6 0 6 0 0 0
IVR 0 0 0 0 0 -
EDR 0 0 0 0 0 -

IOMR 1 0 1 0 0 0
SIR 0 0 0 0 0 -
SOR 0 0 0 0 0 -
SVR 0 0 0 0 0 -

Overall 11 0 11 0 0 0

As the buzzer only has one function, i.e., beep(), it mainly
adopts the GPIO.output function. When running our tool,
11 mutants are generated (shown in Table V). For RQ2, no
equivalent mutant is generated, which shows MUTPHY’s high
efficiency in generating non-equivalent mutants. For RQ1,
we can see that the mutation score is 0 while the statement
coverage is 41%. Although the statement coverage is 41%,
none of the generated mutants is covered by the test suite.
Closer inspection revealed that there are no tests in the
existing test suite that are specifically designed to test the
communication of the software and the buzzer. We can see
that the mutation score enables to evaluate how the test suite
examines the integration part of the software and peripherals
in physical computing systems, while the test coverage cannot.

To kill the mutants (RQ3), we first added a test case to cover
the mutants without assertions. Once the mutated statements
are covered, i.e., the statement coverage reaches 100%, the six
alive PNR and one alive IOMR mutants are killed. These seven
mutants can easily be detected once the mutated GPIO pins are
invoked, because the RPi.GPIO module throws exceptions if
these pins are either not initialised or initialised incorrectly. For
instance, GPIO8 pin is called without initialisation, or GPIO9
pin is written to HIGH after being initialised to input mode.
Then, to kill the remaining four surviving mutants, we again
introduced mock objects to assess each state change made by
the GPIO.output function. By designing effective test oracles
to test the state change of the GPIO pins using mock objects,
all the mutants are killed.

4) gpiozero: The project gpiozero [31] is a simple interface
to GPIO devices with Raspberry Pi, which requires minimal
boilerplate code to get started. This project is developed by the
Raspberry Pi Foundation. This library provides many simple
and obvious interfaces for the essential components, such as
LED, Button, Buzzer, sensors, motors and even a few simple
add-on boards.



TABLE VI
MUTANTS RESULT OF gpiozero

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 2 2 0 2 0 1
OSR 1 1 0 1 0 1
PNR 68 68 0 68 0 1
IVR 6 6 0 6 0 1
EDR 19 19 0 19 0 1

IOMR 14 14 0 14 0 1
SIR 8 8 0 8 0 1
SOR 2 2 0 2 0 1
SVR 5 5 1 4 1 1

Overall 125 125 1 124 1 1

Table VI shows the 125 mutants generated by MUTPHY.
For RQ2, there is only one equivalent mutant generated by
MUTPHY. This equivalent mutant of type SVR stems from
the initial value being removed from the setup function, yet
with the default output value being the same as the initial
value, there is an equivalence. For RQ1, the mutation score
of this project is 1, which shows the existing test suite is
adequate to detect all the mutants. One necessary condition
for such a high mutation score is high test coverage. We can
see that the statement coverage of the existing test suite is 97%
and all the mutated statements are covered by the test suite.
Moreover, there are 302 test cases in the existing test suite.
Looking at the tests in detail, we found that each test case
not only examines the basic information of the pin under test,
i.e., the pin number and the pin state, but also other possible
settings of the pin, e.g., I/O pin mode and resistor state. As
the mutation score of this project has already achieved 1, there
is no need for us to add extra tests to enhance the test quality
(RQ3). From project gpiozero, we can conclude that the test
suite can indeed achieve 100% mutation score when the GPIO
pins are taken into consideration in tests and test oracles are
carefully designed.

5) four-wheel robot: This subject is a four-wheel robot,
which has been designed and developed for industrial use (as
shown in Figure 2). The robot is capable of moving pie-shaped
objects from one place to another. During the movement, the
robot may optionally rotate the object by at most 2π rad, and
the four wheels can move it in six directions (as presented
in Figure 3). The robot includes one Raspberry Pi 2, five
photoelectric sensors, two DC motors, four stepper motors
and three servos. The photoelectric sensors are mainly used
to align the robot in specific positions (e.g., the starting point
and the destination) based on differently coloured regions. The
four stepper motors are responsible for the movement of the
four wheels. As for the two DC motors, one drives the vertical
movement of the robotic arm; the other is for the rotation of
the arm. The three servos are used to control the action of the
claw to grab the pie-shaped objects. The control system of the
robot consists of two parts, the chassis (chassis.py) and the
arm (arm.py). The chassis part has 13 functions, and the arm
part consists of 13 functions. The entire system’s footprint
comprises 337 lines of code. To set up a safe environment
for testing, there is one test track with black and white lines

Fig. 2. Three-view diagrams of four-wheel robot

Fig. 3. Movement directions of four-wheel robot

designed for the robots. All the test cases are based on this test
track. The test suite for the four-wheel robot system consists
of 15 test cases totalling 243 lines of code. The statement
coverage of the test suite is 96.5%.

Using MUTPHY, we generated 371 mutants. The sum-
marised result of all generated mutants is presented in Ta-
ble VII. For RQ2, we found there are 10 equivalent mutants
generated by MUTPHY. Similar to project gpiozero, all the
equivalent mutants are of type SVR, where the initial value
assignment in the setup function is removed. The cause of
the equivalence is also similar: the initial default value is the
same as the explicitly set initial value. Although these mutants
are equivalent to the original program, explicitly setting the
initial value in the setup function is still recommended because
different embedded platforms have different default values and



TABLE VII
MUTANTS RESULT OF FOUR-WHEEL ROBOT

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 32 32 10 22 0 0.69
OSR 32 32 12 20 0 0.63
PNR 235 235 20 215 0 0.91
IVR 21 20 4 17 0 0.81
EDR 0 0 0 0 0 -

IOMR 19 19 0 19 0 1
SIR 3 3 3 0 0 0
SOR 13 13 7 6 0 0.46
SVR 16 16 15 1 10 0.17

Overall 371 370 71 300 10 0.83

setting the initial value can avoid unexpected initial states.
In conclusion, for the four-wheel robot system, the efficiency
of MUTPHY in generating non-equivalent mutants is high
(97.3%).

For RQ1, the overall mutation score is 0.83, which is
lower than the statement coverage (96.5%). The three mutation
operators with the highest mutation score are IOMR (1), PNR
(0.91) and IVR (0.81). The first two mutation operators are
easier to be killed than the others because these mutants can
be detected once the mutated GPIO pins are invoked: in most
cases, these pins are not initialised or initialised correctly (e.g.,
replace the output mode to the input mode). The 20 alive
mutants from PNR are because of insufficient assertions in
the tests suite; these missing assertions are needed to check
the mutated statements. For IVR, as the input pins of the
robots are connected to photoelectric sensors that are used
to align the robot, most IVR mutants are easily killed if the
robot does not reach the specific position by reading the un-
mutated photoelectric sensors’ states. For the four alive IVR
mutants, one is due to uncovered statements; the other three
are due to poor test design.

The three mutation operators with lowest mutation score are
SIR (0), SVR (0.08) and SOR (0.46). The reason why none
of the SIR mutants is killed is that the corresponding pins are
connected to the peripherals (in particular, the photoelectric
sensors) with very high resistors; this means the replacement
of initial input value (PUD UP or PUD DOWN) cannot affect
the overall potential. These alive mutants cannot be killed
in this case, and even adding new tests would not make a
difference. For SVR, the five alive non-equivalent mutants are
due to insufficient assertions of the tests suite: the existing
test suite does not examine all the initial states of the GPIO
pins. The low mutation score of the SOR operator is due to
inadequate tests that do not examine the initial states of the
GPIO pins once the program starts.

The mutation score of mutants generated from OVR and
OSR are 0.69 and 0.63, which is lower than we expected. The
alive mutants of these two operators are due to meaningless
feedback produced by the control program, and the test oracles
are based on these feedback messages. For instance, the
function lift() in arm.py lifts the arm for a given direction
(up or down) and a period. Once the lift() call is finished,
the function returns the input direction. This kind of feed-

Fig. 4. Diagram of line-follower robot

back does not reflect the actual states of the GPIO pins.
Thus, the corresponding tests can never fail. To kill these
surviving mutants, we replaced GPIO.output functions with
mock objects to assess intermediate states of the target pins.
For the five mutants that are located in the method lift(),
introducing mock objects enables to effectively detect these
mutants. However, the 17 other mutants cannot be easily killed
by making use of mock functions. These 17 mutants reside in
complicated methods with loops and input detections. Similar
to project hcsr04sensor, the intermediate changes cannot be
easily captured and observed by introducing mock objects, as
the sequence of the method calls is uncertain (another case of
a snarled method [24]). Thus, we need to refactor the original
control program by moving the related GPIO.output function
calls into new methods; this enabled us to design accurate test
oracles to examine the state changes.

For RQ3, we managed to kill the 51 non-equivalent alive
mutants by adding and improving test cases. The remaining 20
non-equivalent surviving mutants cannot be killed by simply
adding tests. Among the 20 mutants, 17 mutants can be
killed by refactoring the production code. This observation
strengthens our earlier assumption that the mutation score
could be influenced by the testability of the production code.
The other three non-killable SIR mutants are caused by the
peripherals. More precisely, for the affected circuits the overall
potential cannot be changed by pulling up or down resistor,
as the resistor of peripherals is too high to be changed by
the Raspberry Pi’s function. This type of stubborn mutants
is unique to physical computing systems when compared to
conventional software; it also increases the difficulty of testing
physical computing systems. We suggest to classify this type
of stubborn mutants as equivalent mutants, as the peripherals
are part of the system, and generally, this part is not likely to
change once the system is built up.

B. Case Studies with Arduino

The second part of our experiment targets the Arduino
platform. The Arduino based system is taken from a lab
session of an Embedded Software course for second-year
undergraduate students at Delft University of Technology. The
system is a robot that uses a camera instead of light or IR
sensors to follow a line. It is shown in Figure 4 and is
composed of of three components, each with a different role:



1) Smartphone: the camera of the smartphone is mounted
on the robot makes images of the floor in front of the
robot where the line should be detected;

2) Laptop: the laptop runs the Robot Operating System
(ROS) core [32] and performs line detection on the
images of the smartphone;

3) Arduino-based robot: the robot has to follow the line
on the ground. This part includes one LCHB-100 H-
bridge [33], one Arduino Mega ADK [34], one HC-05
Bluetooth dongle and one HC-SR04 ultrasonic sensor.

The students are required to implement the control program
for the Arduino board and the line detection program based
on ROS in groups of two. We collected implementations from
four groups (the average LOC is 122.5 measured by sloccount
[21]), and then the teaching assistant was asked to design test
suites for those implementations. The main purpose of the
test suites are to examine the five behaviours of the robot, i.e.,
going straight, turning left, turning right, stopping when there
is an obstacle in front and stopping when no image is received.
However, since the implementations of different groups are
different from each other, we have to adjust the details of
the tests to make them pass for further mutation testing. The
statement coverage of the test suite is 100%.

1) Test Environment: The testing system is expected to be
as isolated as possible from the program under test. In particu-
lar, the testing system should monitor the GPIO signals while
keeping the code untouched. However, since the requirements
of the student codes do not include the testing part, most of
them cannot be tested without altering the codes. The reasons
are as follows: first of all, the Arduino platform does not
support multi-process nor multi-threading and thus only allows
one main loop during execution. For the line-follower robot,
the Arduino control program needs to be running continuously
to receive operation signals from the PC as a client. Secondly,
the test execution should be independent of the control pro-
gram as a second process. In order to not introduce another
process, we have to alter the students’ code by adding test
cases in the same program. This results in modifications and
uncertainties in the control program. Therefore, we worked
around the software limitation by adding a hardware monitor
as shown in Figure 5. More specifically, we used another
Arduino board (Arduino Uno [35]) to monitor the pin states
of the control board of the line-follower robot.

The hardware monitor picks up two types of signals from
the system under test.
• Pulse Width Modulation (PWM) signals for the two

DC motors for the wheels. Each DC motor occupies a
pair of PWM channels for the two rotational directions
(controlled via LCHB-100 H-bridge). Therefore, the two
DC motors take four PWM channels in total. We program
the monitor hardware to sample the signals from the
four channels at regular intervals. Thus, we can know
whether the signal is high or low at each interval. We
then approximate the duty cycle by calculating the ratio
between the number of high signals and that of all signals.
For instance, there are 100 high signals out of 500

Fig. 5. Layout of test setup of line-follower robot

TABLE VIII
MUTANTS RESULT OF LINE-FOLLOWER ROBOT

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 38 38 26 12 0 0.32
OSR 34 34 25 9 0 0.26
PNR 298 298 184 114 0 0.38
IVR 0 0 0 0 0 -
EDR 0 0 0 0 0 -

IOMR 36 36 19 17 0 0.47
SIR 4 4 2 2 0 0.50
SOR 3 3 2 1 0 0.33
SVR 3 3 3 0 0 0.00

Overall 416 416 261 155 0 0.37

detected in five seconds for one PWM channel. Thus,
the approximated duty cycle is 20%.

• Standard digital signals from the ultrasonic distance
sensor. The sensor (HC-SR04) has a trigger pin and an
echo pin. The trigger pin is used to emit ultrasound at
40,000 Hz, and the ultrasound signal is received in the
echo pin. A test may override the echo signal of the sensor
to create a simulated situation in which the robot detects
a wall or an obstacle. The trigger pin is programmed to
send an ultrasound continuously in this robot, which is
independent of the simulation, so we use a single channel
to emulate the echo signal.

To fully automate the testing process, we removed the
chassis part from the Arduino-based robot, which does not
influence the states of the PWM channels but prevents the
robot from moving physically. Because our test oracles are
based on the PWM signals of the DC motors to examine
the robot’s behaviour without the information of the physical
location. For example, we designed the assertion for the robot
turning left as right fwd pwm > right fwd pwm, where the
forward PWM signal of the right motor is greater than that of
the left motor. As a consequence, the whole mutation testing
process is automated and requires no human observations.

2) Result: The overall mutation scores of the four imple-
mentations are quite similar, i.e., 0.34, 0.36, 0.39 and 0.40.
The test suites examine the five movements of the robots;
they are almost the same for the four student projects that



we consider. Table VIII summarises the mutants for these
four implementations. We observe that 416 mutants have been
generated. We did not find equivalent mutants amongst the
generated mutants (RQ2). This is likely due to the control
program of the Arduino being quite simple: it is mainly a
signal receiver for the ROS core. The key program, the image
processing program, on the other hand, is located on the PC
side.

For RQ1 we note that while the statement coverage of the
test suite is 100%, the overall mutation score is 0.37. Further
investigation of the test suite leads us to the fact that the
existing test suite lacks assertions to examine all the target
pins. In fact, the test suite only checks the states of two pins
which control the forward direction of the motors (i.e. the
1FWD and 2FWD ports in the LCHB-100 H-bridge). Ideally,
the test suite should check the four pins connected to the other
ports of the LCHB-100 H-bridge.

To kill the alive mutants (RQ3), we added four assertions in
each test case to ensure the correct states of the pins connected
to the LCHB-100 H-bridge that controls the movement of
the motors. This improvement resulted in 201 mutants being
killed. However, there are still 60 mutants surviving after
the modification. These 60 mutants are hard to kill due to
the limitations of our test environment setup. Among the 60
stubborn mutants, 20 mutants are related to a pin that the
hardware monitor did not track. This pin is to control an LED
which students mostly used for debugging purposes. These
20 mutants could be killed if we monitor the states of the
LED pin and add specific assertions for it. The remaining 40
mutants are hard to kill because our test environment can only
monitor the pin states of the robot. This means that we cannot
further check the other settings of the pins, e.g., the pin mode
and resistor state, as we can do in the Raspberry Pi platform.
This type of stubborn mutants is different from the previously
observed stubborn mutants in the hcsr04sensor and four-wheel
robot projects, where the stubbornness was due to software
testability issues. As mentioned in Section V-B1, limitations
of the Arduino platform prevent us from touching the codebase
of the control program directly. The adoption of the hardware
monitor treats the system as a black box; this restricts the
features that we can test in this system, such as the internal
settings of the pins. For this line-following robot, 90.4% non-
equivalent surviving mutants can be killed by adding extra test
cases, while the rest mutants are not killable due to test setups.

C. Summary

Based on the case studies on the Raspberry Pi and Arduino
platforms, we evaluated our method in terms of the efficiency
in generating non-equivalent mutants (RQ2) and the effec-
tiveness in evaluating the test suite quality (RQ1). Moreover,
we also manually analysed non-equivalent surviving mutants
to explore whether the mutation score can be improved by
implementing new or improved tests (RQ3). In this section,
we summarise all results of all subjects involved in our
experimental study (as shown in Table IX) and answer the
three research questions in the light of our observations.

TABLE IX
MUTANTS RESULT OF ALL SUBJECTS

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 90 85 52 38 0 0.42
OSR 83 80 51 32 1 0.39
PNR 685 673 264 421 0 0.61
IVR 29 28 4 25 0 0.86
EDR 19 19 0 19 0 1.00

IOMR 73 72 21 52 0 0.71
SIR 15 15 5 10 0 0.67
SOR 18 18 9 9 0 0.50
SVR 24 24 19 5 11 0.38

Overall 1036 1014 425 611 12 0.60

Table IX indicates that there are 1036 mutants generated in
total, with the PNR mutants comprising 66.1% of the total.
The EDR mutants are easiest to kill, while the OSR and
SVR mutants are most difficult to kill. For RQ2, the overall
percentage of non-equivalent mutants is 98.8%, which is quite
promising. The equivalent mutants mainly stem from SVR
(one from project gpiozero and ten from project four-wheel
robot). However, the equivalent versions without the initial
value setup are not recommended since different embedded
platforms have different default values. Explicitly setting the
initial value in the setup function can avoid unexpected initial
states. The other equivalent one arises from OSR, which is
due to dead code (see project RPLCD in Section V-A1).
Besides, three SIR mutants are non-killable which are caused
by the circuit of the peripherals. We considered these mutants
as equivalent mutants in the context of physical computing
systems. Even taking the three SIR mutants into consideration,
the non-equivalent mutants still comprise 97.5% of the total
number of mutants, showing MUTPHY has high efficiency in
generating non-equivalent mutants.

For RQ1, compared to the statement coverage, the mutation
score generated by our method can be a better indicator of
test suite quality. More specifically, the mutation score can
evaluate how well the test suite examines the integration part
of the software and peripherals in physical computing systems,
something the statement coverage does not allow. Except for
project gpiozero, all the non-equivalent alive mutants reveal
the inadequate test cases in the existing test suite. This is
especially true for project RPLCD, for which the mutation
score is 0, while the statement coverage is 71%.

For RQ3, 94.2% of the mutants, in most cases, it is possible
to kill all non-equivalent surviving mutants by adding extra
test cases, which again supports RQ1 that mutation score can
effectively evaluate the existing test suite. The exception being
59 mutants. The Raspberry Pi case studies account for 19 of
these mutants: 2 mutants from project hcsr04sensor and 17
mutants from project four-wheel robot. Killing these mutants
would require refactoring the production code to increase the
observability of state changes. This implies that test quality
is not the only factor to determine the mutation score, as the
testability of the production code can also impact the mutation
score. Moreover, introducing mock objects is a double-edged
sword. If the mock objects are used properly, the behaviour of



the GPIO pins cannot be examined, e.g., replacing the whole
RPi.GPIO module to mock objects in project RPLCD. While
proper use of mock objects can improve the observability
of intermediate state changes to derive high-quality tests
(see project hcsr04sensor and project four-wheel robot). For
Arduino, 40 mutants remain not-killed as our test setups are
unable to assess the internal settings of the system. A deeper
analysis of these 40 mutants reveals that factors such as
the testability of the software under test and the test setup
influence the mutation score. We would like to explore these
potential factors in the future work to further understand
mutation testing and thus improve it.

VI. THREATS TO VALIDITY

External validity: First, our results are based on the Rasp-
berry Pi and Arduino platforms; these results might be differ-
ent when using other embedded platforms. Second, concerning
the subject selection, we only chose nine physical computing
systems in total to evaluate our approach. Unfortunately, few
physical computing systems on the Raspberry Pi and Arduino
platforms with up-to-date test suites are publicly available.

Internal validity: The main threat to internal validity for
our study is the implementation of MUTPHY for the experi-
ment. To reduce internal threats to a large extent, we carefully
reviewed and tested all code for our study to eliminate po-
tential faults in our implementation. Another threat to internal
validity is the detection of equivalent mutants through manual
analysis. However, this threat is unavoidable and shared by
other studies that attempt to detect equivalent mutants.

Construct validity: The main threat to construct validity is
the measurement we used to evaluate our methods. We used
the percentage of non-equivalent mutants and the mutation
score as key metrics in our experiment, both of which have
been widely used in other studies on mutation testing.

VII. RELATED WORK

There has been a great deal of work on verification and
validation of embedded systems (not limited to physical com-
puting systems) in literature. The main methodologies are
static analysis (e.g., [36], [37]), dynamic analysis (e.g., [38],
[39]), formal verification (e.g., [40], [41]), black-box testing
(e.g., [42], [43]), and white-box testing (e.g., [44], [45]).

Most related to our approach are software-implemented fault
injection (SWIFI) techniques that inject faults pre-runtime
at machine code level (e.g., by changing the content of
memory/registers based on specified fault models) to emulate
the consequences of hardware faults [46]. One of the earliest
SWIFI techniques was presented by Segall et al. [47]. Their
technique’s initial results showed usefulness in reducing the
fault injection complexity and validation of the system. Later,
in 1995, Kanawati et al. [48] proposed a flexible software-
based fault and error injection system, which is useful in eval-
uating the dependability properties of complex systems. More
recently, Arlat et al. [12] compared physical and software-
implemented fault injection techniques. As shown in their
results, these two types of fault injection techniques are

rather complementary, while SWIFI approaches are preferable
mainly due to high controllability, repeatability and cost-
effectiveness. All the above works focus on hardware testing,
and more specifically, the kernel layer. None of them considers
the communication between the software and peripherals in
physical computing systems.

Concerning the application of mutation testing in embedded
systems, Zhan et al. [49], He et al. [50] and Stephan et al. [51]
have addressed the notion of Simulink model mutations. They
proposed a set of mutation operators explicitly for Simulink
that target the run-time properties of the model, such as signal
addition operators. Moreover, Enoiu et al. [52] investigated
mutation-based test generation for PLC embedded software us-
ing model checking. In their work, they designed six mutation
operators for PLC embedded software relying on commonly
occurring faults in IEC 61131-3 software [53], [54]. Different
from our approach, all these works target mutation testing at
the model level, and can only be applied to one specific type
of software, e.g. Simulink. Our approach, on the other hand,
is based on source code, and can thus potentially apply to all
kinds of embedded system platforms.

VIII. CONCLUSION & FUTURE WORK

Physical computing systems come with their own set of
challenges. This paper focuses on the challenge of testing
these physical computing systems, with a particular focus on
assessing the quality of the tests that validate the interactions
between the software and the physical components. We zoom
in on common mistakes that occur in these interactions and
propose a novel mutation testing approach with nine mutation
operators targeting these common interaction mistakes.

Our results have shown encouraging results in uncovering
weaknesses in existing tests. As such, our mutation testing
approach enables to guide engineers to test systems more
effectively and efficiently. More specifically, for our nine case
study systems our mutation testing tool generated a total of
1036 mutants of which 41% were not killed by the original
test suite (and 1.2% of the overall mutants being equivalent
mutants). Adding tests or reinforcing existing tests made it
possible to kill 94% of the non-equivalent surviving mutants.

Our paper makes the following contributions:
• a generic mutation testing approach for physical comput-

ing systems;
• a mutation testing tool named MUTPHY working on the

Raspberry Pi and Arduino platforms;
• a preliminary experiment on nine physical computing

systems4;
Future work. In the future, we aim to conduct additional

case studies on more realistic physical computing systems.
Also, we would like to explore the complementarity between
traditional mutation operators and our newly designed, yet
very specific mutation operators. Finally, we also aim to
explore the relationship between testability and mutation score.

4All the tools, scripts and metadata for this experimental study are available
in our GitHub repository [55].



REFERENCES

[1] D. O’Sullivan and T. Igoe, Physical computing: sensing and controlling
the physical world with computers. Course Technology Press, 2004.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. on Softw. Engineering, vol. 37, no. 5,
pp. 649–678, 2011.

[4] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow
and mutation-based test adequacy criteria,” Software Testing, Verification
and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[5] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing:
an experimental comparison of effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, 1997.

[6] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison
of four unit test criteria: Mutation, edge-pair, all-uses and prime path
coverage,” in ICST workshops. IEEE, 2009, pp. 220–229.

[7] J. Offutt, “A mutation carol: Past, present and future,” Information and
Software Technology, vol. 53, no. 10, pp. 1098–1107, 2011.

[8] Q. Zhu, P. Annibale, and A. Zaidman, “A systematic literature review
of how mutation testing supports test activities,” PeerJ Preprints, 2016.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.2483v1

[9] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering. IEEE, 2005, pp. 402–411.

[10] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and
obligations for physical computing systems,” Computer, vol. 38, no. 11,
pp. 23–31, 2005.

[11] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy
of wireless micro-sensor network models,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 6, no. 2, pp. 28–36, 2002.

[12] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H.
Leber, “Comparison of physical and software-implemented fault injec-
tion techniques,” IEEE Transactions on Computers, vol. 52, no. 9, pp.
1115–1133, 2003.

[13] T. Dillon, C. Wu, and E. Chang, “Cloud computing: issues and chal-
lenges,” in Advanced Information Networking & Applications. IEEE,
2010, pp. 27–33.

[14] Texas Instruments, “74LS107 JK flip-flop Data Sheet,” http://www.utm.
edu/staff/leeb/logic/74ls107.pdf, [Online; accessed 14-June-2017].

[15] ——, “74HC74 D flip-flop Data Sheet,” http://www.utm.edu/staff/leeb/
logic/74ls74.pdf, [Online; accessed 14-June-2017].

[16] “pytest,” https://docs.pytest.org/en/latest/, [Online; accessed 30-October-
2017].

[17] “unittest,” https://docs.python.org/3/library/unittest.html, [Online; ac-
cessed 30-October-2017].

[18] “doctest,” https://docs.python.org/3/library/doctest.html, [Online; ac-
cessed 30-October-2017].

[19] D. Bargen, “RPLCD,” https://github.com/dbrgn/RPLCD, [Online; ac-
cessed 30-January-2018].

[20] “HCSR04 Manual,” https://www.linuxnorth.org/raspi-sump/
HC-SR04Users Manual.pdf, [Online; accessed 30-January-2018].

[21] D. A. Wheeler, “SLOCCount,” https://www.dwheeler.com/sloccount/,
[Online; accessed 25-September-2017].

[22] “Coverage.py,” https://https://coverage.readthedocs.io, [Online; accessed
30-January-2018].

[23] A. Audet, “hcsr04sensor,” https://github.com/alaudet/hcsr04sensor, [On-
line; accessed 30-January-2018].

[24] M. Feathers, Working effectively with legacy code. Prentice Hall
Professional, 2004.

[25] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On the
interplay between software testing and evolution and its effect on pro-
gram comprehension,” in Software Evolution, T. Mens and S. Demeyer,
Eds. Springer, 2008, pp. 173–202.

[26] J. M. Voas and K. W. Miller, “Software testability: The new verification,”
IEEE software, vol. 12, no. 3, pp. 17–28, 1995.

[27] M. Cargnelutti, “Jean-Pierre,” https://github.com/matteocargnelutti/
jean-pierre, [Online; accessed 31-January-2018].

[28] “Raspberry Pi Zero W,” https://www.raspberrypi.org/products/
raspberry-pi-zero-w/, [Online; accessed 31-October-2017].

[29] “OpenFoodFacts API,” https://world.openfoodfacts.org/, [Online; ac-
cessed 31-October-2017].

[30] “Raspberry Camera Module V2,” https://www.raspberrypi.org/products/
camera-module-v2/, [Online; accessed 31-October-2017].

[31] RPi-Distro, “GPIO Zero,” https://github.com/RPi-Distro/
python-gpiozero, [Online; accessed 30-January-2018].

[32] Open Source Robotics Foundation, “Robot Operating System,” http://
www.ros.org/, 10 2014, [Online; accessed 16-February-2018].

[33] “LCHB-100 H-bridge,” https://www.robotshop.com/media/files/pdf/
lchb-100.pdf, [Online; accessed 27-February-2018].

[34] Arduino, “Arduino Mega ADK,” https://store.arduino.cc/
arduino-mega-adk-rev3, [Online; accessed 27-February-2018].

[35] ——, “Arduino Uno,” https://store.arduino.cc/arduino-uno-rev3, [On-
line; accessed 25-September-2017].

[36] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static analysis
of device drivers,” ACM SIGOPS Operating Systems Review, vol. 40,
no. 4, pp. 73–85, 2006.

[37] J. W. Voung, R. Jhala, and S. Lerner, “Relay: static race detection
on millions of lines of code,” in Proc. of the Joint Meeting of the
European Software Engineering Conference and the Int’l Symp. on
Software Engineering (ESEC/FSE). ACM, 2007, pp. 205–214.

[38] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering, pp. 203–232, 2003.

[39] V. V. Rubanov and E. A. Shatokhin, “Runtime verification of linux kernel
modules based on call interception,” in Int’l Conf. Software Testing,
Verification and Validation (ICST). IEEE, 2011, pp. 180–189.

[40] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing real-
time embedded software using uppaal-tron: an industrial case study,” in
Proc. Int’l Conf. on Embedded Software. ACM, 2005, pp. 299–306.

[41] J. Kim, I. Kang, J.-Y. Choi, and I. Lee, “Timed and resource-oriented
statecharts for embedded software,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 4, pp. 568–578, 2010.

[42] W.-T. Tsai, L. Yu, F. Zhu, and R. Paul, “Rapid embedded system testing
using verification patterns,” IEEE software, pp. 68–75, 2005.

[43] A. Sung, B. Choi, and S. Shin, “An interface test model for hardware-
dependent software and embedded os api of the embedded system,”
Computer Standards & Interfaces, vol. 29, no. 4, pp. 430–443, 2007.

[44] H. Lu, W. Chan, and T. Tse, “Testing context-aware middleware-centric
programs: a data flow approach and an RFID-based experimentation,” in
Int’l Symp. Foundations of Software Engineering (FSE). ACM, 2006,
pp. 242–252.

[45] Q. Zhang and I. G. Harris, “A data flow fault coverage metric for vali-
dation of behavioral hdl descriptions,” in Proc. Int’l Conf on Computer-
aided design. IEEE, 2000, pp. 369–373.

[46] E. Fuchs, “An evaluation of the error detection mechanisms in mars
using software-implemented fault injection,” Dependable Computing
Conference, pp. 73–90, 1996.

[47] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Ysskin, J. Kownacki, J. Bar-
ton, R. Dancey, A. Robinson, and T. Lin, “Fiat-fault injection based
automated testing environment,” in Proc. 18th Int. Symposium on Fault-
Tolerant Computing. IEEE, 1988, p. 394.

[48] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A flexible
software-based fault and error injection system,” IEEE Transactions on
computers, vol. 44, no. 2, pp. 248–260, 1995.

[49] Y. Zhan and J. A. Clark, “Search-based mutation testing for simulink
models,” in Proceedings of the 7th annual conference on Genetic and
evolutionary computation. ACM, 2005, pp. 1061–1068.

[50] N. He, P. Rümmer, and D. Kroening, “Test-case generation for embedded
simulink via formal concept analysis,” in Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE. IEEE, 2011, pp. 224–229.

[51] M. Stephan, M. H. Alalfi, and J. R. Cordy, “Towards a taxonomy
for Simulink model mutations,” in Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2014, pp. 206–215.

[52] E. P. Enoiu, D. Sundmark, A. Čaušević, R. Feldt, and P. Pettersson,
“Mutation-based test generation for plc embedded software using model
checking,” in IFIP International Conference on Testing Software and
Systems. Springer, 2016, pp. 155–171.

[53] Y. Oh, J. Yoo, S. Cha, and H. S. Son, “Software safety analysis of
function block diagrams using fault trees,” Reliability Engineering &
System Safety, vol. 88, no. 3, pp. 215–228, 2005.

[54] D. Shin, E. Jee, and D.-H. Bae, “Empirical evaluation on fbd model-
based test coverage criteria using mutation analysis,” in International
Conference on Model Driven Engineering Languages and Systems.
Springer, 2012, pp. 465–479.

[55] Q. Zhu, “MutPhy GitHub Repository,” https://zenodo.org/badge/
latestdoi/136980504, [Online; accessed 11-June-2018].


